
Power-Constrained Performance Scheduling of Data
Parallel Tasks

Eric Anger
School of Electrical and
Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia

eanger@gatech.edu

Jeremiah Wilke
Sandia National Laboratories

Livermore, California
jjwilke@sandia.gov

Sudhakar Yalamanchili
School of Electrical and
Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia

sudha@gatech.edu

Abstract—This paper explores the potential benefits to
asynchronous task-based execution to achieve high performance
under a power cap. Task-graph schedulers can flexibly reorder
tasks and assign compute resources to data-parallel (elastic)
tasks to minimize execution time, compared to executing step-
by-step (bulk-synchronously). The efficient utilization of the
available cores becomes a challenging task when a power cap is
imposed. This work characterizes the trade-offs between power
and performance as a Pareto frontier, identifying the set of
configurations that achieve the best performance for a given
amount of power. We present a set of scheduling heuristics that
leverage this information dynamically during execution to ensure
that the processing cores are used efficiently when running under
a power cap. This work examines the behavior of three HPC
applications on a 57 core Intel Xeon Phi device, demonstrating
a significant performance increase over the baseline.

I. INTRODUCTION

The scientific and enterprise computing domains are seeing
the rise of extreme scale systems to handle the explosive
growth in problem sizes [1]. Typically, these systems are
constructed from high core count data parallel processors
such as graphics processing units (GPUs) as well as general
purpose data parallel processors like the Xeon Phi. The bulk
synchronous parallel (BSP) model has been the dominant
programming and execution time abstraction employed for
programming each processor [2]. In spite of significant suc-
cesses, modern applications with irregular and unstructured
control and data flows exhibit significant inefficiencies in
the BSP model inspiring the emergence of the asynchronous
task graph model for programming extreme scale applications
to achieve new performance peaks [3], [4]. However, this
performance must be achieved subject to increasingly stringent
power caps, as these systems will need to be designed to fit
within the tightening constraints of power and scalability.

The runtime systems used to execute the asynchronous task
graphs have so far ignored the imposed power caps, focusing
solely on performance. While existing works [5], [6] have
examined the problem of scheduling tasks with limited com-
pute resources, power constraints create a new challenge for
performance optimization in the High Performance Computing
(HPC) domain. Ensuring that the execution of these task

graphs is power-efficient will take on greater importance as
system scales increase.

This work presents a set of scheduling strategies for task
graphs that improve performance when running under a power
cap. In this work we compare a static core-limiting system,
analogous to the way systems are provisioned for the worst-
case power behavior, with dynamic, power-aware schedulers
that can flexibly decide when resources can be used so long
as the power cap is not exceeded. We propose the offline
construction of Pareto-optimal power–performance profiles of
data-parallel tasks to guide the dynamic schedulers, providing
a set of trade-offs between power consumption and the number
of cores. We also examine how leveraging program slack,
an existing technique from the BSP model [7], performs in
asynchronous models, showing how it is ineffective at reducing
average power.

The following sections describe the methodology for the
construction of Pareto frontiers followed by the formulation
of the scheduling heuristics. We evaluate their performance
on a set of real HPC applications. Our approach demonstrates
that the power-aware schedulers can perform on average
18.8%, 15.4%, and 38.4% better than the statically constrained
schedulers when limited by the power cap for the CG, LU,
and Cholesky applications and perform as well as the state-of-
the-art when power is no longer restrictive. This work shows
the initial examination of task graph application performance
under a power cap and discusses challenges and opportunities
for refinement.

II. RELATED WORK

The problem of effectively scheduling task graphs has been
shown to be difficult, particularly when additional constraints,
such as limited power or number of cores, need to be con-
sidered. The work by Buttari et al. [8] describes the formula-
tion of linear algebra algorithms including Cholesky and LU
decompositions into tasks and describing their performance
improvements over more traditional algorithms. The DAGuE
runtime [3] provides a programming model and framework for
the execution of task graphs for the HPC domain, focusing
on scale and speed of execution for large problem sizes,
and has been used to implement the DPLASMA library of

E2SC2016; Salt Lake City, Utah, USA; November 2016
978-1-5090-3856-5/16/$31.00 c©2016 IEEE

dense linear algebra functions for distributed systems [9]. This
formulation of asynchronous DAGs has been expanded by
Wu [10] to add an additional layer of hierarchy, distinguishing
between the coarse-grained task parallelism and the fine-
grained data parallelism within a task - which has been term
elastic or parallel tasks [11], [12]. To address the scheduling
of graphs when constrained by the number of cores available,
Barbosa el al. [5] present a static method and Vydyanathan
et al. [6] present a dynamic method for assigning cores to
tasks to minimize execution time. These works use analytical
performance models based on the task workload. In contrast,
our paper focuses on the empirical behavior of tasks to classify
their execution.

