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Application-Specific Performance-Aware Energy
Optimization on Android Mobile Devices

ABSTRACT
Energy management is a key issue for mobile devices.
On current Android devices, power management relies
heavily on OS modules known as governors. These mod-
ules are created for various hardware components, in-
cluding the CPU, to support DVFS. They implement
algorithms that attempt to balance performance and
power consumption.

In this paper we make the observation that the ex-
isting governors are (1) general-purpose by nature (2)
focused on power reduction and (3) are not energy-
optimal for many applications. We thus establish the
need for an application-specific approach that could over-
come these drawbacks and provide higher energy effi-
ciency for suitable applications. We also show that ex-
isting methods manage power and performance in an
independent and isolated fashion and that co-ordinated
control of multiple components can save more energy.
In addition, we note that on mobile devices, energy sav-
ings cannot be achieved at the expense of performance.
Consequently, we propose a solution that minimizes en-
ergy consumption of specific applications while main-
taining a user-specified performance target. Our solu-
tion consists of two stages: (1) offline profiling and (2)
online controlling. Utilizing the offline profiling data of
the target application, our control theory based online
controller dynamically selects the optimal system con-
figuration (in this paper, combination of CPU frequency
and memory bandwidth) for the application, while it is
running. Our energy management solution is tested on
a Nexus 6 smartphone with 6 real-world applications.
We achieve 4−31% better energy than default governors
with a worst case performance loss of < 1%.

1. INTRODUCTION
System-on-Chips (SoC) for mobile devices have seen

continued improvements in performance with the aid
of modules capable of diverse functionalities: GPUs,
DSPs for example. The processor performance has ex-
perienced a boost over the last few generations due to
commensurate improvements in memory technologies.
On the software end, the emergence of a variety of ap-
plications utilizing the hardware diversity has increased
the popularity of mobile devices. Battery technology
however, has not kept pace, thereby making battery life
one of the top concerns of end users.

In the interest of prolonging battery life, modules in
the latest SoCs are equipped with power/energy man-
agement solutions. Greedily entering low power states
and Dynamic Voltage and Frequency Scaling (DVFS)
are the most commonly used techniques. For example,
the Linux kernel on Android devices has subsystems
called cpufreq and devfreq to manage power consump-
tion of CPU and other DVFS-capable components re-
spectively. Within these subsystems, modules known as
governors implement algorithms that determine clock
frequencies to be used under different conditions. The
governors attempt to strike a balance between perfor-
mance and power dissipation. For instance, the inter-
active governor, the current default CPU governor on
Android devices, will quickly ramp up the frequency
when user interactions are detected and will reduce the
frequency when there are no interactions.

The stock governors are designed for general purpose
usage. Consequently our key observation is that, in the
process of improving performance, stock governors re-
sult in higher energies for some applications, including
popular ones like AngryBirds. We claim that situa-
tions like these call for application-specific controllers.
Additionally, current state-of-the-art governors on An-
droid mobile devices are tailored for power optimiza-
tion. However, as observed in [1], governors for mo-
bile devices must be designed for minimizing energy
with performance constraints and not power because
energy consumption is strongly correlated with battery
life. Correspondingly, the problem statement addressed
in this paper is the following:

Problem: Choose the minimum energy system config-
uration while maintaining the performance target.

Maintaining performance while minimizing energy un-
der dynamic runtime conditions is a complex problem.
However, as we elaborate in the later sections, the prob-
lem statement can be divided into two parts: (P1) Main-
tain the performance target and (P2) Minimize the en-
ergy consumption. The solution we adopt is imple-
mented in two stages. We profile the application offline
(Stage 1) and the online controller (Stage 2) utilizes
the profiled data to minimize energy while maintaining
performance. In Stage 2,

1) To maintain performance (P1), we use a perfor-



mance regulator. Based on the measured perfor-
mance, the regulator computes a control signal to
meet the target performance.

2) To minimize energy (P2), an optimizer uses the
control signal from the regulator and chooses a sys-
tem configuration from the offline profiled data in
order to minimize the energy.

On the latest Android smartphones, hardware mod-
ules capable of DVFS have an associated software gov-
ernor to manage power and/or performance. An impor-
tant observation to be made at this juncture is that the
software governors work independently of each other.
A few studies ([2, 3, 4]) have shown that independent
power/performance control strategies can lead to con-
flicting policies causing performance and/or power losses.
Addressing this problem, researchers have investigated
the co-ordinated control of different hardware subsys-
tems on servers [2], SoCs [1] and embedded systems ([5]
and references therein).

Proposals which offer energy minimization with per-
formance maintenance by the control of multiple sub-
systems simultaneously, are either implemented on (1)
simulators designed for servers [2] or (2) real physical
devices with CPU-only DVFS [6]. Reference [1] dis-
cusses CPU and memory DVFS trade-offs for mobile
devices using a Gem5 simulator and SPEC CPU2006
benchmarks as their test cases.

We distinguish ourselves from prior works by the fol-
lowing contributions:

1. We make the observation that for some popular
applications, the stock power manager causes ex-
cessive energy consumption on a modern Android
mobile device.

2. We implement a software controller to minimize
the energy consumption of such applications while
maintaining a user-specified performance target.

3. Our controller achieves 4− 31% energy savings on
6 real-world applications with a worst case perfor-
mance loss of less than 1%.

4. Unlike default governors that are independent for
each subsystem, our control strategy is the co-
ordinated control of CPU frequencies and mem-
ory bandwidth. Compared to a CPU-only energy
minimization scheme, energy savings improved by
53%.

5. Our control strategy can be readily extended to in-
clude GPU frequencies, GPU memory bandwidth,
network packet rate, etc. Furthermore, it can be
implemented on any mobile device capable of DVFS.

The rest of the paper is organized as follows: In Sec-
tion 2 we present the background and motivation for
this work. Section 3 provides a detailed description of
our methodology. It begins with a discussion on the
offline profiling process for an application, followed by
the performance model and the controller design. Sec-
tion 4 elaborates on the experimental platform, the test

applications used and the practical implementation pa-
rameters. We compare our test results with the default
power management schemes in Section 5. We also dis-
cuss important issues related to the control strategy.
Section 6 briefly describes research works related to this
paper. Finally, Section 7 draws conclusions and points
out our future research directions.

