
Application Modeling for Scalable Simulation of
Massively Parallel Systems

Eric Anger and Sudhakar Yalamanchili
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia

{eanger,sudha}@gatech.edu

Damian Dechev, Gilbert Hendry, and Jeremiah Wilke
Sandia National Laboratories

Livermore, California
{ddechev,ghendry,jjwilke}@sandia.gov

Abstract—Macro-scale simulation has been advanced as one
tool for application–architecture co-design to express operation
of exascale systems. These simulations approximate the behavior
of system components, trading off accuracy for increased evalu-
ation speed. Application skeletons serve as the vehicle for these
simulations, but they require accurately capturing the execution
behavior of computation. The complexity of application codes, the
heterogeneity of the platforms, and the increasing importance of
simulating multiple performance metrics (e.g., execution time,
energy) require new modeling techniques.

We propose flexible statistical models to increase the fidelity of
application simulation at scale. We present performance model
validation for several exascale mini-applications that leverage
a variety of parallel programming frameworks targeting het-
erogeneous architectures for both time and energy performance
metrics. When paired with these statistical models, application
skeletons were simulated on average 12.5 times faster than the
original application incurring only 6.08% error, which is 12.5%
faster and 33.7% more accurate than baseline models.

I. INTRODUCTION

Both the scientific and enterprise computing domains are
seeing the rise of extreme scale systems to handle explosive
growth in problem sizes. These systems will need to be
designed, without the luxury of prototyping, to fit within
the tightening constraints of power, heat dissipation, mem-
ory bandwidth, and processor speed. We foresee hardware–
software co-design taking a key role in their development,
specifically the use of scalable co-simulation of application
codes and system models.

In this paper we are concerned with a particular method-
ology for hardware–software co-design referred to as macro-
scale simulation, where candidate applications and hardware
configurations are simulated at the scale of hundreds of
thousands of cores to understand the impact of system design
at scale. Inter-node communication is modeled as flows on
the network, which is analyzed for congestion behavior and
its impact on system performance. Such simulations have
demonstrated high scalability [1], capable of reaching tens of
thousands of nodes. However to ensure high-fidelity simula-
tions, these abstracted communication models must be coupled
with fast, accurate end-point computation models.

Developing accurate models of applications on a compute
node is a complex task [2]. Cycle-level hardware simulation

is infeasible at scale. We need more abstract models of the
effects of computation on the system, in particular the time
and energy consumed, rather than the mechanism. In this paper
we propose a modeling methodology based on the notion of
application skeletons; these are application implementations
where regions of code (e.g., compute-intensive loop nests)
can be replaced by analytic models of their physical prop-
erties (e.g., execution time and energy). These models can be
used to determine the timing and duration of network traffic
injection or to explore the time-varying distribution of power
consumption.

To ensure that the macro-scale system simulators retain their
scalability when running application skeletons, the models of
computation must evaluate quickly. The baseline model, based
on loop iteration counts, requires manual tuning and is limited
by its simple structure, resulting in high error. We propose
the use of statistical modeling, which learns the relationships
between application-level input parameters and performance
through analysis of instrumentation data taken from the appli-
cation running on real hardware. This modeling technique can
flexibly handle model construction for complex architectures
and applications while reducing domain expertise required by
users building the application skeletons. This method is used
across execution models and language selection to predict both
execution time and energy. This work uses the Eiger Statistical
Modeling Framework [3] for model generation, augmented
with greater flexibility in selecting input metrics and regression
functions.

The main contributions of this work are:

• the addition of computation models to application ske-
letons, permitting high-fidelity simulation at scale,

• a technique for converting an application into a skeleton,
and

• the use of statistical models, as generated by Eiger,
to predict how different input parameters translate into
execution time and energy.

This paper is structured as follows: Section II describes
previous work in application modeling and simulation. Sec-
tion III presents application skeletons. Section IV illustrates
the model generation process. Section V describes a technique
for construction application skeletons. Section VI contains

a demonstration of the models’ performance, as well as
implications for simulation at scale, followed by concluding
remarks in Section VII.

II. PRIOR WORK

Several simulators have been developed to generate per-
formance estimates for high performance computing architec-
tures. Simulators range from high-fidelity and computationally
expensive simulators for measuring performance between two
nodes [4], [5] to lower-fidelity and lower-cost simulators
that can estimate performance on large-scale machines[1].
Often emphasis is on MPI emulation or simulation, with
prominent simulators including BigSim [6], SIMGRID [7],
and PSINS [8] in addition to SST/macro [9] used here. Similar
to our work, there are notable examples of simulators that
fit application runtime to analytical models [10]. Our work
models individual compute regions rather than the whole
application.

Simulation Techniques Three well-known approaches have
been investigated for estimating large-scale performance. The
most common approach is direct execution of the full appli-
cation on the target system [11], [12], [6]. This simulation
approach uses virtual time unlike normal benchmarking that
uses real time. Performance is measured by using a processor
model and communication work in addition to simulated time
for a modeled network.

Another approach requires tracing the program in order
to collect information about how it communicates and exe-
cutes [6]. The resulting trace file contains computation time
and actual network traffic. Time-independent trace replay
based on hardware performance counters extrapolated to mul-
tiple architectures has been demonstrated [13]. Still, tracing
does not scale to a different number of processors or new
problem sizes.

A third approach is to implement a model skeleton program
as a simple, curtailed version of the full application but
complete enough to simulate realistic activity [14], [15]. This
approach has the advantage that the bulk of the complex
computation can be replaced by simple timing information.
The skeleton application provides a powerful method for eval-
uating the scalability and efficiency over various architectures
of moderate or extreme scales.