Tackling the problem of power limits for HPC systems has
presented many techniques for increased energy efficiency.
One common technique is to leverage slack to slow down
cores that do not affect the execution time of the overall
application, hence saving energy [13]. This has been expanded
to distributed HPC workloads [14]. Understanding when im-
balance occurs in an application in order to reduce energy
when executing some applications under a power cap has been
demonstrated [7]. These works apply to bulk-synchronous
programming models, whereas the work proposed by this
paper applies to the more complex problem of scheduling
asynchronous task graphs.

Zhang [15] provides a survey of methods for enforcing a
power limit, both by the hardware and software. However,
the surveyed techniques are viewed from the perspective of
administration, ensuring that limits are met within a timely
manner. Methods for increasing energy efficiency by adjusting
the configuration either of the number of threads given to each
task [16] or the configuration of the hardware, tweaking either
the frequency states or number of available cores for use [17]
have been demonstrated. Additionally, work by Patki et al. [18]
shows the effect of power-aware job scheduling depending on
user behavior. While not focused on executing task graphs, that
work provides a foundation for applying power limitations to
entire clusters, ensuring fast task turnaround time based upon
user requirements.

Research has been shown to estimate the performance,
power, or energy behavior of application tasks as a function of
frequency state [19]. Work such as that proposed by Anger et
al. [20] presents a technique to model the time and energy
behaviors of tasks as a function of program input, shown
to provide low overhead. The models in this paper leverage
Pareto frontiers to describe the power and performance for
each of the tasks. Pareto-optimal configurations have been
used to characterize system designs across multiple cores [21].
The work in this paper differs by examining the task-specific
power–performance tradeoffs for an individual system.

III. SCHEDULING TASK GRAPHS

This work examines applications built using the asyn-
chronous task-graph programming model, where individual
operations, called tasks, form the nodes in a directed acyclic
graph (DAG) with the edges formally specifying the data

Fig. 1: Task graph showing task dependencies for a 4x4 tile-
base right-looking Cholesky decomposition.

dependencies between tasks. Figure 1 shows the task graph for
Cholesky decomposition; a task on the graph is only allowed to
execute once all of its predecessors have completed. A runtime
monitors the progress of tasks as well as the utilization of
system resources, such as the number of cores already assigned
to tasks.

The design of the runtime must take into consideration
the complicating issue of hierarchical levels of parallelism
provided by the task graph. There is coarse-grained parallelism
for tasks that may execute concurrently provided there is no
data-dependence between them. Tasks may have fine-grained
data parallelism within a task so that a node within the DAG
may be executed on more than one processor core. Such tasks
have been termed elastic [11]. This trade-off between degrees
of parallelism makes the scheduling decision to be made by the
runtime more complicated, as it may chose between running
multiple tasks or a single task on multiple processor cores.

Making a scheduling decisions depends on the relationship
between task configuration—in this case, number of processor
cores—and the resulting performance. Existing theoretical
models, such as Amdahl’s Law, demonstrate a monotonically
increasing relationship between number of cores and perfor-
mance. However this may not always be the case due to the
effects such as communication overhead. As a result, a parallel
task may have higher performance with a smaller number of
processors than larger. The number of cores a task uses may
also change the amount of power consumed. That is, each task
can be characterized by a set of points corresponding to the
execution time and power consumed by the task for a given
configuration. Figure 2 shows this for a single task; each point
represents running the task with a specific number of processor
cores.