2. BACKGROUND AND MOTIVATION
In this section we start with a brief description of

DVFS support at the software level for various hardware
components on current Android mobile devices. Follow-
ing that, we highlight the importance of co-ordination
among different components for the purposes of power
management. We then point out the drawbacks of the
existing DVFS governors using results from previous
studies as well as our own experiments, which serves
as the motivation for this work.

2.1 Linux’s cpufreq and devfreq Subsystems
Linux started to support DVFS for CPU in version

2.6 through a subsystem called cpufreq [7]. The design
of cpufreq follows the principle of separation of policy
and implementation. Modules known as governors rep-
resent policies that determine what DVFS actions to
take under what conditions, while device drivers carry
out the actual actions. On a typical Linux system, the
default cpufreq governor is ondemand [7]. This gover-
nor periodically checks the CPU utilization and if it is
above a pre-defined threshold, it increases the frequency
to the maximum value. On the other hand, if the CPU
utilization is below a specified level, the frequency is
reduced gradually. In short, this governor adjusts the
CPU frequency based on CPU load. Other commonly
available governors include userspace, which allows the
root user to set the frequency, performance, which sets
the frequency to the maximum, and powersave, which
sets the frequency to the minimum.

A similar Linux subsystem, called devfreq, performs
DVFS on supported devices such as the memory bus,
GPU, and so on. Like cpufreq, it too has governors
to make the DVFS decisions and drivers to carry out
actions.

Since the Android system is based on Linux, it has
inherited both cpufreq and devfreq and made adapta-
tions. On a typical Android device, the default CPU
governor is interactive. It is similar to ondemand in
that its decisions are also based on CPU load. How-
ever, unlike ondemand, which samples CPU load at a
fixed rate, interactive is designed to be more responsive
and to ramp up the frequency quickly when needed.

A typical devfreq governor for the memory bus is
cpubw hwmon, which monitors the memory accesses from
the CPU and takes actions accordingly. Other gov-
ernors include userspace, performance, and powersave,
which are similar to their cpufreq counterparts.

2.2 Co-ordinated Control
A potential source of ineffectiveness for the exist-

ing governors is the lack of coordination among dif-
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Figure 1: Histogram of CPU frequencies for
eBook application

ferent components. Take the ondemand CPU gover-
nor mentioned above as an example. Its actions are
solely based on the load of the CPU, oblivious to the
state of other components such as the memory. In [2]
the authors point out that independent control policies
could conflict and lead to oscillations, greatly reducing
the effectiveness in achieving energy savings. They fur-
ther demonstrate that co-ordinated control of CPU and
memory DVFS is a better strategy. Our solution in this
paper simultaneously controls both CPU frequency and
memory bandwidth.

2.3 Motivation
The current cpufreq and devfreq governors work well

in some cases. However, they do have their limitations.
In [8] the authors compare power consumption of a

mobile platform at a set of fixed CPU frequencies and
when using two different governors. Four typical usage
scenarios are tested: 3G, WiFi, voice call, and ebook
reading. They find that the optimal CPU frequency
in terms of power consumption is dependent on the use
case. In addition, in two of the four cases, the ondemand
governor consumes more power than most of the fixed
frequencies. This suggests that for some applications at
least, an application-specific DVFS strategy may be a
better solution.

We too evaluated the behavior of the default gover-
nors for some applications. Fig. 1 shows the histogram
of CPU frequencies chosen by the default CPU gov-
ernor on a Nexus 6 smartphone for an e-book reader
application when there is no user interaction such as
scrolling or zooming, i.e., when the user is just reading
the page. The screen brightness is fixed at the lowest
level, WiFi is turned ON and there are no applications
running in the background. The x-axis of the figure
shows the CPU frequencies from low to high and the
y-axis is the percentage of time spent in a given fre-
quency during the test period. We can see that, even
though there are no user interactions, the CPUs, un-
der the control of the governor, spend over 10% of the
time in the highest frequency, and about 15% of time
in a middle frequency (No. 10), as highlighted in the
figure. Running at a higher-than-necessary clock fre-
quency results in energy wastage. Based on previous
studies and our experiments as well, we have come to

the conclusion that the default DVFS governors on the
current Android devices, in the process of providing bet-
ter performance, are not energy-optimal for many ap-
plications. This situation motivates us to investigate
whether an application-specific approach that can set
system configurations, e.g., DVFS, based on the char-
acteristics of specific applications, can lead to higher
energy efficiency. In the course of searching for a bet-
ter solution however, one must keep in mind that per-
formance is a top priority to end users. As a general
principle, energy savings should not be achieved at the
expense of performance degradation.

In this paper we exploit the ineffectiveness of de-
fault governors and present a strategy motivated by
(1) energy minimization in contrast to power minimiza-
tion, (2) meeting performance requirements and (3) co-
ordinated control of multiple components.

3. CONTROLLER DESIGN
This section presents the design of our application-

specific performance-aware energy optimization solution.
As mentioned in Section 1, the solution consists of two
stages: offline profiling and online controlling. Both
stages are discussed in detail below.

3.1 Offline Profiling
The application-specific aspect of our solution relies

primarily on the runtime utilization of offline profiled
data of the target application. Before it can be con-
trolled, in the offline profiling stage, we measure the
performance and power of a target application under
different system configurations. For each system config-
uration, the power and performance data are averaged
over three runs for every application tested.

The term system configuration means hardware or
software settings and combinations thereof, that could
impact the performance of applications. Examples in-
clude CPU frequency, memory bandwidth, storage pa-
rameters, network packet transfer rate, thread schedul-
ing policy and so on. In the context of this paper, we
use this term to mean the combination of CPU fre-
quency and memory bandwidth. We emphasize that
our solution is not limited to controlling this particu-
lar configuration and can be extended to include other
configurations mentioned above.

