
LaPerm: Locality Aware Scheduler for Dynamic
Parallelism on GPUs

Jin Wang* Norm Rubin† Albert Sidelnik† Sudhakar Yalamanchili*
*Georgia Institute of Technology †NVIDIA Research

Email: ∗{jin.wang,sudha}@gatech.edu, †{nrubin,asidelnik}@nvidia.com

Abstract—Recent developments in GPU execution models and
architectures have introduced dynamic parallelism to facilitate
the execution of irregular applications where control flow and
memory behavior can be unstructured, time-varying, and hier-
archical. The changes brought about by this extension to the
traditional bulk synchronous parallel (BSP) model also creates
new challenges in exploiting the current GPU memory hierarchy.
One of the major challenges is that the reference locality that
exists between the parent and child thread blocks (TBs) created
during dynamic nested kernel and thread block launches cannot
be fully leveraged using the current TB scheduling strategies.
These strategies were designed for the current implementations
of the BSP model but fall short when dynamic parallelism is
introduced since they are oblivious to the hierarchical reference
locality.

We propose LaPerm, a new locality-aware TB scheduler that
exploits such parent-child locality, both spatial and temporal.
LaPerm adopts three different scheduling decisions to i) prioritize
the execution of the child TBs, ii) bind them to the stream
multiprocessors (SMXs) occupied by their parents TBs, and iii)
maintain workload balance across compute units. Experiments
with a set of irregular CUDA applications executed on a cycle-
level simulator employing dynamic parallelism demonstrate that
LaPerm is able to achieve an average of 27% performance im-
provement over the baseline round-robin TB scheduler commonly
used in modern GPUs.

Keywords-GPU; dynamic parallelism; irregular applications;
thread block scheduler; memory locality

I. INTRODUCTION

General purpose graphics processing units (GPUs) have
emerged as an effective vehicle for accelerating a diverse
range of applications - especially traditional scientific and en-
gineering computations [1][2][3][4]. These GPU architectures
execute bulk synchronous parallel (BSP) programs organized
as 1D-3D arrays of thread blocks (TBs) in the 32-thread
unit of warps which can effectively map the applications
with structured control and data flows with large data sets.
However, emerging data intensive applications in data & graph
analytics, retail forecasting, and recommendation systems to
name a few, are dominated by algorithms with a time-varying,
nested, parallel structure that exhibits irregular memory and
control flows challenging the ability to effectively harness
the performance of these GPUs. Responding in part to this
need, new programming models have emerged to capture time-
varying nested parallelism characterized by these applications
- referred to as dynamic parallelism. The CUDA Dynamic
Parallelism (CDP) [5] model extends the base CUDA program-
ming model with device-side nested kernel launch capabilities

to enable programmers to exploit this dynamic evolution of
parallelism in applications. OpenCL provides similar capa-
bilities with the OpenCL device-side kernel enqueue [6].
Such dynamic parallelism in BSP applications presents a very
different profile of spatial and temporal memory reference
locality than that presented in traditional CUDA and OpenCL
applications. This paper proposes, describes, and evaluates a
TB scheduler for GPUs designed to exploit reference locality
in GPU applications that exploit dynamic parallelism.

Considerable attention has been focused on the impact
of reference locality in GPU applications and the develop-
ment of performance enhancement techniques that exploit
this reference locality in warp scheduling techniques, cache
management, and resource management [7], [8], [9], [10],
[11], [12], [13], [14]. While many of the insights that motivate
these works are applicable, none of them address the domain
of dynamic parallelism in GPUs. Dynamic parallelism involves
device-side nested launches of kernels or TBs (equivalently
workgroups in OpenCL). Consequently it introduces new
types of locality behaviors, for example, spatial and temporal
reference locality between parent kernels and child kernels,
or between child kernels launched from the same parent
kernel thread (sibling kernels). Modern GPU microarchitecture
schedulers are designed for non-dynamic parallelism settings
and are unaware of this new type of locality relationships.
Existing locality-aware TB schedulers do not work across the
kernel launching boundary and therefore only utilize the TB
locality information within a single kernel, either parent or
child.

We seeks to exploit the new data reference locality rela-
tionship in dynamic parallelism. Since dynamic parallelism
occurs at the level of kernels or TBs, our work focuses on an
effective TB scheduling policy to improve memory behavior
by exploiting data reference locality between parent and child
TBs and between sibling TBs. The choice of TB granularity
is also a result of fine-grained dynamic parallelism that exists
in irregular applications. Towards this end we first provide
an analysis of parent-child and child-sibling reference locality
in a set of benchmark applications. This analysis motivates a
scheduler for TBs across the Stream Multiprocessors (SMXs).
Consequently prioritization schemes are proposed to ensure
that child kernels can exploit temporal locality with parent
kernels, and spatial and temporal locality with sibling kernels.
We also observe a tradeoff between parallelism and locality
- improved utilization of all SMXs can be at expense of

reduced locality in individual SMX L1 caches. The proposed
TB scheduler seeks to balance overall SMX utilization with
effective utilization of the local SMX L1 caches resulting
in overall improved system performance. Our proposal is
designed to be orthogonal to warp scheduling techniques and
can be combined with existing warp scheduling disciplines.
On average the proposed approach achieves 27% IPC improve-
ment over the baseline TB scheduler.

II. BACKGROUND

This section provides a brief introduction to the GPU
execution model and the baseline GPU architecture. These
details, especially the dynamic parallelism execution model
and the TB scheduling strategy adopted by the current baseline
GPU architecture, are both relevant and important to the
understanding of the proposed TB scheduler.

A. GPU Execution Model

Modern GPUs employ the BSP execution model where
the program to be executed on the GPU is expressed as a
kernel function with 1D-3D arrays of TBs. Each TB is further
specified as 1D-3D arrays of threads, all executing the same
kernel code subject to user-defined synchronization barriers.
Multiple memory spaces can be accessed by the GPU threads
during their execution, including the global memory which is
visible to all the threads of a kernel, the shared memory which
is visible only to the threads of a TB, and the local memory
that is private to each individual thread.

B. GPU Architecture and TB Scheduling

In this paper, the baseline GPU architecture is modeled after
the NVIDIA Kepler K20c GPU with the GK110 architecture.
Without loss of generality, the proposed ideas along with the
experiments and analysis also apply to other general purpose
GPU architectures designed to implement the BSP execution
model. Figure 1 illustrates the architecture of the baseline GPU
that is composed of several major functional units: the kernel
management unit (KMU), the kernel distributor unit (KDU),
the computation units referred as Stream Multiprocessors
(SMXs) and the SMX scheduler which dispatches TBs to
the SMXs. Each SMX features multiple computation cores
(SIMD unit), special function units, register files and on-chip
scratch memory that can be configured as an L1 cache or
shared memory. An L2 cache is shared across SMXs and
connects through one or more memory controllers to the off-
chip DRAM which is used as the global memory.

Kernels are launched from the host CPU to the GPU and are
managed by KMU. The KMU selects independent kernels and
dispatches them to fill the KDU (currently with a maximum
of 32 entries). Kernels in the KDU are then executed in a
first-come-first-serve (FCFS) order. The TBs of each kernel
are dispatched to the SMXs and occupy necessary resources
on the SMXs such as registers, shared memory, and texture
memory in order to be executed. Each TB is divided into
groups of 32-threads called warps which are executed on the
SIMD units. If all SMXs are not fully occupied by TBs from

GPU

SMX SMX SMX SMX

Kernel Distributor Unit

SMX Scheduler

Core Core Core Core

Registers

L1 Cache / Shard Memory

Kernel
Management Unit

Memory
Controller

DRAML2 Cache

Core Core Core Core

SFU SFU SFU SFU

FCFS Controller

Fig. 1: Baseline GPU Architecture

one kernel, the SMX scheduler can dispatch TBs from the next
kernel in the KDU to the SMX, which results in concurrent
kernel execution. In today’s GPU, kernels can be executed
concurrently to the limit of 32 (number of entries in KDU).