Skeleton-driven Simulation The use of kernels or mini-
ature applications in performance analysis is well established.
Two well-known collections of kernels are the NAS Parallel
Benchmarks (NPB) [16] and the PARKBENCH suite [17].
The kernels in these suites represent common computational
patterns that are found in many full-scale applications. Exam-
ples include sorting algorithms, the Fast Fourier Transform,
and matrix-based numerical algorithms. While these suites
provide simpler implementations of important algorithms than
full scientific codes, they represent generic algorithms that
lack any nuances that would be found in specific application
implementations. Some approaches investigate automatically
synthesizing skeletons from communication traces [18], [19],
but this requires extensive trace collection and may not capture

behavior produced with extrapolated application parameters
outside the calibration range. Static analysis techniques have
been used to identify computations that have no impact on
control flow or communication and replace them with sym-
bolic estimates for time [14]. Automated methods have been
demonstrated for transforming scientific codes through the use
of both static analysis and runtime information in the form of
MPI communication patterns [20], [21].

Statistical Modeling Various techniques from the field
of machine learning have been applied to high performance
computing. Applications have been characterized using prin-
cipal component analysis [22] and hierarchical clustering [23]
in order to describe the differences between applications in
benchmark suites as well as to indicate how applications stress
different parts of the hardware pipeline. Other studies [24]
look into statistical models for design space exploration so
that only a small sampling of machine configurations must
be simulated. One technique used to predict execution time,
power, and energy consumption is Artificial Neural Networks
(ANNs) [25], [26]. While this method provides high quality
predictions, it obscures the meaning and interpretation of the
model while prohibiting the designers from informing the
modeling process. Some works [27] use linear regression
models similar to Eiger to predict performance and energy,
but look at the entire execution of the application. In contrast,
this work only predicts regions of computation using statistical
models as a component of the application skeletons, which
allows for flexibility in simulating applications across machine
topologies and configurations.

III. APPLICATION SKELETONS

Simulating the execution of applications on a large number
of cores requires us to abstract application software with
minimal compromises in simulation accuracy. Recently we
have seen the development of macro-scale simulation models,
in contrast to cycle-level or micro-scale simulation models.
The macro-scale simulation models are driven by application
skeletons: a full application, modified to retain its control
flow and structure, but with code segments replaced by an-
alytic models to compute the physical resources—such as
execution time or energy—consumed by the corresponding
code segment. In general the effect of execution characteristics
are modeled rather than the mechanism, i.e., the procedure a
code goes through during execution. The use of application
skeletons enables modeling to be applied at a larger scale that
otherwise feasible.

This work leverages the SST/macro simulator, one branch
of the SST project [9], for coarse-grained macro-scale sim-
ulations. SST/macro provides the foundation for large scale
systems research and has previously been used in high perfor-
mance network-related studies [28], [29]. The general organi-
zation of SST/macro is shown in Figure 1. The application
skeleton is comprised of communication calls (e.g., MPI,
HPX, SHMEM) and models of computation. Control flow
structure is preserved. This paper seeks to improve the models
of computation, including the addition of energy models.

Application skeletons serve as a more accurate (from an
execution perspective) representation of the time and energy
consequences of application execution.

Fig. 1: The structure of the SST/macro simulator.

The timing/energy behavior of application skeletons should
be as close to the original application as possible; any devi-
ations degrade the accuracy of the simulation. The skeletons
should retain control flow characteristics as close to that of
the original application as possible. Take for example the
simplified structure of an extreme-scale application as shown
in Figure 2a, where local and global work is performed on a
periodic basis. In this application, computation is performed
locally several times before synchronization across the system.
For a skeleton to accurately reflect the behavior of its source
application, it must retain the control flow and model the
execution effects of computation regions.

The SST/macro simulator replaces all communication di-
rectives with its own models. Such a skeleton, shown in
Figure 2b, would correctly capture the number and duration of
all communication functions. However, it misses the execution
behavior of potentially lengthy computation between commu-
nication calls; the behavior of this application may depend on
the loads of each processor and how well the synchronization
step is performed. The work in this paper enhances SST/macro
with compute models, taking the place of all code segments
within the skeleton application, as shown in Figure 2c. These
models estimate the consumed time or energy taken by a
computation region.

A. Data-Dependent Computation

Ensuring correct flow of the application skeleton is im-
portant when considering computation that is data-dependent;

for(int iteration = 0; iteration < MAX_ITERS; ++iteration){
local_computation();
if(iteration % SYNC_PERIOD == 0){

local_aggregation_step();
global_sync();

}
}

(a) Original application.
for(int iterations = 0; iteration < MAX_ITERS; ++iteration){

// REMOVED: local computation();
if(iteration % SYNC_PERIOD == 0){

// REMOVED: local aggregation step();
model_communication(global_sync);

}
}

(b) Skeleton application with communication calls replaced with a
model, while retaining correct control flow.
for(int iterations = 0; iteration < MAX_ITERS; ++iteration){

model_computation(local_computation);
if(iteration % SYNC_PERIOD == 0){

model_computation(local_aggregation_step);
model_communication(global_sync_model);

}
}

(c) Skeleton application with the inclusion of both communication
and computation models.

Fig. 2: Creation of a compete application skeleton from its
original.

there may be computation regions whose execution is pre-
scribed by the data being processed. These types of compu-
tations manifest in areas such as iterative algorithms, where
termination is based on convergence criteria, and in sparse
data representations, where meta-data such as dimensionality
is not fixed.

There are several approaches that can be used to ensure
that the execution behavior of a skeleton matches its parent
application. The most direct, but most costly route, is to
preserve in the skeleton any calculations that dictate the
termination conditions of execution. A typical manifestation of
this is when some internal data structures must be initialized
before computation is performed on them. The exact sizes of
these structures are not known until after the initialization has
completed; here their construction is permitted, a time- and
resource-intensive process, to access these dimensions.