Profiling data of an application are organized in a
table, an example of which is shown in Table 1. The
performance data are normalized with respect to the
value corresponding to the lowest system configuration
and is termed speedup. The lowest system configura-
tion in this paper refers to the lowest CPU frequency
and lowest memory bandwidth of the SoC. Power data,
obtained with a Monsoon power monitor [9], are the
average power consumption of the entire device during
the test period.
There are two issues associated with offline profiling:

1. The number of configurations that require profiling
could be rather large in practice.

2. There could be discrepancy between the controller’s
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# Config (GHz,MBps) Speedup Power (mW)

0 (0.3, 762) 1.0 1623.57
1 (0.3, 1525) 1.0038 1682.83
2 (0.3, 3051) 1.0077 1742.09
...

...
...

...
30 (0.8832, 762) 1.837 2219.22

Table 1: Sample table with performance and
power data profiled offline for AngryBirds ap-
plication

runtime environment and the profiling environment.

Since we consider the tuple (CPU frequency, memory
bandwidth) as the system configuration, exhaustive of-
fline profiling involves running the application for every
combination of supported CPU frequency and memory
bandwidth. On a Nexus 6 smartphone for example, we
have 18 ∗ 13 = 234 combinations (18 CPU frequencies
and 13 memory bandwidths). While a large number
of system configurations profiled gives us fine-grained
data, it also increases the profiling timespan as well
as the online controller’s runtime overhead due to the
larger search space. Addressing the issue of space ex-
plosion, we choose to profile the applications for a max-
imum of 9∗2 = 18 configurations, i.e., for each alternate
CPU frequency with the lowest and the highest memory
bandwidths. For each profiled CPU frequency, we then
linearly interpolate to get the intermediate data for the
rest of the memory bandwidths. Interpolations are not
performed along the CPU frequency dimension because
we observed that in general, performance and power
do not change by a large margin for neighboring CPU
frequencies. Although this approach introduces quanti-
zation and modeling errors, we show that the controller
is robust enough to handle it.

On mobile devices at any given point in time, many
applications run in the background albeit most of them
are in the “sleep-state”. Applications such as e-mail
clients perform synchronizations periodically while some
applications like Spotify or similar music players con-
tinue to run even when they are minimized. Offline
data collected for an application under a given back-
ground load can be rendered unusable at runtime when
the load conditions differ by a large margin. A straight-
forward method is to profile the application under differ-
ent background loads. However, the drawback of such
an approach is that the profiling overhead increases sig-
nificantly. Our approach to tackling this issue is to pro-
file the application with a background load, i.e., WiFi
ON, e-mail synchronization enabled and Spotify run-
ning in the background. We then test the controller
performance for heavier and lower background load con-
ditions. Our results show that the profiling data can
cover the range of typical load conditions rather well.

Furthermore, we also measure the performance (Rdef ),
running time (Tdef ) and average power (Pdef ) of the
application under the default governors. The default
energy consumption (Edef ) of the device while the ap-
plication is running is simply Pdef ∗ Tdef . The default

performance, Rdef , serves as the basis for the target
performance, which is an input to the online controller.
We compare the energy consumption of the device un-
der our control scheme against the default energy Edef .

3.2 Online Controlling
The offline profiled data are used by the online con-

troller to run the application in an energy-efficient fash-
ion while at the same time meeting a user-specified per-
formance target.

3.2.1 Overview
The online controller is based on the work presented

in [6] and is a feedback control loop as shown in Fig. 2.
In accordance with splitting the problem statement into
two parts P1 and P2 as described in Section 1, the online
controller is further divided into a performance regula-
tor and an energy optimizer.

Performance

Optimizer
Phone

Target
Performance

Configuration

Measured
Performance

Feedback signal

r
Regulator

Energy

Controller

ỹ(t)

e(t) s(t)

Figure 2: Block diagram of feedback controller

With reference to Fig. 2, the feedback controller is
implemented in four steps. (1) Given a target perfor-
mance of the application r and the measured perfor-
mance of the system ỹ(t), compute the error e(t) =
r − ỹ(t). (2) Calculate a control signal s(t) based on
e(t) (3) Given s(t) determine the system configuration
which minimizes the energy consumption while main-
taining the target performance (4) Apply the new sys-
tem configuration and measure the performance. The
closed-loop system is described by the repeated appli-
cations of steps (1)→ (2)→ (3)→ (4).

The target performance r is based on the default per-
formanceRdef , i.e., r = α∗Rdef where α ∈ (0, 1]. In our
experiments, we set α = 1. We also mention that one
could vary α to trade performance for energy savings.
At runtime, the energy optimizer, based on the control
signal input s(t) and the offline profiled data chooses
the configuration for the device which would consume
the least energy and meet the performance target. It is
important to note that the term “least energy” is with
respect to the offline profiled data. The feedback con-
troller is implemented at fixed discrete time intervals
until the application terminates. In what follows we
give more details about the performance metric, the
performance regulator, and the energy optimizer.

3.2.2 Performance Metric
Performance of an application can be quantified in

many ways. Execution time is perhaps the most com-
monly used metric. Frames per second can be used for
video playing applications. Other metrics include num-
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ber of jobs completed per unit time, task latency, and
so on. Android applications are distributed in a com-
pressed format (apk) which contains partially to com-
pletely obfuscated code. Requiring the developer to im-
plement modifications in the source code so as to report
application performance periodically is infeasible. In
this work, our objective is to obtain information about
the progress of the application without any source code
modifications. Fortunately, modern micro-processors,
including SoCs used in Android mobile devices, gener-
ally possess a performance monitoring unit (PMU). In
this paper, we use Giga-Instructions-Per-Second (GIPS)
obtained from the PMU as our performance metric. We
consider GIPS as a good metric because it is highly
correlated with the execution time. We also note that
GIPS has been used as a performance metric in earlier
works as well (see [10]).