From these figures it is possible to find configurations that
achieve the same performance for different amounts of power,

140 160 180

0.1

0.2

0.3

Power (W)

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Fig. 2: Task configuration points and resulting Pareto frontier
for the DPOTRF task from Cholesky factorization.

or conversely different performance for the same amount of
power. The set of configurations that achieve the highest
performance for a given power consumption are called Pareto-
optimal and lie on the Pareto frontier. In other words, a
configuration is Pareto-optimal if it is not strictly dominated
by any other. The line in Figure 2 is drawn through the
Pareto frontier. By selecting a configuration on the Pareto
frontier, the scheduler knows that it is choosing the best
performing configuration for the given amount of power. This
work proposes the offline construction of these frontiers for
use during task scheduling, allowing the selection of the most
power-efficient configurations.

IV. POWER-EFFICIENT SCHEDULING

During execution, the runtime decides which tasks to run
as well as the number of processor cores they may use. The
system is provisioned with a certain number of cores that
may be used globally across all tasks at any moment in time;
the scheduler makes the decision as to how these cores get
assigned, as well as which tasks to assign them to. As soon as
a task is capable to execute, a call to the scheduling heuristic
decides which tasks in the set of ready tasks to run, as well as
the configuration to use for each of these tasks. This work
presents four different scheduling heuristics to demonstrate
the ability to increase performance while operating under a
power cap, with each heuristic providing a successively more
comprehensive approach to minimize execution time of the
task graphs while remaining below the power limit, including
how leveraging the Pareto frontiers, in addition to a power-
aware heuristic, results in high performance.

A. Machine Model

This work examines the issue of scheduling under a power
cap from the perspective of a single, homogeneous system, but
may be adapted to distributed or heterogeneous systems. The
task graphs used in this work exhibit an extremely high degree
of parallelism both coarse-grained (task-level) and fine-grained
(data-level). Due to this degree of expressed parallelism, this
work leverages an Intel Xeon Phi coprocessor [22] to provide

a homogeneous computing system with a large core count.
The Intel Xeon Phi architecture allows for up to 72 in-order
x86 cores connected by a ring interconnect. Each core can
support up to four hardware threads. The instruction scheduler
issues from each hardware thread in a round-robin fashion,
but with the limitation that it is unable to issue from the same
thread back-to-back. As a simplification, this work assumes
each core is fungible. Rather than modeling the interactions
between threads when they must compete for resources on a
core, we limit each core to two simultaneous threads, which
can each provide a continuous instruction stream to the core.

Each core has its own L1 and L2 cache, with device-local
memory and a large vector processing unit. Importantly, this
architecture retains a traditional programming model similar
to existing CPU workloads, allowing for compiler and runtime
control over the degree of parallelism per task and across tasks.
As such, existing workloads need little modification in order
to run on these devices.

V. SCHEDULING HEURISTICS

This work examines four different scheduling heuristics,
described below. The input to each heuristic is the set of tasks
that are ready to run, as well as the set of available resources,
which includes the amount of power left in the budget, as well
as the current number of unassigned processor cores.

A. Fair Scheduler (FS)

Algorithm 1 Fair Scheduler

1: numCores = getNumIdleCores()
2: numTasks = size(pendingTasks)
3: coresPerTask = numCores/numTasks
4: Assign coresPerTask to each Task in pendingTasks

The Fair Scheduler (Algorithm 1) is the most simple
heuristic which assigns cores in a round-robin manner to all
of the ready-to-execute tasks. For this heuristic, the goal is
to maximize utilization of the cores with no regard given
to the power consumed during execution. Rather, the power
utilization will be enforced statically by selecting the highest
number of total cores that results in a peak power consumption
that does not exceed the power cap. This is analogous to
provisioning the scheduler for the worst case, preventing any
cores from being used if they will, at any time, go over the
power cap. This scheduler forms the baseline for this work.

B. Core Constrained Scheduler (CCS)

The second scheduler is called the Core Constrained Sched-
uler (2). This heuristic, adapted from [5], attempts to minimize
execution time of the task graph by assigning cores to the
tasks that lie on the critical path. To achieve this, an estimate
must be made of the total time to complete a specific task
plus the time to complete the longest chain of tasks to the
bottom of the graph, called the makespan. To calculate the
makespan, the scheduler assumes that all subsequent tasks

Algorithm 2 Core Constrained Scheduler

1: Set each task to highest performance configuration
2: while

∑numTasks
i=0 coresi > numIdleCores do

3: for each Pending task T do
4: Determine makespan with coresT = coresT − 1
5: if Makespan is largest seen yet then
6: Set T as losing task
7: end if
8: end for
9: Reduce threads for losing task

10: end while

after the current one to be scheduled will use the highest
performance configuration possible.