After a kernel is dispatched to KDU, the SMX scheduler
will schedule the TBs of this kernel to the SMX in a round-
robin fashion. Each cycle it picks one TB using the increasing
order of the TB ID and dispatches it to the next SMX that has
enough available resources to execute this specific TB. When
a kernel is launched, all SMXs are unoccupied and therefore
can accommodate one TB at each cycle, resulting in TBs being
evenly distributed across the SMXs. For example, scheduling
100 TBs on a 13-SMX K20 GPU would result in SMX0 being
assigned TBs (0, 13, 26, . . .), SMX1 being assigned TBs (1,
14, 27, . . .) and so on. When all the SMXs are fully occupied
by the TBs, the SMX scheduler is not able to dispatch new TBs
to the SMXs until one of the older TBs finishes execution. To
illustrate it with the same example, suppose each SMX will be
fully occupied by 3 TBs. TB 39 cannot be dispatched to SMX0
immediately after TB 38 as there are not enough resources
available. At some point, TB 17 on SMX4 becomes the first
TB to finish execution so the SMX scheduler can schedule
TB 39 to the SMX4 instead of SMX0. This TB scheduling
strategy in the baseline GPU architecture is designed to ensure
the fairness of occupancy across all the SMXs and thereby
execution efficiency. It works well for most structured GPU
applications.

To achieve better memory system performance on GPUs,
kernels would generate more coalesced memory accesses
where threads in each warp access consecutive memory ad-
dresses that results in a singe global memory transaction,
utilize L2 and L1 caches to decrease memory access latency,
and stage data in the shared memory for faster TB-wide data
sharing.

C. Dynamic Parallelism on GPUs

Newer generations of GPUs have been designed to support
device-side kernel launching functionality – CUDA Dynamic
Parallelism (CDP) on NVIDIA GPUs or device-side enqueue

in OpenCL - which provides the capability of invoking ker-
nels on demand from the GPU threads. Device-side kernel
launches are useful and can be potentially beneficial when
applied to dynamic parallelism in irregular applications on
GPUs which occurs in a data dependent, nested, time-varying
manner and the most straightforward implementations usually
lead to poor workload balance, control flow divergence and
memory irregularity. It has been demonstrated in [15] that
there exist segments of computations within many irregular
applications that locally exhibit structured control and memory
access behaviors. The device launching capability extends the
basic GPU programming model and enables programmers to
exploit this dynamic evolution of local, structured parallelism
in applications by generating new kernels on demand when
such structured parallelism is recognized during execution.

While dynamic parallelism extensions such as CDP address
the productivity and algorithmic issues, efficiently harnessing
this functionality on GPUs has been difficult due to multiple
factors such as low SMX utilization and high kernel launch
latency. Meanwhile, related research [16][17][18][19] have
been proposed using either new compiler or microarchitecture
techniques to explore dynamic parallelism on GPUs. Specifi-
cally in [16], the authors propose the “Dynamic Thread Block
Launch (DTBL)” extension to the existing GPU execution
model that supports launching lightweight TBs in the form of
TB groups from GPU threads on demand and coalescing these
new TBs with existing kernels when the configurations of the
new TBs match those of the native TBs of the existing kernels.
With DTBL, the device kernels in the irregular applications
that are originally implemented with CDP are replaced on-
demand by light weight TB groups. This new extension
increases the SMX execution efficiency, mitigates the overhead
of CDP kernel launches while preserving the benefits of CDP
in terms of control flow and memory behavior, and therefore is
able to achieve both productivity and performance advantages
for dynamic parallelism. However, that work does not consider
the memory locality effects of hierarchical parallelism created
by device side kernel or TB launches. Several works have
established the importance of such memory locality effects
and the need for TB and warp level scheduling techniques
[9][10][12][13]. In this paper, we investigate and characterize
the memory locality behavior of dynamic parallelism based on
both the CDP and DTBL models and propose TB scheduling
policies to exploit memory locality. We expect these tech-
niques and insights also can be applied to other forms of
dynamic parallelism that are bound to emerge in the future
for BSP applications.

We refer to the TBs of a device kernel (CDP) or a TB
group (DTBL) as dynamic TBs. TBs which launch new device
kernels or TB groups are the direct parent TB. All the TBs
that are in the same kernel or TB group as the direct parent
TB are the parent TBs. The TBs in the newly launched device
kernels or TB groups are the child TBs. Figure 4(a) shows an
example of the parent-child launching using either the CDP or
the DTBL model. In this example, there are eight parent TBs
(P0-P7) in the parent kernel. TB P2 generates two child TBs

(C0-C1) and is their direct parent. The direct parent of the
four child TBs (C2-C5) is TB P4. The notations of parent
and child TBs will be used in subsequent discussion and
equally applicable to both CDP and DTBL models as well
as potentially other dynamic parallelism models as long as
they retain the TB-based BSP execution model.

The baseline GPU microarchitecture used in this paper
reflects the launch paths for both CDP and DTBL. In Figure 1,
each SMX is able to issue new kernel launches via the path
from itself back to the KMU. Just as with host-launched
kernels, device-launched kernels are dispatched from the KMU
to the KDU, and then from KDU to SMXs. In addition, there
is also a path from each SMX to the KDU where new TBs can
be generated and coalesced to existing kernels in the KDU.
The new TBs will be appended to the end of the TB pool of the
existing kernel and dispatched to the SMXs after all the native
TBs. In the baseline, dispatching dynamic TBs is no different
than dispatching TBs from the host-launched kernels, i.e., TBs
are distributed to the SMXs in a round-robin fashion subject
to resource availability on the SMXs.

III. MEMORY LOCALITY IN DYNAMIC PARALLELISM

In this section, we examine the memory reference locality
that exists between the parent and child TBs in the course of
exploiting dynamic parallelism on a GPU. Parent-child locality
provides an opportunity for optimizing performance that is not
exploited by existing TB schedulers on current GPUs, and is
the major motivation of the proposed LaPerm TB scheduler.

A. Spatial and Temporal Locality

Researches [20][21][22] have shown that while it is com-
mon to observe the existence of reference locality at certain
time during the execution of irregular applications, it usually
occurs in a way that is non-uniform, fine-grained, nested,
and dynamic. In structured applications, (e.g., many scientific
codes) inter-thread locality often leads to effective coalescing
of memory references and consequent efficient use of memory
bandwidth. In contrast, the non-uniform occurrences of local-
ity in irregular applications makes it difficult to exploit the
peak memory bandwidth. However it has been shown in [15]
that the use of dynamic parallelism can convert intra-thread
locality to uniform inter-thread locality which in turn can
lead to increased coalescing of memory accesses and thereby
effective use of memory bandwidth. For example, expanding
the neighbors of a vertex in a graph problem is often done by
a single thread leading to intra-thread locality across outgoing
edges. With dynamic parallelism, a child TB can expand each
vertex concurrently designated by the parent thread. Thus,
intra-thread locality of the parent is converted to inter-thread
locality of the child TB. The work in this paper focuses on
the shared structures between parent and child which can lead
to locality of references between the parent threads and the
child threads.

We demonstrate the existence of such locality by examining
the memory access patterns of the direct parent and child TBs
in multiple benchmarks described in Table II. The examination

0

10

20

30

40

50

60

70
S

h
a

re
d

 F
o

o
tp

ri
n

t
R

a
ti

o
Parent-Child

Child-Sibling

Fig. 2: Shared footprint ratio for parent-child and child-sibling
TBs.

process is performed between each direct parent TB and all
of its child TBs, as well as between each child TB and all
of its sibling TBs (the TBs that are launched by the same
direct parent). The memory access patterns are application-
dependent regardless of whether the CDP or the DTBL model
is used. To quantify the memory access patterns and reveal the
potential parent-child locality, we i) record the set of memory
references that the direct parent and all of its child TBs make,
and compute their respective sizes as p and c in units of a
128-byte cache block, ii) identify the memory references that
are shared between the direct parent and all of its child TBs,
and compute the total size as pc cache blocks, iii) compute
the ratio pc/c as the shared footprint ratio for parent-child.
Similarly, we record the memory references made by a single
child TB and all of its sibling TBs respectively with size co and
cs, identify the memory references shared by them with size
cos and compute the ratio cos/cs as the shared footprint ratio
for child-sibling. Figure 2 shows the results with an average
shared footprint ratio of 38.4% for parent-child and 30.5%
for child-sibling. It should be noted that data locality also
exists among the parent TBs, but is significantly less than
parent-child or child-sibling data reuse. Our analysis shows
that the average shared footprint ratio for parent TBs is 9.3%.
Therefore in this paper we focus on schedulers that can utilize
the parent-child TB data reuse. Higher shared footprint ratio
reveals better potential locality between the direct parent and
the child TBs which may exist both spatially and temporally
as described in the following:

Temporal Locality: A common practice in using the dy-
namic parallelism model for irregular applications is that the
parent TB performs the necessary computation to generate the
data, passes the data pointers (usually stored in the global
memory) to the child and invokes the child to continue the
computation. The reuse of the parent-generated data by the
child TBs results in good temporal locality as long as the
execution of the child TBs is “soon enough” after the parent.
The parent-child shared footprint ratio shown in Figure 2
demonstrate the potential existence of such temporal locality.