3.2.3 Performance Regulator
The goal of a performance regulator is to reduce the

error between the target performance and the measured
performance to zero, i.e., e(t) = (r − ỹ(t)) → 0. We
model the performance of the system as

ỹ(t) = s(t− 1) ∗ b(t− 1) (1)

where b(t) is the base speed of the application and s(t),
the control signal, is the speedup with respect to b(t).
Base speed b(t) is defined as the speed of the applica-
tion when the least amount of system resources are con-
sumed. Feedback controllers ([11]) can be designed with
fixed gains or adaptive gains. We choose an adaptive
gain integral controller in order to accommodate run-
time variations, inaccuracies in measurement, modeling
errors etc. References [12, 13, 14] have shown the practi-
cal feasibility of using adaptive gain integral controllers
in a variety of computing environments. The perfor-
mance regulator (adaptive gain integral controller) com-
putes a required speedup (control signal) as follows:

s(t) = s(t− 1) +
e(t− 1)

b(t− 1)
(2)

where the adaptive gain is encoded by
1

b(t− 1)
. The

required speedup s(t) is computed based on the history
of e(t) which is why Eqn. 2 is called an “integrator”.
We recommend the reader to refer to [15] for details on
derivation and stability proofs. Different applications
can have different base speeds. For example, on the
Nexus 6 smartphone whose lowest possible configura-
tion is (300MHz, 762MBps), the base speed of Angry-
Birds is 0.129GIPS whereas for a Video Converter appli-
cation the base speed is 0.471GIPS. To ensure that the
controller can track these changes automatically, based
on the work in [6], we use a Kalman filter [16] to contin-
uously estimate the application base speed b(t). Formal
convergence proofs for the Kalman filter can be found
in the appendix of [6]. In our paper, a discrete-time
equivalent of Eqn. 2 is implemented.

3.2.4 Energy Optimizer

co

cu

τo τu

T

s(t)

S
p
ee
d
u
p

Figure 3: Pictorial representation of the energy
optimization

Once the required speedup s(t) is calculated by the
performance regulator, the energy optimizer determines
the energy-optimal system configuration that meets the
performance requirements (see Fig. 2).

Given a set of configurations C = {0, 1, . . . , C − 1}
where C = |C| is the total number of available configu-
rations, each configuration c ∈ C is associated with an
average speedup sc and an average power pc. Suppose
that we are given a time horizon T during which the
system has to maintain a performance of r GIPS, the
optimization problem can be encoded as follows:

min

C−1∑
c=0

τc · pc (3)

s.t.

C−1∑
c=0

τc · sc · b(t) = r · T (4)

C−1∑
c=0

τc = T 0 ≤ τc ≤ T ∀c ∈ C (5)

where τc is the duration for which a configuration c
is applied by the energy optimizer. Equations 3 - 5
represent a linear programming problem with equality
constraints. Eqn. 3 is the objective which captures
the energy minimization, Eqn. 4 represents the perfor-
mance constraint and Eqn. 5 is a constraint on the time
horizon. The solution to the above problem determines
a set of optimal system configurations Copt ⊆ C and the
corresponding duration τci ,∀ci ∈ Copt such that it min-
imizes the energy consumed by the system for a time
period of T seconds while maintaining a performance r.
In [6] it is shown that, there exists an optimal solution
to Eqn. 3 with at most two non-zero τcs. The energy
optimizer therefore selects at most 2 configurations cu
and co such that su ≤ s(t) < so and τu + τo = T .
The subscripts u and o represent “under the required
speedup” and “over the required speedup” respectively.
This is pictorially described in Fig. 3. Since there are
at most C configurations, the runtime complexity of the
energy minimization is O(C2).

4. EXPERIMENTAL SETUP
In this section we describe the experimental setup for

evaluating our solution, including the test environment
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CPU Frequency (GHz) Mem Bandwidth (MBps)

1 0.3000 10 1.4976 1 762 10 8056
2 0.4224 11 1.5744 2 1144 11 10101
3 0.6528 12 1.7280 3 1525 12 12145
4 0.7296 13 1.9584 4 2288 13 16250
5 0.8832 14 2.2656 5 3051
6 0.9600 15 2.4576 6 3952
7 1.0368 16 2.4960 7 4684
8 1.1904 17 2.5728 8 5996
9 1.2672 18 2.6496 9 7019

Table 2: List of CPU frequencies and memory
bandwidths on Nexus 6

and the applications tested. We also point out some
implementation challenges.

4.1 Platform and Tools
We use a Nexus 6 (N6 ) smartphone running Android

Marshmallow 6.0 with Linux kernel v3.10 as our ex-
perimental platform. The Android OS running on N6
is downloaded from the Android Open Source Project
(AOSP)[17] and built in the userdebug mode. The N6
has a Qualcomm Snapdragon 805 SoC, which has a
quad-core Krait 450 CPU, an Adreno 420 GPU, and
3 GB of RAM. Each CPU core supports 18 clock fre-
quencies that can be modified dynamically. The main
memory has 13 distinct bandwidths supported. Table 2
lists all the CPU frequencies and memory bandwidths.

As discussed in Section 2.1, DVFS of CPU and mem-
ory in Linux is controlled by the cpufreq and devfreq
subsystems respectively. For our purposes, we need to
set the CPU frequency and memory bandwidth to cer-
tain values. This is achieved by writing to pertinent files
in the sysfs [18] to first set the governors to userspace,
and then to set the CPU frequency and memory band-
width. Since applications can have multiple threads
running on any one of the four CPUs, we set all four
CPUs to the same frequency in our experiments.

In order to measure the power consumed by the de-
vice, we use the Monsoon Power Monitor [9]. The sam-
pling frequency of the power monitor is 5KHz. We use
adb (Android Debug Bridge [19]) to communicate with
the phone via the USB interface. A USB interface be-
tween the host computer and the phone results in au-
tomatic battery charging. We disable USB charging
for all our experiments to prevent power measurement
bias. During all the experiments, the phone is laid flat
on a desk with a fixed display brightness and is not dis-
turbed. We disable a kernel module called mpdecision
during our experiments to prevent CPU hot-plugging
which can lead to inaccurate measurements. A kernel
compilation feature which causes CPU frequency boost
on a screen touch event is also disabled to help record
reliable power data.

Finally, performance is measured by reading the hard-
ware counters with the perf tool [20]. We read the
instruction counter and derive the GIPS metric.

4.2 Implementation Challenges
In contrast to previous works, we test the controller

on a physical device with real applications and runtime
conditions. We list a few challenges faced during the
course of this work and the solutions adopted.