As with the Fair Scheduler, this scheduler does not consider
power consumption to make its scheduling decisions. Instead,
a similar static limitation will be placed on the number of idle
cores to ensure that at no time it goes over the power cap.
This represents the current state of the art in achieving high
performance, but it is not cognizant of the power cap. The
goal is to examine how well these heuristics manage when
power limitations are put into place.

C. Power Aware Scheduler (PAS)

Algorithm 3 Power Aware Scheduler

1: Set each task to highest performance Pareto point
2: while

∑
coresi > numIdleCores or∑

power(coresi) + currentPower > powerCap
do

3: for each Pending task T do
4: Move to next less powerful Pareto-optimal point
5: Determine the new makespan
6: if Makespan is shortest seen yet then
7: Set T as losing task
8: end if
9: end for

10: Walk down Pareto frontier for losing task
11: end while

The Power Aware Scheduler (3) is the first scheduler that
leverages the Pareto frontiers to model the power behaviors of
the executing tasks, providing a mechanism for dynamically
tuning the power behavior of the system. Instead of statically
limiting the number of idle cores available to the scheduler,
this heuristic is aware of the power cap, as well as the amount
of power used by each task. The insight is that, informed by
the Pareto frontiers, this heuristic is able to exceed the number
of cores in the prior two schedulers so long as it guarantees
that it remains under the power cap. In this way, it is able to
accelerate some tasks by giving them more cores, reducing the
makespan of the graph, so long as there is power available.

The key insight for this scheduler is that power can be
attributed dynamically, allowing tasks to leverage cores so long
as, for the current scheduling tick, the increase in power on

TABLE I: Machine configuration used for experimental eval-
uation.

Component Parameter Value

host CPU Intel i7-975
host CPU cores 4
host CPU clock rate 3.33 GHz
host Memory size 6GB
coprocessor CPU Intel Xeon Phi 3120A
coprocessor CPU clock rate 1.10 GHz
coprocessor CPU cores 57
coprocessor Memory size 6GB

top of the current power draw does not exceed the power cap.
In practice, this results in a higher average core utilization
than the static schedulers, as the scheduler can assign more
cores to tasks than the static limit, so long as there is power
headroom.

D. Slack Aware Scheduler (SAS)

Algorithm 4 Slack Aware Scheduler

1: Call PAS
2: for each Pending task T do
3: if T is not on critical path then
4: while Slack 6= 0 do
5: Move to next less powerful Pareto-optimal point
6: end while
7: end if
8: end for

The Slack Aware Scheduler (4) is an improvement over
PAS. The key insight for this heuristic is that a task may
be slowed down so long as it does not affect the critical
path of the graph. The additional amount of time a task can
run before affecting the schedule is called slack [13]. This
scheduler operates like the PAS, but with the additional step
that allows tasks to move into lower power configurations so
long as there is slack. The scheduler determines if there is
slack by slowing down the thread and recalculating the graph’s
makespan; there is slack if the makespan does not change. The
goal for this scheduler is to achieve the same performance
as the PAS, but with a lower average power. This builds off
of existing techniques for achieving energy efficiency from
slack [7], but expands their use to asynchronous task graphs.

VI. PERFORMANCE EVALUATION

This section describes the experimental evaluation of the
Pareto frontiers, as well as the behavior of the four presented
schedulers. It describes the execution environment upon which
the different heuristics were run, as well as the structure of
each task’s Pareto frontiers used as the power and performance
models to guide the power-aware scheduling decisions.

A. Experiment Setup

Table I shows the hardware configuration for the host and
coprocessor card. To enable launching tasks asynchronously

on the device, this work leverages the Intel Compiler’s Het-
erogeneous Offload programming model. The main scheduling
thread executes on the host, launching tasks to the device and
checking on the execution progress. When a task needs to
be launched, a new worker thread on the device is spun up,
which then uses the offload compiler pragma to issue task
execution to the coprocessor. The main scheduler then waits
for this worker thread to complete. The offload framework
takes an entire coprocessor to choreograph offload requests, so
the total number of hardware threads a scheduler can assign
tasks to at any time is 112.