Spatial Locality: Spatial locality may exist either between
the direct parent TB and the child TBs or between different
child TBs. This is usually because the computations of either

SMX

L1 Cache

L2 Cache

SMX

L1 Cache

SMX

L1 Cache

SMX

L1 Cache

Parent
TB

Child
TB

Child
TB

Child
TB

Child
TB

L1 Locality
L2 Locality

Fig. 3: Parent-Child Locality and Potential Impact on L1 and
L2 Cache

the parent or the child can access memory locations that are
relatively spatially close. For example, using a common data
structure such as Compressed Sparse Row (CSR) for the graph
problem where neighbor vertices are stored in consecutive
addresses in the memory, different child TBs may explore
subgraphs that are stored closely to each other in the memory.
Compared with parent-child locality, the child-sibling locality
can have higher variation as shown in Figure 2, depending
on the benchmark characteristics or even the input data. For
example, the input graphs citation network and cage15 exhibit
more concentrated connectivity as vertices are more likely
to connect to their (spatially) closer neighbors. Therefore,
with the CSR data structure and its memory mapping, the
child-sibling shared footprint ratio for the graph benchmarks
that take these two input graphs are higher than graph500
where vertices can connect to other vertices all over the graph,
resulting in child TBs dealing with more distributed memory
accesses. It is even more apparent in the benchmark amr
and join that the child TBs are always working on its own
memory region with virtually no data reference from other
child TBs, causing the lowest shared footprint ratio among all
the benchmarks.

While the intra TB locality of the child TBs with dynamic
parallelism can result in more coalesced memory accesses that
can leverage the global memory of the GPU memory hierar-
chy, the locality between the parent and child TBs provides
an opportunity for improved memory performance in terms
of L1 and L2 cache behavior as shown in Figure 3. L2 cache
performance can be increased if locality exists among the TBs
that are executed closer in time. Furthermore, execution of
these TBs on the same SMX may even have a positive impact
the L1 cache performance. However, exploiting such potential
cache behaviors is by itself not straightforward and can largely
depend on the GPU SMX scheduler.

B. Round-Robin TB Scheduler

The SMX scheduler on current GPUs adopts the round-
robin (RR) TB scheduling policy which is designed for
fairness and efficiency. This is the baseline scheduling policy
we use. This policy works well for structured applications.

Cor e Cor e Cor e Cor e

L1 Cache / Shard M emor y

Warp Schedul er s

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

L1 Cache / Shard M emor y

Warp Schedul er s

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

L1 Cache / Shard M emor y

Warp Schedul er s

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

L1 Cache / Shard M emor y

Warp Schedul er s

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

P0 P1

P5P4

P2 P3

P7P6

Parent Kernel C0 C1

C2 C3

C4 C5

Child Kernel/TB

SMX0 SMX1 SMX2 SMX3

P0 P1 P2 P3

P6

C2

P4 P5 P7

C0

C4

C1

Cor e Cor e Cor e Cor e

L1 Cache / Shard M emor y

Warp Schedul er s

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

L1 Cache / Shard M emor y

Warp Schedul er s

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

L1 Cache / Shard M emor y

Warp Schedul er s

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

L1 Cache / Shard M emor y

Warp Schedul er s

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

SMX0 SMX1 SMX2 SMX3

P0 P1 P2 P3

C0

C1

P4 P5 P6

C2 C3P7C3

C4 C5C5

(a) (b) (e)

Cor e Cor e Cor e Cor e

L1 Cache / Shard M emor y

Warp Schedul er s

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

L1 Cache / Shard M emor y

Warp Schedul er s

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

L1 Cache / Shard M emor y

Warp Schedul er s

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

L1 Cache / Shard M emor y

Warp Schedul er s

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

SMX0 SMX1 SMX2 SMX3

P0 P1 P2 P3

P4

C4

C0 C1 P5

C2 C5C3

P6 P7

(c)

Cor e Cor e Cor e Cor e

L1 Cache / Shard M emor y

Warp Schedul er s

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

L1 Cache / Shard M emor y

Warp Schedul er s

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

L1 Cache / Shard M emor y

Warp Schedul er s

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

L1 Cache / Shard M emor y

Warp Schedul er s

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

Cor e Cor e Cor e Cor e

SMX0 SMX1 SMX2 SMX3

P0 P1 P2 P3

C0

C1

P4 P5 P6

C2

C5

C4

C3

P7

(d)

Fig. 4: An example of the parent-child kernel/TB launching (a), its TB scheduling results using the Round-Robin TB scheduler
(b), TB Prioritizing (TB-Pri) (c), Prioritized SMX binding (SMX-Bind) (d) and Adaptive Prioritized SMX Binding (Adaptive-
Bind) (e).

However, with the ability to dynamically launch kernels or
TBs, this policy fails to exploit parent-child locality or child-
sibling locality for dynamic TBs.

Figure 4(b) illustrates the effect of the RR policy for
dispatching parent and child TBs to the SMXs for the example
shown in Figure 4(a). The 8 parent TBs (P0-P7) and 6 child
TBs (C0-C5) are executed on a GPU that has 4 SMXs (SMX0-
SMX3). Each SMX is able to accommodate one TB. In the
baseline GPU architecture, the KDU employs a FCFS kernel
scheduler for all the parent and child kernels while the SMX
scheduler only dispatches child TBs after the parent TBs.
Therefore, the child TBs (C0-C5) will be scheduled after
parent TBs (P0-P7). Furthermore, TBs are dispatched to SMXs
in a round-robin fashion, so all the parent TBs and child TBs
are distributed evenly across all the SMXs (assuming each
parent TB and child TB is able to complete execution at the
same pace) as shown in Figure 4(b). There are two major
issues with the resulting TB distribution in terms of the impact
on locality:
• Child TBs do not start execution soon after their direct

parents. After TB P2 is executed, the SMXs are occupied
by TBs (P4-P7) before P2’s child TBs (C0-C1) can be
dispatched. TBs (P4-P7) may pollute the L1/L2 cache
and make it impossible for TBs (C0-C1) to reuse the
data generated by TB P2 directly.

• Even if a child TB is scheduled soon enough after its
direct parent TB, such as TB (C2-C3), they are not dis-
patched on the same SMX as its direct parent. Therefore,
it is difficult to utilize the L1 cache of each SMX to
exploit the parent-child or child-sibling locality.

The above two issues are exacerbated in real applications
where the parent kernel generally is comprised of many TBs
so that child TBs have to wait even longer before they can
be dispatched and executed. The long wait may potentially
destroy any opportunity to utilize the parent-child locality
information.

Therefore, we propose LaPerm, a locality-aware TB sched-
uler which is specifically designed to improve locality behav-
ior when employing dynamic parallelism on GPUs. As we
will demonstrate, LaPerm leverages the spatial and temporal
locality between and among parent and child TBs leading
to better memory system performance, and therefore overall

performance for irregular applications that employ dynamic
parallelism.

IV. LAPERM SCHEDULER

In this section, we introduce the LaPerm TB scheduler
which is comprised of three scheduling decisions: TB Pri-
oritizing, Prioritized SMX Binding and Adaptive Prioritized
SMX Binding. Each of the scheduling decisions differ in the
specific forms of reference locality that they exploit and may
showcase different performance benefits for applications with
different characteristics as we will demonstrate in experiments
and evaluations. LaPerm applies to the dynamically generated
TBs both from device kernels in CDP as well as the TB groups
in DTBL. We also propose architecture extensions to support
LaPerm on GPUs.

A. TB Prioritizing

To address the issues with the RR TB scheduler for dynamic
parallelism, we first propose a TB Prioritizing Scheduler (TB-
Pri), where dynamic TBs are assigned a higher priority so that
they can be dispatched to SMXs before the remaining TBs
of the parent kernel or TB group. The parent TBs are given
an initial priority and the launched child TBs are assigned
a priority of one greater than that of the parent TBs. This
priority assignment process can be nested to accommodate
nested launches from the parent TBs to a maximum level L
of the child TBs. Any nested launch level that exceeds L will
be clamped to L. The goal of TB-Pri is to start the execution
of dynamic TBs as soon as they are launched by the parents
to facilitate the leverage of temporal locality.