Previous work ([6]) required source code modifica-
tions to enable the controller to monitor the applica-
tion performance. Specifically, the “application being
controlled” reports its performance periodically to the
controller. We use GIPS derived from a PMU counter
as mentioned above which does not require application
developers to modify their code.

However, a commercial phone does not come preloaded
with the perf tool, neither does it provide root access
to the Linux kernel. We therefore built the userdebug
version of Android Marshmallow 6.0 along with perf.
This enables (1) measuring performance at runtime and
(2) changing CPU frequency and memory bandwidth.
The perf tool on the N6 has the lowest sampling pe-
riod of 100ms. Furthermore, the computation overhead
at this sampling period is 40%. Therefore, we choose
a control cycle duration of 2 seconds for all our experi-
ments, i.e., with reference to Eqn. 3, T = 2. We discuss
the overhead of perf and the controller in Section 5.1.1.

Unlike commercial Intel and AMD processors, the
Snapdragon 805 SoC does not support hardware power
and energy counters. Moreover, our current setup al-
lows us to record the power consumption of the entire
device only. Although the control algorithm ideally re-
quires only the power consumed by the CPU and the
memory, we rely on the robustness of the controller to
handle these modeling inaccuracies.

A typical desktop/server class processor supports mul-
tiple processes running in parallel. While ARM based
SoCs do support the same, the process consuming most
of the resources in an Android device corresponds to
the application being currently displayed on the screen.
Background application threads are in the “sleep state”
in general, woken up periodically depending on the na-
ture of the application. Following suit, our strategy is
to control the application only while it is running in the
foreground.

4.3 Applications
A set of 6 real world applications is chosen where each

application demonstrates unique characteristics. The
applications are individually described below.

VidCon is a video converter application which uses
the FFmpeg library [21] to convert videos to different
formats. For our experiments, we choose a fixed size
mp4 HD video and use the default conversion settings.

MobileBench [22] is an established browser bench-
mark based on BBench [23]. The benchmark loads a
collection of websites whose content is available in the
phone memory. It offers automatic horizontal and verti-
cal zooming and scrolling as well. The Chrome browser
application on the phone is used for running the tests.

AngryBirds is a gaming application with over 100
million downloads on Android alone. We choose this
as a representative gaming application to test the con-
troller performance. The game is manually played for
200 seconds during our experiments.
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Application Name Performance Energy

VidCon −0.4% 25.3%
MobileBench 4.1% 15.3%
AngryBirds 0.6% 14.9%
WeChat Video Call −0.4% 27.2%
MX Player 0.0% 4.2%
Spotify −0.4% 31.6%

Table 3: Summary of performance difference
and energy savings obtained by the controller

WeChat is an Internet based text messaging, voice
communication and video conferencing application. With
over 700 million active users, it is among the most down-
loaded applications in the communication application
segment. We choose the video conferencing feature of
this application and initiate a 100-second long video call
for our experiments.

MX Player is a video player application which can
play videos encoded in a variety of formats and has over
100 million downloads. It also supports hardware ac-
celerated decoding and high speed rendering for ARM
NEON compliant processors. We test the controller per-
formance when playing a 137-second long HD video.

Spotify is an audio, podcast and video streaming ap-
plication with over 100 million subscribers. We use a
premium version of the application which avoids adver-
tisements between songs. This application is tested for
100 seconds with songs being changed every 20 seconds.

5. EVALUATION
In this section we present test results of our energy

management scheme described in Section 3 against the
default settings on the N6. We provide detailed anal-
ysis of the results and discuss a few important issues,
including (1) application scope, (2) the effect of vary-
ing background application loads on the controller per-
formance, and (3) comparison with a CPU-only DVFS
strategy.

5.1 Results and Analysis
Table 3 summarizes the performance and energy sav-

ings achieved by our controller as compared with the
default governors. Each number is the average of three
runs. The background load used for the results in Ta-
ble 3 is the same as discussed in Section 3.1. In what
follows, we refer to this background load as baseline
load. VidCon, MobileBench browser benchmark and
MX player are deadline critical. Even though the con-
troller measures performance for these applications in
GIPS, performance numbers in Table 3 are based on
execution time. For the rest of the applications, perfor-
mance in Table 3 is measured in GIPS.

We can see that for all the applications tested, our
controller is able to save energy while meeting the per-
formance target. A worst case performance degrada-
tion of 0.4% is observed with our control technique.
At the same time, compared to the default, we save
14.9− 31.6% of energy with 5 out of the 6 applications
and 4.2% with MX Player. The results in Table 3 clearly

demonstrate the effectiveness of our application-specific
approach in achieving substantial energy savings while
maintaining performance.

To a large extent, the effectiveness of our approach
is due to the co-ordinated control strategy. The de-
fault CPU governor interactive, changes the CPU
frequency based on the CPU load. The default memory
bandwidth governor cpubw_hwmon, on the other hand,
monitors the L2 cache read and write events to decide
the required bandwidth. Both governors work indepen-
dently and the results we obtain demonstrate the draw-
backs of such an approach.

To help analyze and understand the experimental re-
sults, in Figs. 4 and 5 we compute the percentage of
time spent in each of the 18 CPU frequencies and 13
memory bandwidths during the application execution,
and compare the choices made by the default gover-
nor and our controller. Fig. 4 shows some of the key
characteristics of the default CPU governor. Firstly,
in all 6 cases, it spends a considerable amount of time
(12.7−27.9%) at CPU frequency 10 (1.4976 GHz). Fig.
5 illustrates the characteristic behavior of the default
bandwidth governor which implements an exponential
back-off algorithm while reducing the bandwidth. The
offline profiled performance data for AngryBirds, MX
Player and Spotify show an improvement of less than
5% for frequencies between 5 and 10 whereas power in-
creases by more than 36%. Secondly, in 3 out of the
6 cases, the highest frequency is used for a significant
amount of time (9.7 − 57.3%). With our approach, in
5 out of the 6 cases, the high frequencies are not in-
cluded in the profiling table supplied to the controller,
based on the performance/power characteristics of the
profiled data.