This work leverages the libmicmgmt library provided by
Intel which accesses Xeon Phi parameters [23] to poll the
onboard power sensors. These measure the current and voltage
for the device at a rate of 50Hz. To collect the profiling data
to construct the Pareto frontiers, each task graph was executed
by a profiling scheduler that would repeatedly launch a task for
a set period and read the power of the coprocessor, recording
the highest observed power and the average task execution
time. This power number includes the idle power, measured
as 106.9 Watts, for the coprocessor, which must be subtracted
in order to determine the incremental power cost for launching
a task.

For the validation experiments, the applications are executed
by each scheduler and the execution times compared to the Fair
Scheduler. Due to the coarse power measurement granularity,
this work uses the values from the Pareto frontiers to represent
the task power behavior. As such, this work does not exam-
ine the enforcement of the power limit during experimental
execution.

B. Applications

The schedulers in this work are fed by a DAG of tasks.
Instead of constructing synthetic tasks this work uses three
different task graphs taken from current HPC workloads. Each
application can be parameterized to the size of the input
problem as well as the degree of tiling. The tasks from these
applications are linear algebra kernels provided by the Intel
MKL library [24]. Each task can be configured to use a
different number of OpenMP threads to control their degree
of data-level parallelism.

Conjugate Gradient (CG) The conjugate gradient example
is adapted from the HPCG benchmark for solving a matrix
equation of the form Ax = b for a given sparse matrix A and
vector b for unknown x. The task-based version is derived
from the HPCG benchmark [25], using a compressed sparse
row (CSR) representation of A. The sparse structure of the
matrix A is derived from a structured 3D stencil with X-Y-Z
linearized to form the column and row indices. We assume a
+1/-1 connectivity in each dimension, resulting in a a total of
27 nonzeroes for each row (fewer for boundaries). The current
example does not use a preconditioner. The individual kernels
required for conjugate gradient are DDOT and DAXPY and a
sparse matrix-vector multiply (SpMV).

Cholesky Decomposition The Cholesky decomposition cal-
culates the decomposition of a positive-definite matrix A into

the form A = LL∗ where the matrix L is a real lower-
triangular matrix with positive elements in the diagonal. We
use a tiled-based right-looking algorithm, as described in [26].
Cholesky is done in double precision, requiring the BLAS
kernels DPOTRF, DSYRK, DTRSM, and DGEMM. The task
graph for a 4×4 tile-based Cholesky is shown in Figure 1.

LU Decomposition The Lower-Upper (LU) decomposition
factorizes a matrix A into the form A = LU where L is a
lower triangular matrix and U is an upper triangular matrix.
As with Cholesky, the LU Decomposition uses a tiled, right-
looking algorithm [26]. The tasks for this application are
DTRSM, DGETRF, and DGEMM.

C. Results

Figure 3 shows the different Pareto frontiers for each task
in the three task graphs examined in this work. The curves
pass through the Pareto-optimal points that express the highest
relative speedup over single-threaded execution versus power
consumed over idle. Some tasks have a strong correlation
between power and speedup, such as SpMV in CG and DGEMM
in Cholesky and LU, as seen by the relatively straight shapes of
the Pareto frontiers. On the other hand, tasks such as DAXPY in
CG and DPOTRF in Cholesky have few Pareto-optimal points,
which indicates poor performance scaling.

Figure 4 shows the performance of each scheduler relative
to the performance of the Fair Scheduler, as a function of an
imposed power cap. The power cap starts at 35 Watts, which
is guaranteed to contain at least one Pareto-optimal point for
each task. The CCS performs similarly to the baseline. For a
fixed number of cores, CCS has a higher performance, but also
a higher power consumption. When the power cap is imposed,
the CCS must use fewer total cores than the FS, even though
it uses them more efficiently.