When data-dependent computation is performed throughout
the application execution, more care must be taken. An exam-
ple is when the loop iteration count is not known statically,
such as operating on sparse matrix representations. When these
matrices are multiplied, only the nonzero elements are iterated
through. A trade-off must be made here between accuracy of
the simulation and runtime expense in maintaining execution-
dependent information. Such an analysis is beyond the scope
of this work.

IV. COMPUTE MODELING

Making models of computation begins with finding the
places in the application skeleton where computation takes

place. Typically this involves nested loops or other forms of
iterative computational load, such as found in matrix algebra.
Standard performance profilers like gprof are invaluable
for this task; they break down where time is spent in the
application and the function call hierarchy. We have found that
converting the most time-consuming functions in the profile
into models works well. These regions should avoid containing
network communication calls.

We propose a method for generating high-quality analytic
models for these regions through statistical inference. A cor-
pus of execution data from instrumented executions of the
application, including source-level parameter values, is used as
training data to construct an analytic model of execution time
or energy. This modeling approach provides many benefits
over traditional approaches to constructing analytic models,
including removal of the need for deep domain expertise (e.g.,
in energy consumption) during model construction, increase
in the diversity of what can be modeled, and significant
reduction in manual tuning. This work builds upon the Eiger
Statistical Modeling Framework to generate statistical models
for execution time and energy.

Eiger is based on a methodology for constructing statistical
models from instrumentation data. Eiger provides a stan-
dardized infrastructure and API for adding instrumentation
to applications, a relational data store for collecting and
managing that data, and a workflow for the creation and
analysis of models. The main goal of the Eiger project is
to facilitate intelligent, semi-automated model construction
without requiring expert knowledge of hardware or software.
Instead of meticulous domain analysis, the models are learned
from the measurement data. The infrastructure is designed
for flexibility in adding new parameters controlling model
construction and trading accuracy for performance.

The framework does not predefine what should constitute
an input parameter or a performance metric. Input parameters
may include hardware (e.g., cache size, cache line size, register
file size) and software features (e.g., input data size, stencil
size, DMA block size) while performance metrics are any
measurable metric (e.g., execution time, energy, failure rates).
The general procedure for model construction can be seen in
Figure 3 and consists of three main components: Principal
Component Analysis, Clustering, and Forward Model Selec-
tion.

A. Principal Component Analysis

Before any modeling takes place, Eiger constructs a single,
large matrix Dm×n representing all instrumentation data. Each
column is a different input parameter and each row is a
separate data point corresponding to a unique application exe-
cution. In its effort to minimize domain expertise to construct
models, Eiger recommends liberally including input parame-
ters, even if they ultimately will not be used in the model.
This step, Principal Component Analysis (PCA) [30], aims
to compress the number of columns, eliminating unnecessary
data and simplifying model generation. A linear transformation
P n×p is produced, converting the set of possibly correlated

Dm×n

Training Data Points

Dm×n × P n×p | p < n

PCA

Dm1×n × P n×p
Dm2×n × P n×p

...
Dmk×n × P n×p

Clustering

Model M i = ∅
0 ≤ i < k

Best Regressor B ∈ F

M i =

(
M i

B

)

Test Fit of M i

R̄2 > threshold?
g(x) =∑|Mi|

j βjM i,j(xP) + ε

Final Model

No

Yes

Fig. 3: The steps of model construction.

input parameters into a derived set of uncorrelated parameters.
Derived parameters with low variance can be eliminated.
A concern [31] with this technique is that even parameters
exhibiting low variance may relate strongly to the dependent
variable, and would be valuable information to discard. For
this reason, PCA is leveraged to eliminate parameters with
zero variance, simplifying the data set without throwing away
information.

B. Clustering

The next modeling step is Clustering, where similar data
points (i.e., rows of the output matrix from the PCA step) are
grouped together. Rather than using all the data points in the
model fitting step, each cluster goes through fitting separately,
under the assumption that this composite of fits will perform
better [32]. Eiger uses k-means clustering, where a data point
belongs to the nearest of k clusters. The center point of the
cluster is defined as the mean of the input parameter values
for all the data points in that cluster. Eiger performs the next
step of model construction for each of the clusters, creating k
different analytical expressions. When evaluating the model,
the closest cluster must be found and its associated analytical
expression used. Choosing the value for k is left to the user;
this analysis is outside the scope of this work.

C. Forward Model Selection

The last transformation fits an analytical expression of the
input parameters in a cluster to calculate the result metric.
This is achieved with a linear combination of functions, called
regressors, that are applied to the input parameters. These
regressors come from a pool F of candidates. In the Eiger
framework a selection approach is taken to progressively

include regressors in the final model only if they improve the
quality of the fit. This approach is forward in the sense that
it begins with an empty model and adds regressors to it, in
contrast with a backward approach in which the model starts
out with every possible function and unsatisfying elements are
removed.

Beginning with an empty model, regressors are chosen from
the pool and added one by one to select the one that increases
the quality of the fit the most. The coefficient of determination
(R2) gives a measure of how well a model is able to map
predicted values to their associated training value; it ranges
from 0, indicating no correlation between the prediction and
the observed valued, to 1, indicating exact replication by the
model. Eiger uses the adjusted coefficient of determination
(R̄2), a modification of R2 taking into consideration the
number of terms in the model [33]. R̄2 will decrease if the
added regressor results in a model that performs worse than
would be expected by adding a random regressor. To control
over-fitting, in which the predictability of new data points is
sacrificed in order to ensure the model approaches the training
data as closely as possible, the winning regressor is only added
if the amount by which it increases the fit is larger than a user-
provided threshold. In this work, selecting the threshold value
is an empirical procedure. Model construction finishes when
there are no more models left in the pool or when the winning
regressor does not surpass the threshold. The final model is
comprised of each selected regressor F i and an associated
weight βi, plus an error term ε.