We observe that in Fig. 4 (b), (c), and (e), with
the default governor, the CPUs are at frequency 1 for
the largest amount of time, whereas our controller se-
lects higher frequencies. Intuitively, this should lead to
higher energy consumption by our controller. But the
results in Table 3 show that energy consumption with
the controller is lower than default in all 3 cases for the
same performance. This phenomenon is a result of the
following: (1) The controller is designed to maintain
a performance target (2) The controller trades higher
CPU frequencies against increasing the bandwidth (see
Fig. 5) and (3) In our current solution, the smallest
duration for the CPUs to stay at any given frequency
is 200ms. Choosing frequency No. 1 even for a du-
ration of 200ms impacts the performance heavily. In
fact, for MobileBench and MX Player, the lower fre-
quencies are not even included in profiling data pro-
vided to the controller. In Fig. 4 (b), (c), and (e), even
though it appears that with the default governor the
CPUs spend most of the time in the lowest frequency,
it should be noted that this is an accumulated time.
The CPUs spend short durations (of the order of 10s
of milli-seconds) in this frequency before moving on to
higher frequencies. The conclusion we can draw is that
lower CPU frequencies may reduce power consumption
but it does not translate to lower energy. Similar or
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Figure 5: Histogram of memory bandwidths: controller vs. default

better performance with lower energy can be attained
by choosing higher CPU frequencies. Now we discuss
the 6 applications individually.

VidCon has a uniform power and performance profile
during its execution. Fig. 4 (a) shows that the default
governor spends nearly 60% of the time in the high-
est CPU frequency and takes 59 seconds to convert a
sample video. The controller, however, chooses a much
lower frequency (No. 13) for 80% of the time and is able
to convert the same video with 25.3% less energy. The
time it takes to convert the video is only 0.4% or about
0.24s longer, hardly noticeable by a human user. For
this application we use CPU frequencies 7-18 because
frequencies below No. 7 resulted in a performance drop
of over 50%.

MobileBench browser benchmark, unlike VidCon, has
a varying power and execution profile. For a fixed CPU
frequency, we notice an average increase of 7% in the rel-
ative speedup between the lowest and highest memory
bandwidths. Due to the zooming and scrolling actions,
the performance in GIPS too shows a steady increase as
CPU frequencies are increased. However, the data used
by the online optimizer is restricted between CPU fre-
quency 7 and 18 (See Fig. 4). The justification is similar
to VidCon in that, when the CPU frequency is fixed at

No. 7, the performance is 30% worse than the default.
Any lower frequency would incur a larger performance
loss resulting in a lower user experience. The controller
chooses CPU frequency 18 for a duration longer than
the default governor, yet achieves a 15.3% improvement
in energy. Although this seems counter-intuitive, the
reason for this phenomenon is that the objectives of
the default governor and our controller are orthogonal.
While the default governor tries to maximize perfor-
mance whenever possible, the aim of our controller is
to maintain a fixed performance. The default gover-
nor chooses to assign a higher CPU frequency when it
senses a load increase whereas our controller only as-
signs a higher frequency when it senses a performance
drop. The energy savings we achieve is on account of a
shorter runtime.

With AngryBirds, the controller is provided with a
smaller CPU frequency range because the offline pro-
filing data shows that performance (in GIPS) does not
improve beyond CPU frequency No. 5 but power con-
sumption increases steadily for higher frequencies. Com-
pared with the default governor, which spends nearly
20% of the time in frequency No. 10 and some amount
of time in the highest frequency, our controller selects
frequencies 3 and 5, as shown in Fig. 4 (c). The end
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result is a performance (in GIPS) that is slightly (0.6%)
better with an energy saving of 19.3%. AngryBirds in-
volves the GPU for image rendering, but, despite the
fact that GPU frequency is not part of the controlled
system configuration, we observe no change in the game
experience when our controller is deployed. Moreover,
the default governor chooses a higher frequency when
advertisements get loaded between individual levels, re-
sulting in higher power consumption1.

When profiling WeChat video call, we find that for
CPU frequencies 1 and 2, the camera fails to record
and transmit video reliably and hence we exclude them
from the power and speedup table. Additionally, the
performance (in GIPS and subsequently video quality)
does not show significant improvement beyond CPU fre-
quency 7. However Fig. 4 (d) shows that frequencies
10 and 18 get chosen for close to 40% of the time by
the default governor. The controller is able to provide
comparable performance by choosing lower CPU fre-
quencies (3, 5, and 7) with No. 3 being used for over
50% of the time. This results in a significant energy
saving of 27.2% compared with the default governor.

MX Player is not CPU intensive because it performs
video decoding using a hardware decoder and bypasses
the GPU to render the image on the screen. MX player
has a performance vs. CPU frequency profile similar to
WeChat in that, beyond frequency 5, the performance
varies very little (0.4%). Furthermore for frequencies
between 1 and 4, the video does not play smoothly re-
gardless of the memory bandwidth chosen. Hence we do
not include CPU frequencies 1 - 4 in the offline profil-
ing table. Due to the nature of the application and the
fact that our controller can only manipulate CPU and
memory bandwidths, we can only save 5% energy. The
implication is that the default governor indeed does a
good job for this application.

Spotify is another case where a limited range of CPU
frequencies is included in the profiling table. In fact,
only 3 frequencies on the low end are used: frequen-
cies 1, 3, and 5. We note that even when the CPU
frequency is fixed at the lowest, the audio quality does
not degrade. However, the default governor, as shown
in Fig. 4 (f), spends a considerable amount time in
the much higher frequencies 10 (27%) and 18 (4.6%).
In contrast, our controller spends 64.5% of time in the
lowest frequency and 32% in frequency No. 3. Com-
pared with the default governors, the controller saves
31.6% energy with a minor performance loss in GIPS of
0.4%.

5.1.1 Controller Overhead
As mentioned in Section 3 the controller consists of

three parts: (1) measurement (2) performance regu-
lation and energy optimization and finally (3) actua-
tion. Accordingly, we present the overhead for each
part of the controller. The controller measures perfor-
mance twice in each control cycle. On an average, the

1Advertisements consume close to 0.5W of power and an
application with several ads will result in rapid battery dis-
charge.

measurement is done every 1s when the control cycle
duration is 2s. The perf tool takes 1.04s on average,
i.e., a 4% computation overhead, to report the measure-
ment. The power consumption overhead for perf at a
sampling period of 1s is 15mW, a relatively negligible
number. The execution time of the performance regula-
tor and the energy optimizer together is less than 10ms
per control cycle with an average power consumption
of 25mW. Changing the CPU frequency and memory
bandwidth requires writing into the appropriate sysfs
files. The CPU frequency transition latency is of the
order of micro-seconds whereas the shortest duration
between frequency changes in our controller is 200ms.
Finally, the power overhead for changing CPU frequen-
cies is 14mW. In summary, the implementation over-
head for our controller is negligible even when the num-
ber of system configurations is large.