Figure 4(c) shows an example of applying TB-Pri to Fig-
ure 4(a). For the purpose of illustration, we refer the process
of scheduling four TBs to the four consecutive SMXs starting
from SMX0 to SMX3 as one round of TB dispatching, one
cycle for each TB on an SMX. Assume the parent TBs (P0-P7)
are assigned with priority 0, then the child TBs (C0-C5) are
assigned with priority 1. The first round of TB dispatching
stays the same as the RR scheduler where TBs (P0-P3) are
distributed to SMX0-SMX3. As the child TBs (C0-C1) are
generated by TB P2 and assigned higher priority than TBs
(P4-P7), they will be dispatched to the SMXs before (P4-P7)
in the second round, resulting in C0 on SMX0, C1 on SMX1,

GPU

Kernel Distributor Unit
SMX

Scheduler

Kernel
Management

Unit

DRAM

FCFS ControllerPC Param Conf

Priority Queues

 PC Conf Param

Priority Queues

(a)

...

Priority

0

1
2

L

(b)

NextTB

...

Priority

1

L

SMX0

...

(c)

...

Priority

1

L

SMXN

0

Fig. 5: Architecture Extension for LaPerm (a), the priority
queues used by TB-Pri (b) and the SMX-bound priority queues
used by SMX-Bind and Adaptive-Bind.

P4 on SMX2 and P5 on SMX3. Since TB P4 generates another
four dynamic TBs (C2-C5), they will be scheduled on SMX0-
SMX1 in the third round before the remaining two parent TBs
P6 and P7 which are dispatched in the final round. Compared
with the RR scheduler, child TBs (C0-C1) and (C4-C5) are
scheduled earlier (in the second and third round instead of the
third and the fourth round), which reduces the time gap from
their direct parents and increases the possibility of better cache
behavior because of the temporal locality. As child TBs can be
scheduled to all the SMXs on the GPU, L2 cache performance
increase can be the major benefit.

Architecture Support. To support TB-Pri, the kernel
and TB scheduler are extended such that they can manage
TBs with different priority values. The newer generation of
NVIDIA GPUs support prioritized kernel launches [23], where
kernels assigned with higher priority can be scheduled first and
preempt the kernels with lower priority using the technique
described in [24]. This is realized through multiple queues
with different priority values, each of which contains the
kernels with a specific priority value as shown in Figure 5(b).
These priority queues are stored in the global memory and
managed by KMU which dispatches kernels to KDU from
the queues with higher priority followed by those with lower
priority. Thus the SMX scheduler will also distribute TBs from
kernels with higher priority to the SMX before those with
lower priority. Preemption happens when higher-priority ker-
nels are generated after lower-priority kernels start execution.
In this case, when a TB from the lower-priority kernel finishes
execution, the SMX scheduler will dispatch the waiting TBs
from the higher-priority kernel to take up the freed capacity.

As shown in Figure 5(a), TB-Pri for both CDP and DTBL
can also use the priority queues to manage the device kernels.
Each entry of the priority queue contains information of the
device kernel or TB groups including PC, parameter address,

thread configuration and the next TB to be scheduled. The
host-launched kernels stays in the lowest priority queue 0. In
CDP, the priority queues are stored in the global memory 1©.
The child kernels are assigned to the queue whose priority
value is greater than its direct parent priority by one so that
TBs from the child kernels are able to be dispatched before the
remaining parent TBs. In the same priority queue, the newer
kernels are appended to the tail so the priority queue itself
is FCFS. The same priority queue structures are also used
for DTBL to store the dynamic TB group information. As
proposed in [16], DTBL uses both the on-chip SRAM and the
global memory to store the dynamic TB group information
when they are generated from the SMXs. These TB group
tables are reused to store the priority queues (1© for global
memory and 2© for on-chip SRAM) so that the on-chip SRAM
ensures fast access to the TB group information from the
SMX scheduler while the priority queues stored in the global
memory serve as the overflow buffer.

Issues. Although TB-Pri leverages temporal locality and
moves the child TB execution earlier, soon after the direct
parent, the TB may be scheduled on any SMX. This can only
increase the L2 cache performance. In the example Figure 4(c),
TB (C0-C1) are still executed on different SMXs than its direct
parent TB P2, therefore the L1 cache on SMX2 still cannot
be utilized for parent-child data reuse. A similar observation
applies to child TB (C2-C5) of the direct parent TB P4. TB
C4 is now executed on SMX2 immediately after P4, which
exhibits better locality than in Figure 4(b) and facilitates better
L1 cache utilization, but the remaining child TBs (C2, C3, C5)
are distributed across all the SMXs so that both the parent-
child and child-sibling locality improvement is limited to the
L2 cache behavior.

B. Prioritized SMX Binding

To utilize the entire GPU cache hierarchy more effectively,
especially the L1 cache for data reuse, we extend TB-Pri
so that the child TB should also be bound to the specific
SMX that is used to execute its direct parent. This policy
is referred to as Prioritized SMX Binding or SMX-Bind. The
SMX binding directs the SMX scheduler to dispatch the child
TBs such that they can use the same L1 cache on the SMX
that is used by the direct parent.

Figure 4(d) shows the scheduling result using SMX-Bind
for the parent-child launch structure in Figure 4(a). SMX-Bind
identifies that child TBs (C0-C1) are launched by TB P2 from
SMX2 so (C0-C1) are bound and dispatched on the same
SMX2. Similarly, child TBs (C2-C5) are bound by their direct
parent P4’s executing SMX which is SMX4. The binding
process ensures that C0 and C1 are scheduled in the second
and third round to SMX2 and (C2-C5) are scheduled from the
third to the sixth round to SMX0. All the remaining parent TBs
are still dispatched using the original round-robin scheduling
scheme. As the child TBs are now always scheduled on the
same SMX as the direct parent, L1 cache can be well utilized
to exploit the parent-child and child-sibling locality.

Architectural Support. The priority queues used for TB-
Pri are extended to support SMX-Bind as shown in Figure 5(c)
where the priority queues from 1 to L are used for each
of the SMXs (SMX0-SMXN shown in Figure 5(c)). The
priority queue 0 is shared by all the SMXs and reserved to
store the information of the top-level parent kernels (host-
launched kernels). A simple duplication of the original priority
queues in Figure 5(a)) for the N SMXs would cost (N-
1) times more hardware overhead, therefore, the extended
architecture evenly divides the original priority queues in into
N priority queues, each associated with one SMX with the
expectation that TBs are evenly distributed across the SMXs.
For each newly generated device kernel or TB group, the SMX
scheduler will push its information to the priority queues that
are associated with the SMX occupied by the direct parent.
For each SMX, the TB dispatching process only fetches TBs
from the associated priority queues until all the associated
priority queues are empty so that new parent TBs can be
fetched from priority queue 0. Note that in some GPUs, SMXs
are divided into multiple clusters where each cluster possess
more than one SMX and the L1 cache is shared by all the
SMXs in a cluster [25]. In this case, SMX-Bind scheduling
scheme associates the priority queues with the entire cluster
and the newly generated TBs will be bound to any SMX in
the cluster. Within each cluster, the round-robin dispatching
strategy is employed for the TBs fetched from the priority
queues.

Issues. In an ideal case, dynamic TBs can be evenly
distributed across all the SMX to avoid any fairness issues
and ensures that the evenly divided priority queues among
SMXs are used in a balanced and efficient manner. However,
as shown in Figure 4(d), it is possible that some parent TBs
may have more nested launch levels or more child TBs (e.g.
TB P4 and its four child TBs) than others. Restricting all these
child TBs to a single SMX (or SMX cluster) may result in the
idling of other SMXs and low overall execution efficiency. In
Figure 4(d), SMX1 and SMX2 are idle after the third round of
scheduling and SMX3 is idle after the second round, creating
an unbalanced SMX workload. In irregular applications, it is
very common that the launching patterns including nesting
levels and child TB numbers vary from one parent TB to
another, increasing the possibility that SMX-Bind could suffer
from the SMX workload imbalance issue.