We found that there are instances where the user has some
intuition about the relationship between input parameters and
performance and wish to generate a model based on this
intuition, (i.e., based on a specific set of regressors and input
parameters). For example, the user may wish to construct a
linear model or a model that is logarithmic in the input data set
size. Consequently, we have extended Eiger to enable the user
to a) specify the set of regressors to be used, and b) specify
the set of input parameters to be used. For example, even
though the set of input parameters is quite extensive, the user
may wish to construct a model based on two input parameters
and two specific regressors.

V. SKELETONIZATION PROCEDURE

The original source code of the candidate application is
augmented so that compute intensive code regions can be
easily replaced by the model thereby producing an application
skeleton. These modified applications are then executed by
linking with the SST/macro simulator that simulates the exe-
cution of this application on a large scale parallel architecture
model. To facilitate the collection of measurement data, we
have developed the Lightweight Performance Data Collectors
(lwperf) tool1, a collection of simple, portable macros aimed
at making it easy to gather high-level algorithm features and
performance numbers from real applications. A single code

1The source code and documentation for lwperf is available at https:
//github.com/gtcasl/lwperf

markup scheme is provided which, based on compilation flags,
can record performance data for code regions from parallel
application execution. The performance data is recorded in an
Eiger database. lwperf supports C, C++, and modern For-
tran. Figure 4 shows the different aspects of model generation,
the typical procedure for which is:

1) Place appropriate lwperf initialization (PERFINIT)
and finalization (PERFFINALIZE) calls at the beginning
and end of the application, respectively.

2) Locate the compute regions to be modeled. Typically this
involves nested loops or accelerator kernels, but can be
at user-defined granularity.

3) Surround the compute regions with appropriate calls to
lwperf macros PERFLOG and PERFSTOP, indicating
a region name as well as any parameters which may be
important determinants of the performance of this region,
such as loop bounds.

4) Compile the application with the data collection flags set
and run the program over various problem sizes. This will
fill the Eiger database with training data.

5) Run Eiger model generation for each compute region, as
described in Section IV.

6) Rebuild the application with the simulation flags set.
During execution, the marked compute regions will be
replaced with with calls to the models, skeletonizing the
application.

7) Simulate the skeleton with SST/macro. This requires
linking with SST/macro and providing a configuration
file describing the machine model to use. More details
on the changes needed to make an application skeleton
run in SST/macro can be found in its documentation2.

Handling heterogeneous or parallel node architectures is
straightforward with Eiger models. Eiger makes no assump-
tions about the execution model, instead learning the rela-
tionships between input parameters and performance for each
marked code region. As long as the entire computation region
is captured and profiled, including any intra-node communica-
tion, Eiger will attempt to learn a model of performance from
the data.

At any code region where data collection is desired, the
collection point is defined by a unique name and the set of
parameters characterizing the workload. Figure 4a shows the
same function from Figure 5a with lwperf instrumentation
calls inserted. The region is uniquely identified by the first
argument and indicates two metrics of interest, the matrix
dimensions M and N. A single data point is then recorded every
time this region of the program is entered, along with the time
elapsed as shown in Figure 4b.

To facilitate skeletonization, lwperf can be configured
to remove and replace all instrumented code with calls to
Eiger models for running within the SST/macro simulator.
Each collection point is replaced with calls to an Eiger model
under the assumption that each characterizing parameter is

2The source code and documentation for SST/macro is available at https:
//bitbucket.org/sst-ca/sstmacro.

https://github.com/gtcasl/lwperf
https://github.com/gtcasl/lwperf
https://bitbucket.org/sst-ca/sstmacro
https://bitbucket.org/sst-ca/sstmacro

void foo(int M, int N, int** matrix){
PERFLOG(foo, M, N);
for(int i = 0; i < M; i++){

for(int j = 0; j < N; j++){
int temp = (matrix[i][j] + i) % 10;
matrix[i][j] += temp; } }

PERFSTOP(foo, M, N);
}

(a) Annotated Original
void foo(int M, int N, int** matrix){

double start = MPI_Wtime();
for(int i = 0; i < M; i++){

for(int j = 0; j < N; j++){
int temp = (matrix[i][j] + i) % 10;
matrix[i][j] += temp; } }

double stop = MPI_Wtime();
EIGER_record("foo", M, N, stop - start);

}

(b) Data Collection
void foo(int M, int N, int** matrix){

/∗
for(int i = 0; i < M; i++){

for(int j = 0; j < N; j++){
int temp = (matrix[i][j] + i) % 10;
matrix[i][j] += temp; } }

∗/
double foo_time = EIGER_compute_time("foo", M, N);
SSTMAC_compute_time(foo_time);

}

(c) Skeleton

Fig. 4: Transformation of a simple function into a compute
model. The original application is transformed into data col-
lection and skeleton versions during compilation.

used as an input feature to the model. Figure 4c shows how
computation is replaced with a call to the model for execution
time. This technique allows for the application to serve as both
the instrumentation source and the skeleton.

VI. EXPERIMENTAL RESULTS

To demonstrate the benefits of a comprehensive modeling
tool like Eiger, we construct a simple model by hand that
tries to replicate the structure of loop nests. Computation is
represented by a linear function of the loop bounds scaled
by a loop factor describing the amount of “work” performed
per iteration. For example, the loops in the simple function
in Figure 5a might be replaced with a single call such as in
Figure 5b, specifying the nested lower and upper loop bounds,
and in this case, a loop factor of 2. The product of the loop
bounds and loop factor is scaled by a set of empirically derived
constants to provide an estimate of the performance metric.