5.2 Application Scope
Not all applications are amenable to our current so-

lution. We identify two types of applications that are
not well suited for the current strategy.

The first type includes applications for which the de-
fault CPU governor either selects the lowest frequency
most of the time due to low CPU requirements or the
highest frequency most of the time due to CPU-intensive
computations. For the former case it is hard to obtain
additional energy savings through CPU DVFS and for
the latter it is hard to save more energy without perfor-
mance degradation. For such applications, other com-
ponents of the system such as network packet transfer
rate etc. should be explored to save energy. Our con-
troller framework, as mentioned in Section 3, is generic
enough to be able to control other parameters.

The second type includes applications with multi-
ple rapidly varying phases (e.g. MobileBench browser
benchmark), i.e., the application has very different CPU,
memory, or I/O characteristics at different points in
time. These applications pose a few very challenging
problems. Firstly, how do we define and identify appli-
cation phases? This problem has been studied earlier
on desktops/servers [24] and for simulators [25]. For
example, in [24] six phases were defined based on the
ratio of “memory access / uop”. We have yet to study
whether this kind of metric can be used to classify ap-
plication phases on our target platform. A practical
concern is the lack of OS and/or hardware support for
PMU counters. More serious problems are caused by
the fact that the duration of phases could be very short.
In such situations, experiments show that PMU-based
performance measurements could have high variations,
which in turn could mis-guide the controller. Further-
more, the shorter the duration, the more difficult it is
for the controller to catch up. Phase prediction, as pro-
posed in [24], might help, but is only one step towards
addressing these problems.

5.3 Effect of Different Background Loads
Section 3.1 discusses the issue of discrepancy between

controller runtime environment and the profiling envi-
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App Name
Performance (%) Energy (%)
BL NL HL BL NL HL

VidCon 0.8 0.2 -8.0 25.3 28.0 11.4
MobileBench 4.0 -3.5 -2.0 15.3 -4.9 4.6
AngryBirds 0.6 1.0 -2.0 14.9 12.8 10.0
WeChat
Video Call

-0.4 2.0 3.6 27.2 19.4 27.0

MX Player 0.0 0.0 0.0 5.0 2.9 5.0
Spotify 9.3 -1.7 -1.3 31.6 7.2 6.0

Table 4: Summary of performance difference
and energy savings obtained for the tested ap-
plications under Baseline Load (BL), No Load
(NL), Heavier Load (HL) conditions

ronment. In the following we evaluate the controller
performance under different loading scenarios. The con-
troller is tested under two different runtime conditions:
(1) No-Load (NL) and (2) Heavier-Load (HL) while uti-
lizing the offline profiling data and target performance
obtained under the baseline load (BL).

In the NL condition only the application being con-
trolled runs on the phone. In HL, a few more appli-
cations as compared to BL are opened but minimized.
The background applications are: Gallery, eBook Reader,
Chrome browser, FaceBook, e-Mail client, MX player
and Spotify. WiFi is turned ON for both loading scenar-
ios. We note that the most significant difference among
the different loads is the memory usage. The amount
of free memory is 500 MB, 1 GB, and 134 MB, for BL,
NL and HL respectively. In contrast, the corresponding
CPU loads as indicated by the file /proc/loadavg are
similar: 6.3, 6.7, and 6.6 respectively.

Table 4 shows the controller’s performance and en-
ergy results in the three different loading conditions. In
4 cases, i.e., VidCon, AngryBirds, WeChat, MX Player,
the controller performs relatively well in terms of energy
savings when running under an environment different
from the profiled environment. VidCon under HL test
condition experienced a performance loss of 8% but still
achieved 11.4% energy savings. The controller performs
the best for WeChat in NL and HL, saving 19% and 27%
energy respectively.

Spotify displays a significant decrease in energy sav-
ings in both NL and HL. On further analysis, we find
that in NL and HL, the default governor uses CPU fre-
quency No. 10 less than 10% of the runtime as com-
pared to 25% with the baseline load. This directly
translates to lower overall power consumption of 1.43W
in NL and HL, versus 1.7W with the baseline load. The
average power consumed by Spotify with the controller
is 1.3W for all the loading cases which results in the
varying energy savings shown in Table 4.

MobileBench browser has rapidly varying GIPS and
power data on account of multiple websites being loaded
in quick succession. Due to the lower bound on the time
taken to measure application performance (200ms), the
controller is unable to respond to these rapid variations.
While the average power in the NL case is similar to the
average power consumed by the default governor, the
performance loss of 3.5% leads to the excessive energy

Application Name Performance Energy

VidCon 2.8% 13.1%
MobileBench −2.9% 7.6%
AngryBirds −2.6% 9.6%
WeChat Video Call 4.7% 22.3%
MX Player 0.0% 0.4%
Spotify 3.3% 33.3%

Table 5: Summary of performance difference
and energy savings obtained by the CPU-only
DVFS controller

consumption by the controller.
Although in a majority of cases the profiling data ob-

tained under baseline load can be used to achieve good
results in different load conditions, we observe that bet-
ter results can be achieved if the profiling condition
closely matches the runtime environment. As an ex-
ample, we re-profiled MobileBench for the NL case and
the controller is re-tested, this time with a new tar-
get performance obtained from the offline data. The
controller now saves 11.1% energy with no performance
loss. A possible approach is to profile the application
under a few different background loads and let the con-
troller select the appropriate offline data by measuring
the background load at runtime.

We also note that the performance and power data for
NL has the same trend as that for BL but with a small
increase in the absolute value. We envision a method
which involves a power and performance model which
uses the system load as the variable parameter. At run-
time, the controller can track the background load and,
using the models, generate power and performance data
for different configurations. Such an approach would
not require additional profiling thereby expanding the
scope of our method. We leave these extensions to fu-
ture work.