C. Adaptive Prioritized SMX Binding

To solve the load imbalance issues in SMX-Bind and in-
crease the overall execution efficiency while preserving the
cache performance benefits, we further optimize the SMX-
Bind scheduling scheme to incorporate a more flexible TB
dispatching strategy which is referred as Adaptive Prioritized
SMX Binding (Adaptive-Bind). Adaptive-Bind still first dis-
patches prioritized child TBs to their bound SMX followed
by other lower-priority parent TBs. At some point, both the
prioritized child TBs bound to one SMX and all the parent
TBs have been dispatched. Adaptive-Bind will then cross the
SMX boundary and dispatch child TBs that are supposed to

More TBs to
dispatch?

SMX. PriQ
empty?

Dispatch TB in
highest PriQ

Find and record
next non-empty

SMX PriQ as
backup Queue

NY

Y

N

ENDNext SMX

PriQ = Priority Queues

PriQ 0
empty?

Y

Dispatch
parent TB

N

Recorded
backup PriQ?

Y

Backup PriQ
Emptry?

Y

Dispatch TB in
highest PriQ

N

N

Stage 1

Stage 2

Stage 3

Fig. 6: LaPerm Scheduler Flow Chart

be bound to other SMXs to the current SMX if it has enough
available resource to execute these child TBs. In this process,
the dispatching scheme effectively put all child TBs bound
to other SMXs as the backup TBs of the current SMX. The
backup TBs can be viewed as TBs with the priority even lower
than the top-level parent TBs which has priority 0. The goal
here is to generate a more balanced TB distribution across
all the SMXs to avoid any SMX idleness, which can result
in balanced data reuse with increasing SMX utilization. This
scheduling policy is balancing the tradeoff between exploiting
reference locality within the cache hierarchy with utilization
of the spatially distributed SMXs.

The scheduling results of Adaptive-Bind on Figure 4(a) is
shown in Figure 4(e). Until the third round, the TB dispatching
of Adaptive-Bind is the same as that of SMX-Bind as shown in
Figure 4(d). The difference starts on SMX3 in the third round.
As no child TBs are bound to SMX3 and all the parent TBs
have been dispatched, Adaptive-Bind fetches the next TB from
P4’s child TBs – TB C3 which was originally bound to SMX0
– and executes it on SMX3. A similar procedure applies in the
fourth round of TB scheduling on SMX1. The result shows
that TB P2 and child TBs (C0-C1), and TB P4 and child TBs
(C2, C4) are scheduled on the same SMX while the remaining
child TBs are scheduled across all the SMXs. Compared with
SMX-Bind, the performance of L1 may decrease due to less
parent-child data reuse but it is compensated for by better
SMX workload balance and thereby a potential positive impact
on the overall execution efficiency.

Architectural Support. Adaptive-Bind still employs the
same SMX-bound priority queues that are used by SMX-Bind.
However, an extended SMX scheduler is designed to manage
the priority queues and dispatch TBs. We show the complete

Adaptive-Bind TB scheduler operation flow in Figure 6 which
is implemented as an extension to the SMX scheduler used
by current GPUs. The LaPerm scheduler starts by following
the normal routine of an SMX scheduler to check if there are
more TBs from KDU to dispatch and execute. Then it checks
all the SMXs, one for each cycle, and selects the candidate TB
for the current SMX in three progressive stages: 1) highest-
priority TB in the current SMX’s priority queues, 2) parent
TB in the global priority 0 queue and 3) highest-priority TB
in the backup queues. Stage 2 only happens when the current
SMX’s priority queues are empty while stage 3 only happens
when both the current SMX’s priority queues and priority 0
queue are empty.

Note that in stage 3, when Adaptive-Bind selects priority
queues of one SMX as the backup queues for the current SMX,
it will focus on scheduling TBs from the chosen backup queues
until they are also empty. As shown in Figure 6, the backup
queues will be recorded each time they are selected and reused
next time when stage 3 is invoked if they are not empty. The
major reasons for this fixed backup scheme are that i) the TBs
from the backup queues are also more likely to be scheduled
on the same SMX which may help leverage their locality and
ii) although the SMX scheduler is able to schedule TBs with
different configurations on the same SMX, it may incur the
overhead of resource initializing such as register and shared
memory partitioning. Focusing on priority queues of one SMX
can effectively minimize such overhead as each entry of a
priority queue is either a kernel or a TB group that contains
TBs using the same configuration.

For simplification, Figure 6 illustrates the LaPerm scheduler
in DTBL model where TB groups are launched and pushed
to the priority queues and directly scheduled by the SMX
scheduler. In CDP model, new kernels are pushed to the
SMX-bound priority queues stored in the global memory and
dispatched by KMU to KDU and then to the on-chip SMX-
bound priority queues used by the SMX scheduler. Therefore,
The LaPerm scheduler also involves extension to the KMU
kernel scheduler where it checks all the SMX-bound priority
queues in a round-robin fashion (one SMX a time), dispatches
the kernel with the highest priority if there is an available KDU
entry and store its information in the corresponding priority
queue of its bound SMX. The KDU entry number (currently
32 on GPUs that supports CDP) limits the dynamic kernels and
thereby dynamic TBs that are available to be dispatched by
the LaPerm SMX scheduler within a time frame. If the KDU
is filled up with the 32 concurrent kernels, newly generated
kernels cannot be dispatched from the KMU to the KDU even
if they have higher priority. This is also a known limit in
the kernel preemption context [24] where the kernels that are
available to be preempted are limited to the ones that stay in
KDU. In contrast, all the dynamic TBs in a DTBL model are
coalesced to kernels in KDU so they are always visible to the
LaPerm scheduler. As a result, TB dispatching with LaPerm
on CDP may not always be able to find the highest-priority
TB and achieve the optimized results in terms of locality and
cache performance.

D. Impact of Launching Latency

LaPerm is built on the assumption that the child TBs can be
executed early enough after the direct parent TBs to utilize the
temporal locality and spatial locality. However, an important
issue in the dynamic parallelism model is the launching latency
of the child TBs especially in CDP [15], which can i) cause
a long wait before the child TBs can actually be dispatched
by the LaPerm scheduler, ii) introduce a lengthy time gap
between the parent and child and iii) kill any potential parent-
child locality. The DTBL model [16] along with any other
future developments in dynamic parallelism models with better
architectural, memory system, runtime, driver support may
further reduce the launching latency and make full use of
LaPerm. Section V analyzes the impact of launching latency
on LaPerm scheduler performance.

E. Overhead Analysis

The major hardware overhead is caused by the priority
queues used by LaPerm and the SMX scheduler extension
shown in Figure 5. The SMX-bound priority queues that are
stored in the global memory can have flexible size and be
allocated during the runtime. They are indexed per SMX and
per priority level. The on-chip SMX-bound priority queues are
stored in a 3K bytes SRAM for each SMX (about 1% of the
area cost by the register file and shared memory) and is able
to store 128 entries (24 byte per entry). For an L-level priority
queue, (L-1) index pointers are employed to separate these 128
entries to store TBs using the decreasing order of priority. The
priority queue 0 shared by all the SMXs needs additional 768
bytes (32 24-byte entries) on-chip SRAM storage. Note that
for CDP, the number of entries of the on-chip priority queues
is limited to 32 per SMX the same as the KDU entry number.

The major timing overhead comes from pushing new dy-
namic TBs into priority queues and the LaPerm TB dispatch-
ing process. For CDP, generating new device kernels already
incurs the overhead in storing the new kernel information in
the global memory [23] which is the memory access latency.
Pushing them to the priority queues stored in the global
memory does not introduce additional overhead. Dispatching
kernels by the KMU from the priority queues to the KDU
may incur maximum extra L cycles where L is the maximum
priority levels. The overhead is caused by the searching of
the highest-priority kernel where in the worst case, all the L
priority queues have to be searched, one cycle for each. For
DTBL, inserting a new TB group to the on-chip priority queues
introduces the searching overhead of the 128-entry queue to
locate the insert position according to TB group’s priority,
which can be 128 cycles in the worst case. However, this
searching overhead can be hidden by the setting up process
of the TB groups such as allocating parameter buffer. If the
on-chip priority queue is full and the new TB groups have
to be stored in the overflow priority queues in the global
memory, the overhead would be the global memory access
latency which can also partly be hidden by the TB group
setting up process. Finally, the dispatching process of LaPerm

TB is designed such that all the three stage searches can be
finished within one cycle just as the baseline TB scheduler.