The loop model is simple and intuitive. However, it is a
manual process and can only represent linear relationships.
Therefore it is not easily adapted to the parallel imple-
mentations of nested loops or execution on heterogeneous
architectures where performance is a more complex function
of many interacting microarchitectural features. In this paper
it serves as a baseline for comparison for cases where such
simple models would suffice.

void foo(int M, int N, int** matrix){
for(int i = 0; i < M; i++){

for(int j = 0; j < N; j++){
int temp = (matrix[i][j] + i) % 10;
matrix[i][j] += temp; } }

}

(a)
void foo(int M, int N, int** matrix){

/∗
for(int i = 0; i < M; i++){

for(int j = 0; j < N; j++){
int temp = (matrix[i][j] + i) % 10;
matrix[i][j] += temp; } }

∗/
SSTMAC_compute_loops2(0, M, 0, N, 2);

}

(b)

Fig. 5: Example function (a) and the same function where the
computation is replaced by the loop model (b).

A. Experimental Setup

We use four scientific application codes familiar to the HPC
community to demonstrate adding Eiger models to application
skeletons:

1) MiniMD is a molecular dynamics mini-application from
the Mantevo project [34], created to investigate improving
spatial-decomposition particle simulations as a simpler,
more accessible version of LAMMPS [35]. Parameters
to miniMD include problem size, atom density, temper-
ature, time step size, number of time steps, and particle
interaction cutoff distance. This application offloads com-
putations to GPU accelerators using the CUDA parallel
programming language [36].

2) HPCCG is a simple conjugate gradient benchmark code
for a 3D chimney domain, also from the Mantevo project.
It generates a 27-point finite difference matrix with a user-
prescribed sub-block size on each processor, and weak
scales well to a large number of processors.

3) MiniFE is a proxy application from the Mantevo suite
for unstructured implicit finite element codes. It is similar
to HPCCG but provides a much more complete vertical
covering of the steps in this class of applications. This
application also uses CUDA for GPU acceleration.

4) LULESH discretely approximates explicit hydrodynam-
ics equations [37] found in complex software packages
like ALE3D by partitioning the spatial problem domain
into a collection of volumetric elements defined by a
mesh. This application uses OpenMP [38] to parallelize
computation across CPU threads.

Constructing Eiger models relies upon a corpus of training
data taken from real executions, including the performance
metrics associated with each region of computation. We mea-
sure application energy consumption for CPU-only applica-
tions using the Running Average Power Limit (RAPL) hard-
ware performance counters available on recent Intel proces-
sors. These counters are measured using the Performance Ap-

TABLE I: Machine configurations for collecting time and
energy training data.

Use Parameter Value

time CPU Intel i7-920
time CPU threads 8
time CPU clock rate 2.67 GHz
time Memory size 6GB
time GPU model NVIDIA GTX 660 Ti
time GPU cores 1344
time GPU clock rate 915 MHz
time GPU memory size 2GB
energy CPU Intel i7-4770
energy CPU clock rate 3.40 GHz
energy CPU threads 8
energy Memory size 16GB

plication Programming Interface (PAPI) [39] and cover energy
consumption for the entire processor package. Infrastructure
for measuring energy consumption of the entire node (i.e.,
memory modules, accelerators, network interface components)
can be used to better describe the energy characterization of
a node, but is outside the scope of these experiments. The
systems used for these experiments are described in Table I.

B. Model Fit
Here we examine how closely the models predict the

training data. For these experiments, each application was
executed unmodified for several different input sizes, using
the data collection procedure described in Section V. This
training data was then used to generate the models; one model
is generated for each region of computation.

The improved fit of the Eiger models over the baseline loop
models can be clearly seen in the region of computation in
MiniFE where the Dirichlet boundary conditions are imposed;
this region requires calls to two GPU kernels. The fits of
the models are shown in Figure 6. The loop models were
hand-tuned until they converged as close as possible to the
training data. This process required significantly more time
to construct, requiring a thorough examination of the original
application source code. Even then, the performance of these
models was in general poorer than Eiger. The loop model can
statically subdivides the number of elements on the boundary
across all the GPU threads, achieving an R2 value of 0.912
and an average error of 6.73%. In contrast, Eiger generates a
model that scores an R2 value of 0.983 and an average error
of 2.43%, without manual intervention.

As this computation is performed on the GPU, factors such
as how long it takes to transfer all the data to the device,
how work is assigned to threads, and how those threads get
scheduled on the device at runtime contribute to variability in
performance unrelated to the size of the vectors. To increase
the quality of the loop models, more rigorous attention to the
inner workings of the device could be harnessed, but would
require expert knowledge of the architecture.

C. Simulation Accuracy
One concern with the models is that they may be too

strongly tied to the training data. This phenomenon is called

0.015 0.02 0.025 0.03 0.035 0.04 0.045
0.015

0.02

0.025

0.03

0.035

0.04

0.045

Observed Time (s)

Pr
ed

ic
te

d
Ti

m
e

(s
)

y = x
loop
Eiger

Fig. 6: Observed training values and their associated loop
model predictions for MiniFE Dirichlet boundary condition
region of computation.

overfitting, indicating that the model is biased towards the
training data. While a model may be a strong predictor of
the training data, there might be ancillary effects that go
unobserved as the problem size changes. One example of this
happens with the region of computation in HPCCG where two
vectors are scaled and added together. For smaller problem
sizes, the vector length strongly correlates with execution time.
However as the vectors get larger, the structure of the memory
hierarchy affects the average access latency per element. This
causes the loop model to diverge from the training data.

In contrast, the model generation process in Eiger avoids
overfitting through use of a threshold parameter. This tunable
parameter prevents the inclusion of elements in the model
that would result in overfitting. Figure 7 shows the effect
of the threshold value (i.e., how biased the model is to the
training data) on the average number of regressor functions
in the model and the resulting simulation error. There is
a middle ground where increasing the threshold no longer
reduces overfitting but rather begins to eliminate necessary
model terms, increasing overall error.