5.4 Comparison with CPU-only DVFS
To evaluate the effectiveness of co-ordinated control

of CPU frequency and memory bandwidth, we created
another version of the controller which controls only the
CPU frequencies and allows the memory bandwidth to
be controlled by the default governor, i.e., cpubw_hwmon.
The controller does not communicate with the default
memory bandwidth governor and hence takes decisions
in an independent and isolated manner.

For this controller, we re-profile the applications with
CPU frequency set to fixed values while memory band-
width is left in the control of the default governor. For
each application, the same set of CPU frequencies as
in the co-ordinated controller case is selected. Table 5
lists the energy savings and performance of the 6 tested
applications when only the CPU frequencies are con-
trolled. Excluding MX Player which practically does
not save energy, on an average, we observe a 53% in-
crease in energy consumption as compared to the co-
ordinated control of CPU frequency and memory band-
width. For WeChat and Spotify, the CPU frequencies
chosen and their durations are similar. For other appli-
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cations however, the default bandwidth governor selects
a higher-than-necessary bandwidth for over 60% of the
application runtime thus resulting in a higher power
consumption. In AngryBirds, for example, the band-
width governor increases the bandwidth to the high-
est whenever advertisements are loaded between game
levels, which results in a peak power of 6W. In gen-
eral, we observe that CPU-BW DVFS controller trades
higher CPU frequency over higher bandwidth at the
same CPU frequency which is a direct consequence of
the profiling table (see Fig.5). For example with Mo-
bilebench, the average power and performance for the
pair of CPU frequency and memory bandwidth (7, 13)
is (2.128, 2.687) while the same parameters for the pair
(11, 1) are (2.125, 2.9705). The controller chooses (11,1)
rather than (7,13) because for the same power consump-
tion the performance of (11,1) is much higher. This is
exactly why our controller chooses the bandwidth No.
1 for over 60% in all 6 test cases.

6. RELATED WORK
Research works that are most closely related to our

work are those that optimize energy consumption under
performance requirements. We briefly describe a few
works selected from the literature in this section.

Reference [26] presents a model-based DVFS gover-
nor for Android systems. At first, offline profiling is
performed on a set of benchmarks and for each bench-
mark the critical speed (CS), i.e., the energy-optimal
CPU frequency is obtained along with the correspond-
ing memory access rate (MAR), which in turn is ob-
tained from the hardware performance monitoring unit.
Statistical methods are then used to derive a model for
CS with regard to MAR. This model is called the MAR-
based CS Equation, or MAR-CSE. A DVFS governor is
created that uses MAR-CSE to select the optimal CPU
frequency based on the runtime MAR values. This ap-
proach is application-agonostic in the sense that it is
independent of the running application. Furthermore,
it is designed to optimize energy without considering
performance. Our method is application-specific and
strives to minimize energy while maintaining a certain
level of performance.

In [27], the authors propose an energy-saving scheme
for video decoding on the Android platform. This in-
volves a two-level table structure: the Frame Decoding
Complexity History Table (FDC-HT), which is based on
the Global Phase History Table in [24], and the Decod-
ing Time Table (DTT). The FDC-HT saves the decoding
complexity history of decoded frames and each entry has
a corresponding DTT which stores the CPU frequencies
and decoding times for that complexity level. The re-
cent history is used to predict the complexity of the next
frame. After this step, the DTT is consulted to find the
lowest frequency that meets the decoding deadline. Our
method, although application-specific, is not limited to
one particular type of application and we control more
system components than just the CPU.

The CoScale method presented in [2] shares some fea-
tures with our work. Both our works attempt to mini-

mize energy consumption while meeting a performance
target, and both control DVFS for CPU and mem-
ory system simultaneously. However, there are impor-
tant differences. Firstly, CoScale is application-agnostic
while we take an application-specific approach. Sec-
ondly, CoScale uses both a performance and a power
model, while we use profiling data obtained in advance.
Thirdly, CoScale uses a gradient-descent heuristic to se-
lect the optimal configuration while our optimization is
based on linear programming. Finally, CoScale targets
servers while we target mobile devices.

The POET system [6] is perhaps the most relevant
to our current work. Its overall strategy, like ours,
is to minimize energy consumption of an application
while attempting to meet its performance requirement.
The system requires two inputs before it starts: a per-
formance target, and performance and power data for
different system configurations. At runtime, it repeat-
edly measures the actual performance, and uses feed-
back control and linear programming to select energy-
optimal configurations that meet the performance tar-
get. POET consists of a C library and a runtime system,
and is designed for traditional embedded systems with
soft realtime constraints. Because of the diversity of
such systems, one of the key design goals of POET is
portability. The problem it tries to solve is to create an
application- and platform-independent resource alloca-
tion framework. Our focus is quite different. Although
our control and optimization scheme is an adaptation
from POET, we target Android mobile devices, which
have a much more diversified software space than tradi-
tional embedded systems, where the software typically
performs just one or very few tasks. Our goal is to pro-
vide, under performance constraints, more energy sav-
ings for certain applications than the default system.
The application-specific approach we take is primarily
due to the target software environment.

7. CONCLUSION AND FUTURE WORK
In this paper we make the observation that the de-

fault DVFS governors on current Android mobile de-
vices are designed for general-purpose usage, focus on
power savings, and are in general not energy-optimal
for many applications. We establish the need for in-
vestigating an application-specific energy optimization
strategy and stress that any energy optimizer should
be mindful of performance impacts. Furthermore, we
point out the advantage of co-ordinated control among
different components such as CPU and memory. We
then present a detailed description of our application-
specific, performance-aware energy optimization solu-
tion targeting Android devices. Our solutions have been
implemented on a Nexus 6 smartphone. Tested with 6
real-world applications, including highly popular ones,
we have achieved 4− 31% energy savings with a worst-
case performance loss of less than 1%. Our next steps
are to include GPU frequencies, network packet rate,
etc. into the control system framework and develop a
model based performance and power data generation
scheme to accommodate variable loads.
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