F. Discussion

The LaPerm scheduler is designed in a manner that is
transparent to the warp scheduler, therefore it may be com-
bined with any warp scheduler optimization such as [7][8].
Specifically, warp schedulers described in [10] also take into
account the locality between different TBs and seek higher
memory system utilization including bank-level parallelism,
row buffer hit rate and cache hit rate by using a TB-aware warp
grouping and prioritizing approach. Such warp schedulers can
be leveraged by LaPerm to achieve even better memory system
performance.

While many TB scheduling strategies are designed for the
regular BSP model and may not apply by their own under the
dynamic parallelism model, they can be certainly implemented
as an optimization to LaPerm. For example, the TB scheduler
introduced in [12] can dynamically adjust the dispatching TB
number on each SMX to avoid too much memory contention.
In LaPerm, the relatively small L1 cache (maximum 48 KB)
may result in not fitting enough reusable data of the parent
and child TBs, which can benefit from the incorporation of
such contention-based TB control strategies.

This paper does not consider different data reuse patterns
across child TBs, the impact of data reuse distance between the
parent and the child TBs as well as that of the different hard-
ware parameters such as cache size, thereby any scheduling
optimization accordingly which could be implemented with
commensurate runtime and hardware support. The LaPerm
scheduler is a first step in scheduling approaches based on
understanding data-reuse in dynamic parallelism that provides
insights to help address these problems.

V. EXPERIMENTS

A. Methodology

To evaluate and analyze the impact of the LaPerm scheduler
on the memory system and the overall performance, We im-
plement it on the cycle-level GPGPU-Sim simulator [26]. We
first configure GPGPU-Sim to model our baseline architecture
shown in Table I, which supports device kernel launches in
CDP and dynamic TB group launches in DTBL using the
same implementation described in [16] with the baseline RR
TB scheduler. The configuration is designed to be compatible
with CUDA compute capability 3.5. Also we adopt the same
methodology used by [16] to simulate the launching latency
of device kernels in CDP. The launching latency of the TB
groups in DTBL is modeled directly in the simulator.

The benchmark applications used to evaluate the LaPerm
scheduler are shown in Table II. They are irregular data
intensive CUDA applications implemented both with CDP and
DTBL as described in [15] and [16] using different input data
set that features various characteristics. The implementations
launch a new device kernel or a new TB group for any
recognized dynamic parallelism in the applications. We trace
all the parent kernels, child device kernels and dynamic TBs

TABLE I: GPGPU-Sim Configuration Parameters

Clock Freq. SMX: 706MHz, Memory: 2600MHz
Resources 13 SMXs, per SMX: 2048 Threads, 16 TBs,

65536 Registers, 32KB shared memory
L1 Cache 32 KB
L2 Cache 1536 KB
Cache line size 128 Bytes
Max # of Concurrent Kernels 32
Warp Scheduler Greedy-Then-Oldest [7]

TABLE II: Benchmarks used in the experimental evaluation.

Application Input Data Set
Adaptive Mesh Refinement (AMR) Combustion Simulation[27]
Barnes Hut Tree (BHT) [28] Random Data Points
Breadth-First Search (BFS) [29] Citation Network[30]

Graph 500 Logn20[30]
Cage15 Sparse Matrix [30]

Graph Coloring (CLR) [31] Citation Network[30]
Graph 500 Logn20[30]
Cage15 Sparser Matrix [30]

Regular Expression Match (REGX) [32] DARPA Network Packets [33]
Random String Collection

Product Recommendation (PRE) [34] Movie Lens [35]
Relational Join (JOIN) [36] Uniform Distributed Data

Gaussian Distributed Data
Single Source Shortest Path (SSSP) [37] Citation Network[30]

Graph 500 Logn20[30]
Cage15 Sparser Matrix[30]

in all the benchmark applications to generate the performance
results. All the applications are run entirely on the simulator
including all the CUDA runtime APIs except for regx which
we manually populate the memory data into GPGPU-Sim and
run only the computation kernels to avoid extremely long
simulation. The reported results include the overhead from
both CDP/DTBL as well as the proposed LaPerm scheduler.

B. Result and Analysis

In this section we report the evaluation and analysis of the
benchmark in various performance aspects. As the main focus
of LaPerm is the memory system performance especially L1
and L2 cache, we use the cache hit rate as the metrics. We
also analyze the impact of LaPerm on the IPC (instruction
per cycle) metrics to evaluate the overall performance of the
applications. All the evaluations are performed both for the
CDP and DTBL model. Figure 7 and Figure 8 show the L2
and L1 cache hit rate respectively for the original CDP and
DTBL using the RR TB scheduler as well as the three different
schemes employed by LaPerm. Figure 9(a) and Figure 9(b)
show the IPC normalized to the original IPC of CDP and
DTBL implementations with RR scheduler respectively.

Performance of TB-Pri. As discussed in Section IV-A, the
goal of TB-Pri is to increase the cache hit rate by prioritizing
child TBs earlier after parent TBs. This is demonstrated by
an average increase of 6.7% (CDP) and 8.7% (DTBL) for
L2 cache hit rate and 1.1% (CDP) and 2.1% (DTBL) for L1
cache hit rate over RR scheduler. Together they also result in
4% and 13% normalized IPC increase for CDP and DTBL
respectively.

0

20

40

60

80

100
L
1

 C
a

c
h

e
 H

it
 R

a
te

RR TB-Pri SMX-Bind Adaptive-Bind

(a)

0

20

40

60

80

100

L
1

 C
a

c
h

e
 H

it
 R

a
te

RR TB-Pri SMX-Bind Adaptive-Bind

(b)

Fig. 8: L1 cache hit rate when applying LaPerm to (a) CDP and (b) DTBL.

0.5

0.7

0.9

1.1

1.3

1.5

1.7

N
o

r
m

a
li

z
e

d
 I
P

C

TB-Pri SMX-Bind Adaptive-Bind

(a)

0.5

0.7

0.9

1.1

1.3

1.5

1.7

N
o

r
m

a
li

z
e

d
 I
P

C

TB-Pri SMX-Bind Adaptive-Bind

(b)

Fig. 9: Normalized IPC when applying LaPerm to (a) CDP and (b) DTBL.

Some of the benchmarks that achieve the highest L2 cache
hit rate are pre and all the graph applications (bfs, clr, sssp)
with the cage15 input. These benchmarks generally have more
dynamic child TB launching and higher parent-child shared
footprint ratio as shown in Figure 2 and benefit more if the
child TBs are able to reuse the data from the parent or the
sibling TBs.

Performance of SMX-Bind. Although TB-Pri does not
target L1 cache performance, we still observe a slight increase
in the L1 cache hit rate. This is because child TB prioritizing
can result in a few child TBs coincidentally being dispatched
to the same SMX as the direct parent TB. This dispatching
pattern is reinforced by SMX-Bind to achieve a L1 cache hit
rate increase shown as 6.6% on average for CDP and 13.6%
on average for DTBL.

The applications pre and sssp cage15 are again among the
ones that achieve the highest L1 cache hit rate. In addition,
regx string also exhibits good L1 cache performance benefit.
These applications have the characteristics that the workload
performed by the child TBs focus on a relatively small
memory region. For example, the production recommendation
process of pre tends to search products that are highly related
and thereby stored closer to each other in the memory. As
a consequence, these applications can generate more closer
memory accesses and higher child-sibling shared footprint
ratio. When all these sibilant TBs are scheduled on the same

SMX, they fundamentally increase the data reuse which result
in substantial L1 cache hit rate increase.

In contrast, for the graph applications with graph500 as
input, SMX-Bind does not have any obvious L1 cache hit
rate change from TB-Pri. Although these applications present
some shared footprint ratio between the child TBs and their
direct parent, the locality actually can also exist between any
arbitrary non-direct parent TB and child TBs. The reason is
that graph500 is a graph with high and balanced connectivity
that are evenly distributed across all the vertices. The data
used by one parent TB exploring some of the vertices can
be effectively reused by child TBs generated by a different
parent exploring other vertices. The consequence of increased
locality and cache performance from such data reuse patterns
have already been captured by TB-Pri. Binding child TBs to
specific SMX does not necessarily generate a higher L1 cache
hit rate.