With the models trained, we now show how the individual
models interact when simulating an entire application skeleton.
Having accurate application skeletons, across input problem
sizes, forms the foundation for macro-scale simulation. To
eliminate any error caused by the communication models
in SST/macro, we only simulate a single node. This test
demonstrates that all computation performed by the appli-
cation is modeled and to guarantee that any code removed
during the skeletonization process does not change the overall
structure of the application. Figure 8 illustrates how close the
simulations are to correctly predicting the execution times of
all four applications and the energy consumption of HPCCG

0 0 0 0.01 0.01 0.01

1.2

1.4

1.6

1.8

Threshold ValueA
ve

ra
ge

N
um

be
r

of
R

eg
re

ss
or

s
in

M
od

el

101

102

Pe
rc

en
t

E
rr

or
(%

)

regressors
% error

Fig. 7: Effect of threshold value on overfitting for HPCCG.

and LULESH. On average, the models generated by Eiger
result in 6.08% error, where the loop models incur a 9.17%
error.

D. Simulation Speedup

SST/macro has been demonstrated to simulate parallel sys-
tems with tens of thousands of nodes in minutes [1]. To enable
scalable macro-scale simulation, the models of computation
added to application skeletons must be fast. These experiments
compare the execution time of the original application with its
application skeleton. Where as testbed systems and cycle-level
simulators tend to run orders of magnitude slower than on the
native machine, simulating our application skeletons results in
a speedup of simulator runtime over the native execution time
of the application, as shown in Figure 9. These speedups tend
to increase with the problem size; the predicted computation
time increases as the problem size increases, but the time it
takes to poll those models remains constant, resulting in an
overall increase in the speedup of simulator runtime.

Eiger models are capable of increased simulator speedup
over loop models due to their higher level of abstraction;
for similar accuracy, more granular loop models are required.
Take, for example, creating a loop model for the execution
time of a GPU kernel. Memory transferred from the host to the
device is represented by the amount of data to be transferred
and the time to transfer an individual unit. The computation
in the kernel is modeled, requiring a non-trivial understanding
of how tasks are scheduled and the breakdown of tasks to be
performed.

This is significantly easier to model with Eiger: the entire
kernel can be abstracted into a single model that is learned
from training data, encompassing all aspects of execution of
the kernel, including data transfers. This reduces the total
number of times the model needs to be polled, decreasing
the running time of the simulation. This is the case for
the MiniMD, MiniFE, and LULESH skeletons. The HPCCG
skeleton behaves differently; simulation speedup is lower when
using Eiger models compared to loop models. This is due to

the simplicity of computation regions within the application;
there are few opportunities for abstracting large regions of
computation into Eiger models, resulting in a similar number
of calls to Eiger models as loop models. Eiger models are
more computationally expensive to evaluate than loop models,
resulting in lower speedup. On average, the skeletons with loop
models ran 12.1 times faster than the original application and
skeletons with Eiger models ran 12.5 times faster.

VII. CONCLUSION

Co-design is enabled by high fidelity macro-scale simula-
tion, providing software writers and hardware architects the
ability to reason about the way exascale systems operate
at scale. Application skeletons, the vehicles of macro-scale
simulation, require high-fidelity models of computation. In
this paper we presented a method for modeling time spent in
compute regions: statistical models that learn the relationship
between input parameters and the performance metric (e.g.,
execution time or energy) through analysis of instrumentation
data from execution of applications on real hardware. On
average, the statistical models added to four scientific proxy
applications resulted in simulations that are 12.5 times faster
than the original application with only 6.08% error. This is on
average 12.5% faster and 33.7% more accurate than baseline
models.

ACKNOWLEDGMENT

This work was supported by the U.S. Department of En-
ergy’s National Nuclear Security Administration’s Advanced
Simulation and Computing program, the U.S. Department of
Energy’s Office of Advanced Scientific Computing Research,
and Sandia National Laboratories’ Laboratory Directed Re-
search and Development program. Sandia National Laborato-
ries is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-
AC04-94AL85000.

REFERENCES

[1] J. J. Wilke, K. Sargsyan, J. P. Kenny, B. Debusschere, H. N. Najm,
and G. Hendry, “Validation and uncertainty assessment of extreme-
scale hpc simulation through bayesian inference,” in Proceedings
of the 19th International Conference on Parallel Processing, ser.
Euro-Par’13. Berlin, Heidelberg: Springer-Verlag, 2013, pp. 41–52.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-40047-6 7

[2] Advanced Scientific Computing Advisory Committee (ASCAC)
Subcommittee, “The opportunities and challenges of exascale
computing,” U.S. Department of Energy, Tech. Rep., 2010.
[Online]. Available: http://science.energy.gov/∼/media/ascr/ascac/pdf/
reports/Exascale subcommittee report.pdf

[3] A. Kerr, E. Anger, G. Hendry, and S. Yalamanchili, “Eiger: A
framework for the automated synthesis of statistical performance
models,” in 2012 19th International Conference on High Performance
Computing. IEEE, Dec. 2012, pp. 1–6. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6507525

[4] A. Rodrigues, R. Murphy, P. Kogge, J. Brockman, R. Brightwell, and
K. Underwood, “Implications of a PIM Architectural Model for MPI,”
in Proc. Cluster Computing, 2003.

http://dx.doi.org/10.1007/978-3-642-40047-6_7
http://science.energy.gov/~/media/ascr/ascac/pdf/reports/Exascale_subcommittee_report.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/reports/Exascale_subcommittee_report.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6507525
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6507525

40 60 80 100 120 140 160
0

5

10

Pe
rc

en
t

E
rr

or
(%

)
in

E
ne

rg
y

HPCCG

15 20 25 30 35 40 45 50
0

10

20

30

LULESH

40 60 80 100 120 140 160
0

2

4

6

8

Pe
rc

en
t

E
rr

or
(%

)
in

E
xe

cu
tio

n
Ti

m
e

HPCCG

15 20 25 30 35 40 45 50
0

10

20

LULESH

20 30 40 50 60 70 80
0

5

10

15

20

Problem Size

Pe
rc

en
t

E
rr

or
(%

)
in

E
xe

cu
tio

n
Ti

m
e

MiniMD

100 110 120 130 140 150
0

5

10

Problem Size

MiniFE

loop Eiger

Fig. 8: Error in simulation predictions of application runtime.