However, the two power-aware schedulers, due to their
dynamic nature, are more power-efficient than the baseline and
the CCS. For Cholesky and LU, the PAS and SAS schedulers
perform better than FS and CCS across all power caps. This
becomes less pronounced as the power cap increases for CG
in particular; at this level of power cap, the FS and CCS are
not statically restricted by the number of cores they can use.
That is, they can use all of the cores available and still remain
underneath the cap. Compared to Cholesky and LU, the tasks
in CG scale poorly (except for SpMV), so that even though
there is more headroom under the power cap, the tasks would
not exhibit a speedup.

An important observation is of the parabolic shape to the
performance improvement of PAS and SAS over both the
baseline and CCS, seen most clearly with LU: when the power
cap is low, none of the schedulers perform well since very
few cores can be used. There is a middle region where the
dynamic, power-aware schedulers achieve the greatest speedup
attributed to their higher average core utilization. Then finally,
the power cap gets high enough to allow all cores to be used,
even for the static schedulers, so performance normalizes. This
underscores the need to understand what power caps ought to
be feasibly set at from the perspective of applications, possibly

20 40 60 80

0

20

40

60

80

100

Power Cost (W)

Sp
ee

du
p

CG

axpy
copy
dot

spmv
subtract

xapy

20 40 60 80 100

0

5

10

15

20

25

30

Power Cost (W)

Cholesky

gemm
syrk
trsm
potrf

20 40 60 80 100 120

0

10

20

30

Power Cost (W)

LU

getrf
gemm
trsm l
trsm r

Fig. 3: Pareto frontiers for each task in CG, Cholesky, and LU task graphs.

across phases. Certain power cap–application relationships can
elicit the greatest improvements in efficiency and others elicit
little. Characterizing this in a general way remains a problem
to be addressed.

The slack-aware scheduler performs comparably to the
power-aware scheduler. However, SAS has an average power
of only 0.43% less than PAS for Cholesky and has an increase
in power of 0.15% and 1.2% for CG and LU, respectively. This
goes against the hypothesis that taking advantage of slack can
lower average power while retaining performance. The reason
for this behavior can be attributed to the difference between the
asynchronous programming model and the bulk-synchronous
model (that can leverage slack). Tasks that slow themselves
down free up cores for use in subsequent scheduling ticks.
The schedulers only look at the current set of tasks to be
scheduled. This may not include the tasks that lie on the
critical path of the overall graph; still, the scheduler minimizes
the distance between the current tasks to be scheduled and the
end of the graph, using up the power headroom as necessary.
In the end, the limiting task is run at a higher power, but does
not affect the execution time of the graph. This results in a
similar or higher average power. A more intelligent scheduler
that can determine the true execution-limiting tasks may be
better informed to leverage any slack during scheduling.

For this work, the Pareto frontiers are constructed from
profiling runs, using the average execution time and peak
power. However, tasks such as SpMV are dependent upon the
input data. As well, the interactions between the tasks is not
modeled, such as the behavior of scheduling more than two
hardware threads per core. While this work does not attempt
to model these behaviors, they would provide greater accuracy
for the schedulers, potentially increasing the power-efficiency
and performance of the graphs.

VII. CONCLUSION

This work presents a methodology for scheduling asyn-
chronous task graphs while remaining under an imposed
power cap. Key to this methodology is the use of Pareto

frontiers to represent the power–performance configurations
to ensure the greatest task performance for a given amount of
power. In this work, the configuration space is the number of
cores assigned to a data-parallel task. This work shows four
scheduling heuristics used by the runtime to determine the
configuration state for each task: a Fair Scheduler that assigns
cores in a round-robin fashion, a Core-Constrained Scheduler
that attempts to minimize the distance from the current tasks to
the end of the graph, a Power-Aware Scheduler that leverages
the Pareto frontiers to pick the tasks to best utilize the
available power budget, and a Slack-Aware Scheduler that
attempts to slow down those tasks that are not on the critical
path, reducing average power consumption. An experimental
validation of Conjugate Gradient, Cholesky Decomposition,
and LU Decomposition shows how the dynamic, power-aware
schedulers are able to increase performance while remaining
underneath a power cap.