One major side effect of SMX-Bind is the SMX workload
imbalance which may result in IPC decrease. Compared with
TB-Pri, we observe the average normalized IPC decreases
9% for CDP and 5% for DTBL. For some of the DTBL
applications (bfs citation, clr citation, join) and almost all of
the CDP applications, normalized IPC even drops below 100%
indicating performance loss from the baseline implementations
with the original RR TB scheduler. Applications suffer from
larger IPC loss generally have a more imbalanced child TB

0

20

40

60

80

100
L
2

 C
a

c
h

e
 H

it
 R

a
te

RR TB-Pri SMX-Bind Adaptive-Bind

(a)

0

20

40

60

80

100

L
2

 C
a

c
h

e
 H

it
 R

a
te

RR TB-Pri SMX-Bind Adaptive-Bind

(b)

Fig. 7: L2 cache hit rate when applying LaPerm to (a) CDP
and (b) DTBL.

launching patterns, i.e. some parent TBs may have substan-
tially more child TBs and nested launching level than others,
causing a long execution tail when these TBs are exclusively
restricted to an SMX.

Performance of Adaptive-Bind. By using the adaptive
SMX binding approach provided by Adaptive-Bind, we min-
imize the SMX workload imbalance side effect brought by
SMX-Bind, which results in overall normalized increase of
6% for CDP and 27% for DTBL at the cost of some L1
cache hit rate decrease (by 2.3% for CDP and by 3.1% for
DTBL compared with SMX-Bind). The study shows that IPC
is impacted by L1 hit rate and load balancing – in fact
IPC improvements due to the latter are greater than IPC
reductions due to the drop in L1 rate. The results demonstrate
that Adaptive-Bind effectively combines the benefits of prior-
itizing child TB execution, SMX binding and load-balance
TB scheduling to achieve cache and overall performance
gains for irregular applications that are implemented with the
dynamic parallelism model. As a representative, application
sssp cage15 achieves the highest IPC gain (11% for CDP and
51% for DTBL).

It is interesting to see some of the applications, such as
amr and pre, have their normalized IPC increase from SMX-
Bind and keep the value in Adaptive-Bind without any obvious
further increase. The reason is that they have a more balanced
kernel launching patterns among the some or all of the parent
TBs. For example, amr has TBs in the grid centers to simulate
the combustion patterns which all have similar temperature

distribution, requiring similar refinement performed by the
child TBs. Binding their child TBs to the SMX occupied by
the direct parent will generate good L1 cache performance
without causing many workload imbalance issues. Therefore,
SMX-Bind would itself be a reasonable scheduling strategy for
these applications to achieve IPC increase and does not require
the SMX re-balancing process from Adaptive-Bind.

We also observe slight L2 cache hit rate changes compared
with TB-Pri and SMX-Bind. In fact, increasing (decreasing) L1
cache hit rate may result in fewer (more) memory accesses
falling into L2 cache, which could change the L2 cache
behavior. According to our experiments, these changes do not
affect L2 cache hit rate substantially and are not the major
factors in affecting the overall performance.

C. Impact of Different Dynamic Parallelism Models

The microarchitecture and runtime differences of dynamic
parallelism models such as CDP and DTBL can have impact
on the effectiveness of the LaPerm scheduler. One of the major
differences is the launching latency as described in Section
IV-D. As we perform the evaluations for both CDP and DTBL,
we observe that generally LaPerm in DTBL shows better cache
performance and greater IPC increase (27% versus 6% in
CDP) largely due to the fact that the high launching latency
of the child kernels precludes LaPerm from timely dispatch
to be executed closer to the parents in time. As for some
applications such as bfs, parent TBs usually only have a small
amount of work to do, long child launching latency leaves
LaPerm no choice but only to schedule the remaining parent
TB first before any child TBs arrive to fill the time gap.

Recall that CDP implementation today is subject to the 32
concurrent kernel limit in the KDU, reducing the number of
child TBs that are available for LaPerm to schedule. As a
result, the opportunity for LaPerm to perform an optimized
TB prioritization using TB-Pri is dramatically reduced. The
limit on the scheduling of TB candidates also causes poorer
SMX imbalance for SMX-Bind as it is more likely to dispatch
the available TBs to only a few SMXs but not other, which
is the reason of the poor IPC of CDP that is even lower than
using the original round-robin TB scheduler. As opposed to
CDP, DTBL use dynamic TB coalescing to break the KDU
limit and increase TB level concurrency, which makes LaPerm
a more effective and efficient solution for the TB scheduler.

D. Insights

The experiments and results show that the three different
scheduling decisions employed by LaPerm have various per-
formance impacts on applications with different characteris-
tics. Some of the insights include:

• TB-Pri uses child TB prioritizing to increase L2 cache
performance and is specifically useful for applications
where the locality is not restricted to the direct parent
and its child TBs but also between multiple parents and
their child TBs. Such locality facilitates the data reuse
across different SMXs.

• For applications with more restricted locality between
direct parent and child TBs, SMX-Bind is able to show
the most obvious L1 cache performance improvement. On
the other hand, the overall IPC may be optimized only
when there are many parent-child launchings with similar
workload to achieve SMX balance.

• There is a basic tradeoff between exploiting parent-child
and child-sibling locality, and achieving higher SMX
utilizations. For most irregular applications which show
varying parent-child launching behavior across different
parent TBs, Adaptive-Bind is the TB scheduler to achieve
both the best cache performance and the balanced SMX
workload which result in overall IPC increase.

VI. RELATED WORKS

There have been many recent works exploring dynamic
parallelism on GPUs. Steffen et al. [38] use dynamically
spawned warps to process subsections of the parent threads
in supporting global rendering algorithm. Lars et al. [39]
implement the NESL language on GPUs. Orr et al. [40]
employ the channel abstraction which is a finite queue in
CPU-GPU shared memory to process fine-grained dynamic
tasks. Lee et al. [41] propose an auto-tuning framework that
efficiently maps nested patterns in GPU applications. Kim et
al. [19] implement a hardware work list to process dynamic
generated parallel work elements.

With the prevalence of more complete dynamic parallelism
execution models on GPUs such as CDP and OpenCL device-
side enqueue, researchers have been proposing different exten-
sions and optimizations. Yang et al. [18] propose a compiler
transformation that can dynamically activate or deactivate the
GPU threads to adapt to the evolving parallelism in the appli-
cations. Wang et al. [15] perform a systematic characterization
and analysis on different aspects and performance impact of
CUDA Dynamic Parallelism model on irregular application.
To reduce the kernel launching latency associated with the
CDP model, they also propose a new microarchitectural ex-
tension that is able to spawn light weight thread blocks on
demand [16]. Chen et al. [17], on the other hand, propose
a compiler technique ”Free Launch” that reuses the parent
threads to process the child kernel tasks, which is able to
eliminate the runtime overhead of dynamic kernel launching.

As to the memory and cache performance on GPUs, people
have been developing different approaches, including warp
schedulers, thread block schedulers and new memory system
designs. Rogers et al. [7] employs multiple warp-scheduler
to achieve optimal cache performance. Narasiman et al. [9]
propose a two-level warp scheduler to minimize the memory
access latency. Jog et al. [10] advance the two-level warp
scheduling technique to make it thread block aware so that the
memory locality within and across thread blocks can be better
accommodated. Kayıran et al. [12] demonstrate the memory
contention caused by scheduling maximum possible number
of thread blocks and use a dynamic thread block scheduling
mechanism to minimize such contention. Lee et al. [13]
introduce the idea of scheduling consecutive thread blocks on

the same SMX to exploit inter-TB locality. Rhu et al. [21]
design a locality-aware memory hierarchy that adapts to the
fine-grained memory access patterns in irregular applications
on GPU. Compared with these efforts, our solutions are based
on the dynamic parallelism model that essentially seeks to
optimize a new form of locality which exists between the
parent and child thread blocks, and can be used in conjunction
with state of the art warp schedulers to further exploit intra-
warp and intra-thread block locality.

VII. CONCLUSION

In this paper, we propose a thread block scheduler, LaPerm,
specifically designed for dynamic parallelism execution mod-
els on GPUs. The idea behind LaPerm is that the memory
locality exists between the parent and child thread blocks
that cannot be effectively exploit by existing round-robin TB
scheduler on current GPUs. LaPerm employs three different
scheduling decisions with new microarchitectural extensions
to utilize such parent-child locality and improve the cache
performance on GPUs. We evaluate LaPerm on a cycle-level
GPU simulator with several CUDA irregular applications that
are implemented with dynamic parallelism execution models,
and demonstrate that by increasing both the L1 and L2 cache
performance, LaPerm is able to achieve 27% IPC improvement
over the original round-robin TB scheduler.