40 60 80 100 120 140 160
0

5

10

Sp
ee

du
p

HPCCG

20 30 40 50 60 70 80
0

2

4

6

8

MiniMD

15 20 25 30 35 40 45 50
0

20

40

Problem Size

Sp
ee

du
p

LULESH

100 110 120 130 140 150
0

5

10

15

Problem Size

MiniFE

loop Eiger

Fig. 9: Speedup of simulator runtime over native execution.

[5] K. D. Underwood, M. Levenhagen, and A. Rodrigues, “Simulating Red
Storm: Challenges and Successes in Building a System Simulation,”
in Proc. International Parallel and Distributed Processing Symposium
(IPDPS’07). Los Alamitos, CA, USA: IEEE Computer Society, 2007,
pp. 1–10.

[6] G. Zheng, T. Wilmarth, P. Jagadishprasad, and L. Kalé, “Simulation-
based performance prediction for large parallel machines,” Int. Jour.
Parallel Program., vol. 33, no. 2, pp. 183–207, June 2005.

[7] e. a. H Casanova, “SimGrid: A Generic Framework for Large-Scale
Distributed Experiments,” in Iccms 2008: 10th Int. Conf. On Comput.
Model. Simul., 2008, pp. 126–131.

[8] M. Tikir, M. Laurenzano, L. Carrington, and A. Snavely, “Psins: An
open source event tracer and execution simulator for mpi applications,”
in Euro-Par 2009 Parallel Processing, ser. Lecture Notes in Computer
Science, H. Sips, D. Epema, and H.-X. Lin, Eds. Springer Berlin /
Heidelberg, 2009, vol. 5704, pp. 135–148.

[9] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield,
M. Weston, R. Risen, J. Cook, P. Rosenfeld, E. CooperBalls, and
B. Jacob, “The structural simulation toolkit,” SIGMETRICS Perform.
Eval. Rev., vol. 38, pp. 37–42, March 2011.

[10] A. Hoisie, G. Johnson, D. J. Kerbyson, M. Lang, and S. Pakin, “A
Performance Comparison Through Benchmarking and Modeling of
Three Leading Supercomputers: Blue Gene/L, Red Storm, and Purple,”
in SC ’06: International Conference for High Performance Computing,
Networking, Storage and Analysis, 2006.

[11] S. Prakash, E. Deelman, and R. Bagrodia, “Asynchronous Parallel
Simulation of Parallel Programs,” IEEE Transactions on Software En-
gineering, vol. 26, no. 5, pp. 385–400, 2000.

[12] R. Riesen, “A Hybrid MPI Simulator,” in IEEE Inter. Conf. on Cluster
Computing 2006, sept. 2006, pp. 1–9.

[13] e. a. F Desprez, “Improving the Accuracy and Efficiency of Time-
Independent Trace Replay,” in PMBS ’12: 3rd Int. Workshop On
Perform. Model. Benchmarking Simul. High Perform. Comput. Syst.,
2012.

[14] V. Adve, R. Bagrodia, E. Deelman, and R. Sakellariou, “Compiler-
optimized simulation of large-scale applications on high performance
architectures,” Journal of Parallel and Distributed Computing, vol. 62,
no. 3, pp. 393–426, 2002.

[15] R. Susukita, H. Ando, M. Aoyagi, H. Honda, Y. Inadomi, K. Inoue,
S. Ishizuki, Y. Kimura, H. Komatsu, M. Kurokawa, K. J. Murakami,
H. Shibamura, S. Yamamura, and Y. Yu, “Performance prediction of
large-scale parallell system and application using macro-level simu-
lation,” in Proc. ACM/IEEE Conference on Supercomputing SC ’08.
Piscataway, NJ, USA: IEEE Press, 2008, pp. 20:1–20:9.

[16] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga,
“The NAS parallel benchmarks–summary and preliminary results,” in
Proceedings of the 1991 ACM/IEEE Conference on Supercomputing, ser.
Supercomputing ’91. New York, NY, USA: ACM, 1991, pp. 158–165.
[Online]. Available: http://doi.acm.org/10.1145/125826.125925

[17] J. Dongarra, T. Hey, and E. Strohmaier, “PARKBENCH: Methodology,
Relations and Results,” in HPCN Europe, 1996, pp. 770–777.

[18] V. S. Adve, R. Bagrodia, J. C. Browne, E. Deelman, A. Dube, E. N.
Houstis, J. R. Rice, R. Sakellariou, D. J. Sundaram-Stukel, P. J. Teller,
and M. K. Vernon, “POEMS: End-to-End Performance Design of
Large Parallel Adaptive Computational Systems,” IEEE Trans. Softw.
Eng., vol. 26, no. 11, pp. 1027–1048, Nov. 2000. [Online]. Available:
http://dx.doi.org/10.1109/32.881716

[19] J. Subhlok and Q. Xu, “Automatic construction of coordinated per-
formance skeletons,” in Proceedings of the 2008 IEEE International
Symposium on Parallel and Distributed Processing (IPDPS), April 2008,
pp. 1–5.

