Exploration of Data Warehousing and Graph Applications with GPUs

Ifrah Saeed, Se Hoon Shon, Haicheng Wu, Jeffrey Young, Sudhakar Yalamanchili School of Electrical and Computer Engineering, Georgia Institute of Technology

Application Space: Data Warehousing

- Current applications process 1 to 50 TBs of data [1]
- ■Not a traditional domain for GPU acceleration, but parallel queries experience good speedup on GPUs [2]

Base Primitives and Data Structures

OpenCL Backend for Red Fox

- Port of Red Fox to new accelerator platforms using OpenCL
- Initial performance is evaluated using 16-bit key-value store and TPC-H micro-benchmarks

TPC-H Micro-benchmarks

INPUT 1

Graph Applications – BFS (Ongoing Work)

- Breadth First Search (BFS) is important for large-scale analysis of social networks and linked datasets such as Wikipedia
 - Limited PCIe bandwidth makes it difficult to map this algorithm to clusters of accelerators
 - Exchange of edge lists requires low-latency transfer
 - •Current work involves the design of an efficient partitioning scheme that maps across a cluster
 - ■Building on single-node work done by Merrill [4] as well as CPU-based Graph500 implementations
 - Optimized OpenCL and CUDA versions will allow for high performance with different accelerators

Our Approach: Red Fox Compiler and Runtime

- Relational queries are translated to optimized query plans and GPU primitives via the Red Fox compilation and runtime framework [3]
- Initial work used CUDA-based primitives; current work focuses on OpenCLbased primitives

Red Fox CPU/GPU Comparison for TPC-H*

On average (geo mean)

GPU w/ PCle : Parallel CPU = 4.92x GPU w/o PCle : Parallel CPU = 5.96xGPU w/ PCle : Serial CPU = 14.30xGPU w/o PCle : Serial CPU = 17.31x

*CPU version runs LogicBlox 4.0 on Amazon EC2 instance cr1.8xlarge. Scale Factor for TPC-H = 1. CUDA-based implementation.

Experimental Setup

	CPU	Intel i7-4771 @ 3.50GHz
9	GPU	GeForce GTX Titan
	PCle	3.0 x 16
	OS	Ubuntu 12.04
	G++/GCC	4.6
	NVCC	5.5
	Thrust	1.7

AMD Discrete GPU

→ AMD Fused GPU

Intel CPU

──Intel CPU

Serial Implementation on

OpenCL Backend Preliminary Results

■ Intel® Core i5-3470 CPU @ 3.20GHz

■ Intel Xeon Phi (TBD)

GPUs

CPU

- Intel® HD Graphics 2500 6 Compute Units AMD Fused GPU (HD7660D) - 6 Compute Units
- AMD Discrete GPU (HD5800) 20 Compute Units

Operating System - Windows 7

Framework - OpenCL 1.2

References

[1] IND. Oracle Users Group. A New Dimension to Data Warehousing: 2011 IOUG Data Warehousing Survey.

[2] B. He, et al. Relational query co-processing on graphics processors. TODS, 2009.

[3] Wu, H., Diamos, G., Cadambi, S., Yalamanchili, S., Kernel Weaver: Automatically Fusing Database Primitives for Efficient GPU Computation, MICRO 2012

[4] Merrill, Duane, et al., "Scalable GPU Graph Traversal", PPoPP '12

UNIVERSITY of WASHINGTON