ACKNOWLEDGEMENT

This research was supported by the National Science
Foundation under grant CCF 1337177 and the equip-
ment/technologies provided by NVIDIA. We would also like
to acknowledge the detailed and constructive comments of the
reviewers.

REFERENCES

[1] J. A. Anderson, C. D. Lorenz, and A. Travesset, “General
purpose molecular dynamics simulations fully implemented on
graphics processing units,” Journal of Computational Physics,
vol. 227, no. 10, 2008.

[2] J. Mosegaard and T. S. Sørensen, “Real-time deformation of
detailed geometry based on mappings to a less detailed physical
simulation on the gpu,” in Proceedings of the 11th Eurographics
Conference on Virtual Environments, pp. 105–111, Eurographics
Association, 2005.

[3] V. Podlozhnyuk, “Black-scholes option pricing,” 2007.
[4] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock,

D. Luebke, D. McAllister, M. McGuire, K. Morley, A. Robison,
et al., “Optix: a general purpose ray tracing engine,” in ACM
Transactions on Graphics (TOG), vol. 29, p. 66, ACM, 2010.

[5] NVIDIA, “Cuda dynamic parallelism programming guide,”
2015.

[6] Khronos, “The opencl specification version 2.0,” 2014.
[7] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-

conscious wavefront scheduling,” in Proceedings of the 45th
Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO-45), 2012.

[8] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Divergence-
aware warp scheduling,” in Proceedings of the 46th An-
nual IEEE/ACM International Symposium on Microarchitecture
(MICRO-46), pp. 99–110, 2013.

[9] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov,
O. Mutlu, and Y. N. Patt, “Improving gpu performance via
large warps and two-level warp scheduling,” in Proceedings
of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture, (MICRO-44), 2011.

[10] A. Jog, O. Kayiran, N. Chidambaram Nachiappan, A. K.
Mishra, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das,
“Owl: Cooperative thread array aware scheduling techniques
for improving gpgpu performance,” in Proceedings of the 18th
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS’13), 2013.

[11] P. Xiang, Y. Yang, and H. Zhou, “Warp-level divergence in gpus:
Characterization, impact, and mitigation,” in Proceedings of
2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA-20), 2014.

[12] O. Kayıran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither
more nor less: Optimizing thread-level parallelism for gpgpus,”
in Proceedings of the 22nd International Conference on Parallel
Architectures and Compilation Techniques (PACT’13), 2013.

[13] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu,
“Improving gpgpu resource utilization through alternative thread
block scheduling,” in Proceedings of 2014 IEEE 20th Interna-
tional Symposium on High Performance Computer Architecture
(HPCA-20), 2014.

[14] S.-Y. Lee, A. Arunkumar, and C.-J. Wu, “Cawa: coordinated
warp scheduling and cache prioritization for critical warp accel-
eration of gpgpu workloads,” in Proceedings of the 42nd Annual
International Symposium on Computer Architecture (ISCA-42),
2015.

[15] J. Wang and S. Yalamanchili, “Characterization and analysis of
dynamic parallelism in unstructured gpu applications,” in Pro-
ceedings of 2014 IEEE International Symposium on Workload
Characterization (IISWC’14), 2014.

[16] J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili, “Dynamic
thread block launch: A lightweight execution mechanism to
support irregular applications on gpus,” in Proceedings of the
42nd Annual International Symposium on Computer Architecu-
ture (ISCA-42), 2015.

[17] G. Chen and X. Shen, “Free launch: Optimizing gpu dynamic
kernel launches through thread reuse,” in Proceedings of the
48th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO-48), 2015.

[18] Y. Yang and H. Zhou, “Cuda-np: Realizing nested thread-
level parallelism in gpgpu applications,” in Proceedings of the
19th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP’14), 2014.

[19] J. Kim and C. Batten, “Accelerating irregular algorithms on
gpgpus using fine-grain hardware worklists,” in Proceedings
of the 47th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-47), 2014.

[20] S. Beamer, K. Asanovic, and D. Patterson, “Locality exists in
graph processing: Workload characterization on an ivy bridge
server,” in Proceedings of the 2015 IEEE International Sympo-
sium on Workload Characterization (IISWC’15), 2015.

[21] M. Rhu, M. Sullivan, J. Leng, and M. Erez, “A locality-
aware memory hierarchy for energy-efficient gpu architectures,”
in Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-46), 2013.

[22] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang,
and K. Skadron, “A characterization of the rodinia benchmark
suite with comparison to contemporary cmp workloads,” in Pro-
ceedings of 2010 IEEE International Symposium o nWorkload
Characterization (IISWC’10), 2010.

[23] NVIDIA, “Cuda c programming guide,” 2015.
[24] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and

M. Valero, “Enabling preemptive multiprogramming on gpus,”

in Proceeding of the 41st Annual International Symposium on
Computer Architecuture (ISCA-41), 2014.

[25] NVIDIA, “Nvidia geforce gtx 980 whitepaper,” 2014.
[26] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt,

“Analyzing cuda workloads using a detailed gpu simulator,”
in Proceedings of 2009 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS’09),
2009.

[27] A. Kuhl, “Thermodynamic states in explosion fields,” in 14th
International Symposium on Detonation, Coeur d’Alene Resort,
ID, USA, 2010.

[28] M. Burtscher and K. Pingali, “An efficient cuda implementation
of the tree-based barnes hut n-body algorithm,” GPU computing
Gems Emerald edition, p. 75, 2011.

[29] D. Merrill, M. Garland, and A. Grimshaw, “Scalable gpu
graph traversal,” in Proceedings of the 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming
(PPoPP’12), 2012.

[30] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, “10th
dimacs implementation challenge: Graph partitioning and graph
clustering,” 2011.

[31] J. Cohen and P. Castonguay, “Efficient graph matching and
coloring on the gpu,” in GPU Technology Conference, 2012.

[32] L. Wang, S. Chen, Y. Tang, and J. Su, “Gregex: Gpu based
high speed regular expression matching engine,” in Innovative
Mobile and Internet Services in Ubiquitous Computing (IMIS),
2011 Fifth International Conference on, pp. 366–370, IEEE,
2011.

[33] J. McHugh, “Testing intrusion detection systems: a critique of
the 1998 and 1999 darpa intrusion detection system evaluations
as performed by lincoln laboratory,” ACM Transactions on
Information and System Security, vol. 3, no. 4, pp. 262–294,
2000.

[34] C. H. Nadungodage, Y. Xia, J. J. Lee, M. Lee, and C. S. Park,
“Gpu accelerated item-based collaborative filtering for big-
data applications,” in Proceedings of 2013 IEEE International
Conference on Big Data, 2013.

[35] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, “An
algorithmic framework for performing collaborative filtering,”
in Proceedings of the 22nd Annual International ACM SIGIR
Conference on Research and Development in Information Re-
trieval, 1999.

[36] G. Diamos, H. Wu, J. Wang, A. Lele, and S. Yalamanchili,
“Relational algorithms for multi-bulk-synchronous processors,”
in Proceedings of the 18th ACM SIGPLAN Symposium on
Principles andPractice of Parallel Programming (PPoPP’13),
2013.

[37] M. Kulkarni, M. Burtscher, C. Casçaval, and K. Pingali, “Lon-
estar: A suite of parallel irregular programs,” in Proceedings of
2009 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS’09), 2009.

[38] M. Steffen and J. Zambreno, “Improving simt efficiency of
global rendering algorithms with architectural support for
dynamic micro-kernels,” in Proceedings of the 43rd An-
nual IEEE/ACM International Symposium on Microarchitecture
(MICRO-43), 2010.

[39] L. Bergstrom and J. Reppy, “Nested data-parallelism on the
gpu,” in ACM SIGPLAN Notices, vol. 47, pp. 247–258, ACM,
2012.

[40] M. S. Orr, B. M. Beckmann, S. K. Reinhardt, and D. A.
Wood, “Fine-grain task aggregation and coordination on gpus,”
in Proceedings of the 41st Annual International Symposium on
Computer Architecuture (ISCA-41), 2014.

[41] H. Lee, K. Brown, A. Sujeeth, T. Rompf, and K. Olukotun,
“Locality-aware mapping of nested parallel patterns on gpus,”
in Proceedings of the 47th International Symposium on Mi-
croarchitecture (MICRO-47), 2014.