[20] R. Preissl, T. Köckerbauer, M. Schulz, D. Kranzlmüller, B. R. d.
Supinski, and D. J. Quinlan, “Detecting Patterns in MPI Communication
Traces,” in Proceedings of the 2008 37th International Conference
on Parallel Processing, ser. ICPP ’08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 230–237. [Online]. Available:
http://dx.doi.org/10.1109/ICPP.2008.71

[21] M. Sottile, A. Dakshinamurthy, G. Hendry, and D. Dechev, “Semi-
Automatic Extraction of Software Skeletons for Benchmarking Large-
Scale Parallel Applications,” in Proceedings of the 2013 ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation (ACM
PADS), Montreal, Canada, May 2013.

[22] K. Hoste and L. Eeckhout, “Microarchitecture-Independent Workload
Characterization,” IEEE Micro, vol. 27, no. 3, pp. 63–72, May 2007.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=4292057

[23] N. Goswami, R. Shankar, M. Joshi, and T. Li, “Exploring
GPGPU workloads: Characterization methodology, analysis and
microarchitecture evaluation implications,” in IEEE International
Symposium on Workload Characterization (IISWC’10). IEEE, Dec.
2010, pp. 1–10. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=5649549

[24] W. Jia, K. A. Shaw, and M. Martonosi, “Stargazer: Automated
regression-based GPU design space exploration,” in 2012 IEEE
International Symposium on Performance Analysis of Systems &
Software. IEEE, Apr. 2012, pp. 2–13. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6189201

[25] S. A. M. Engin Ipek, Bronis R. De Supinski, Martin Schulz, “An
approach to performance prediction for parallel applications,” Euro-
Par, 2005. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.85.2150

[26] A. Tiwari, M. A. Laurenzano, L. Carrington, and A. Snavely, “Modeling
Power and Energy Usage of HPC Kernels,” in 2012 IEEE 26th
International Parallel and Distributed Processing Symposium Workshops
& PhD Forum. IEEE, May 2012, pp. 990–998. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6270746

[27] B. Subramaniam and W.-c. Feng, “Statistical Power and Performance
Modeling for Optimizing the Energy Efficiency of Scientific
Computing,” in 2010 IEEE/ACM Int’l Conference on Green Computing
and Communications & Int’l Conference on Cyber, Physical and Social
Computing. IEEE, Dec. 2010, pp. 139–146. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5724823

[28] C. L. Janssen, H. Adalsteinsson, S. Cranford, J. P. Kenny, A. Pinar, D. A.
Evensky, and J. Mayo, “A simulator for large-scale parallel computer
architectures.” IJDST, vol. 1, no. 2, pp. 57–73, 2010.

[29] C. L. Janssen, H. Adalsteinsson, and J. P. Kenny, “Using simulation to
design extremescale applications and architectures: programming model
exploration,” SIGMETRICS Perform. Eval. Rev., vol. 38, pp. 4–8, March
2011.

[30] I. T. Jolliffe, Principal Component Analysis, 2nd ed. Springer Series
in Statistics, 2002.

[31] ——, “A note on the use of principal components in regression,”
Journal of the Royal Statistical Society. Series C (Applied Statistics),
vol. 31, no. 3, pp. pp. 300–303, 1982. [Online]. Available:
http://www.jstor.org/stable/2348005

[32] A. Kerr, G. Diamos, and S. Yalamanchili, “Modeling gpu-cpu workloads
and systems,” in Third Workshop on General-Purpose Computation on
Graphics Procesing Units, Pittsburg, PA, USA, March 2010.

[33] M. H. Kutner, C. J. Nachtsheim, and J. Neter, Applied Linear Regression
Models, fourth international ed. McGraw-Hill/Irwin, Sep. 2004.

[34] M. A. Heroux et al., “Improving performance via mini-applications,”
Sandia National Labs, Tech. Rep. SAND2009-5574, September 2009.
[Online]. Available: https://software.sandia.gov/mantevo

[35] S. Plimpton, “Fast parallel algorithms for short-range molecular
dynamics,” J. Comput. Phys., vol. 117, no. 1, pp. 1–19, Mar.
1995, also at http://lammps.sandia.gov/index.html. [Online]. Available:
http://dx.doi.org/10.1006/jcph.1995.1039

[36] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with CUDA,” Queue, vol. 6, no. 2, pp. 40–53, Mar.
2008. [Online]. Available: http://doi.acm.org/10.1145/1365490.1365500

[37] I. Karlin, J. Keasler, and R. Neely, “Lulesh 2.0 updates and changes,”
Lawrence Livermore National Laboratory, Tech. Rep. LLNL-TR-
641973, August 2013.

[38] L. Dagum and R. Menon, “OpenMP: an industry standard API for
shared-memory programming,” IEEE Computational Science Engineer-
ing, vol. 5, no. 1, pp. 46–55, 1998.

[39] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “Papi: A portable interface
to hardware performance counters,” in In Proceedings of the Department
of Defense HPCMP Users Group Conference, 1999, pp. 7–10.

http://doi.acm.org/10.1145/125826.125925
http://dx.doi.org/10.1109/32.881716
http://dx.doi.org/10.1109/ICPP.2008.71
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4292057
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4292057
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5649549
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5649549
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6189201
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6189201
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.85.2150
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.85.2150
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6270746
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6270746
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5724823
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5724823
http://www.jstor.org/stable/2348005
https://software.sandia.gov/mantevo
http://dx.doi.org/10.1006/jcph.1995.1039
http://doi.acm.org/10.1145/1365490.1365500

	Introduction
	Prior Work
	Application Skeletons
	Data-Dependent Computation

	Compute Modeling
	Principal Component Analysis
	Clustering
	Forward Model Selection

	Skeletonization Procedure
	Experimental Results
	Experimental Setup
	Model Fit
	Simulation Accuracy
	Simulation Speedup

	Conclusion
	References