REFERENCES

[1] S. Ashby, P. Beckman, J. Chen, P. Colella, B. Collins, D. Crawford,
J. Dongarra, D. Kothe, R. Lusk, P. Messina, T. Mezzacappa, P. Moin,
M. Norman, R. Rosner, V. Sarkar, A. Siegel, F. Streitz, A. White, and
M. Wright, “The Opportunities and Challenges of Exascale Comput-
ing—Summary Report of the Advanced Scientific Computing Advisory
Committee (ASCAC) Subcommittee,” US Department of Energy Office
of Science, Fall 2010.

[2] A. V. Gerbessiotis and L. G. Valiant, “Direct Bulk-Synchronous Parallel
Algorithms,” Journal of Parallel and Distributed Computing, vol. 22,
no. 2, pp. 251–267, Aug. 1994.

[3] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and
J. Dongarra, “DAGuE: A Generic Distributed DAG Engine for High
Performance Computing,” in 2011 IEEE International Symposium on
Parallel and Distributed Processing Workshops (IPDPSW), May 2011,
pp. 1151–1158.

[4] N. Fauzia, V. Elango, M. Ravishankar, J. Ramanujam, F. Rastello,
A. Rountev, L. Pouchet, and P. Sadayappan, “Beyond reuse distance
analysis: Dynamic analysis for characterization of data locality poten-
tial,” ACM Trans. Archit. Code Optim., vol. 10, pp. 1–29, 2013.

[5] J. Barbosa, C. Morais, R. Nobrega, and A. P. Monteiro, “Static schedul-
ing of dependent parallel tasks on heterogeneous clusters,” in Cluster
Computing, 2005. IEEE International, Sep. 2005, pp. 1–8.

[6] N. Vydyanathan, S. Krishnamoorthy, G. Sabin, U. Catalyurek, T. Kurc,
P. Sadayappan, and J. Saltz, “An Integrated Approach to Locality-
Conscious Processor Allocation and Scheduling of Mixed-Parallel Ap-

0 50 100 150 200 250 300 350

0.8

1

1.2

1.4

1.6

1.8

Sp
ee

du
p

R
el

at
iv

e
to

FS
CG

50 100 150 200 250 300 350

1

1.5

2

2.5

Sp
ee

du
p

R
el

at
iv

e
to

FS

Cholesky

0 50 100 150 200 250 300 350
0.8

1

1.2

1.4

Power Cap Over Idle (W)

Sp
ee

du
p

R
el

at
iv

e
to

FS

LU

CCS PAS SAS

Fig. 4: Relative performance of the CCS, PAS, and SAS
schedulers over the Fair Scheduler for the three task graphs
as a function of the power cap.

plications,” IEEE Transactions on Parallel and Distributed Systems,
vol. 20, no. 8, pp. 1158–1172, Aug. 2009.

[7] K. J. Barker, D. J. Kerbyson, and E. Anger, “On the Feasibility of
Dynamic Power Steering,” in Energy Efficient Supercomputing Workshop
(E2SC), 2014, Nov. 2014, pp. 60–69.

[8] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “A class of parallel
tiled linear algebra algorithms for multicore architectures,” Parallel
Computing, vol. 35, no. 1, pp. 38–53, Jan. 2009.

[9] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Herault,
J. Kurzak, J. Langou, P. Lemarinier, H. Ltaief, P. Luszczek, A. YarKhan,
and J. Dongarra, “Flexible Development of Dense Linear Algebra Algo-
rithms on Massively Parallel Architectures with DPLASMA,” in 2011

IEEE International Symposium on Parallel and Distributed Processing
Workshops (IPDPSW), May 2011, pp. 1432–1441.

[10] W. Wu, A. Bouteiller, G. Bosilca, M. Faverge, and J. Dongarra, “Hierar-
chical DAG Scheduling for Hybrid Distributed Systems,” in Parallel and
Distributed Processing Symposium (IPDPS), 2015 IEEE International,
May 2015, pp. 156–165.

[11] A. Sbirlea, K. Agrawal, and V. Sarkar, “Elastic Tasks: Unifying Task
Parallelism and SPMD Parallelism with an Adaptive Runtime,” in Euro-
Par 2015: Intl. Conference on Parallel and Distrib. Computing. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2015.

[12] N. Vydyanathan, S. Krishnamoorthy, G. M. Sabin, U. V. Catalyurek,
T. Kurc, P. Sadayappan, and J. H. Saltz, “An Integrated Approach
to Locality-Conscious Processor Allocation and Scheduling of Mixed-
Parallel Applications,” IEEE Transactions on Parallel Distrib. Syst.,
vol. 20, pp. 1158–1172, 2009.

[13] N. Kappiah, V. W. Freeh, and D. Lowenthal, “Just In Time Dynamic
Voltage Scaling: Exploiting Inter-Node Slack to Save Energy in MPI
Programs,” in Supercomputing, 2005. Proceedings of the ACM/IEEE SC
2005 Conference, 2005.

[14] D. Li, B. de Supinski, M. Schulz, K. Cameron, and D. Nikolopoulos,
“Hybrid MPI/OpenMP power-aware computing,” in 2010 IEEE Inter-
national Symposium on Parallel Distributed Processing (IPDPS), Apr.
2010, pp. 1–12.

[15] H. Zhang and H. Hoffmann, “Maximizing Performance Under a Power
Cap: A Comparison of Hardware, Software, and Hybrid Techniques,” in
Proceedings of the Twenty-First International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ser.
ASPLOS ’16. New York, NY, USA: ACM, 2016, pp. 545–559.

[16] S. Sridharan, G. Gupta, and G. S. Sohi, “Holistic Run-time Parallelism
Management for Time and Energy Efficiency,” in Proceedings of the
27th International ACM Conference on International Conference on
Supercomputing, ser. ICS ’13. New York, NY, USA: ACM, 2013,
pp. 337–348.

[17] P. Bailey, D. Lowenthal, V. Ravi, B. Rountree, M. Schulz, and B. de
Supinski, “Adaptive Configuration Selection for Power-Constrained Het-
erogeneous Systems,” in 2014 43rd International Conference on Parallel
Processing (ICPP), Sep. 2014, pp. 371–380.

[18] T. Patki, D. K. Lowenthal, A. Sasidharan, M. Maiterth, B. L. Rountree,
M. Schulz, and B. R. de Supinski, “Practical Resource Management in
Power-Constrained, High Performance Computing,” in Proceedings of
the 24th International Symposium on High-Performance Parallel and
Distributed Computing, ser. HPDC ’15. New York, NY, USA: ACM,
2015, pp. 121–132.

[19] M. Curtis-Maury, A. Shah, F. Blagojevic, D. S. Nikolopoulos, B. R.
de Supinski, and M. Schulz, “Prediction Models for Multi-dimensional
Power-performance Optimization on Many Cores,” in Proceedings of
the 17th International Conference on Parallel Architectures and Compi-
lation Techniques, ser. PACT ’08. New York, NY, USA: ACM, 2008,
pp. 250–259.

[20] E. Anger, D. Dechev, G. Hendry, J. Wilke, and S. Yalamanchili,
“Application Modeling for Scalable Simulation of Massively Parallel
Systems,” in 2015 IEEE International Conference on High Performance
Computing and Communications (HPCC), Aug. 2015.

[21] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark Silicon and the End of Multicore Scaling,” in Pro-
ceedings of the 38th Annual International Symposium on Computer
Architecture, ser. ISCA ’11. New York, NY, USA: ACM, 2011, pp.
365–376.

[22] R. Rahman, Intel Xeon Phi Coprocessor Architecture and Tools: The
Guide for Application Developers, 1st ed. Berkely, CA, USA: Apress,
2013.

[23] Intel Xeon Phi Coprocessor System Software De-
velopers Guide, Mar. 2014, http://www.intel.com/
content/dam/www/public/us/en/documents/product-briefs/
xeon-phi-coprocessor-system-software-developers-guide.pdf.

[24] Intel Math Kernel Library Developer Reference, Aug. 2015, https:
//software.intel.com/en-us/articles/mkl-reference-manual.

[25] J. Dongarra and M. A. Heroux, “Toward a new metric for ranking high
performance computing systems,” in Toward a New Metric for Ranking
High Performance Computing Systems, 2013.

[26] A. Haidar, H. Ltaief, A. YarKhan, and J. Dongarra, “Analysis of dynam-
ically scheduled tile algorithms for dense linear algebra on multicore
architectures,” Concurr. Comput. : Pract. Exp., vol. 24, pp. 305–321,
2011.

