
General-Purpose Join Algorithms for Large Graph Triangle
Listing on Heterogeneous Systems

Daniel Zinn
∗

LogicBlox Inc.
DanielQZinn@gmail.com

Haicheng Wu
Georgia Institute of Technology

hwu36@gatech.edu

Jin Wang
Georgia Institute of Technology

jin.wang@gatech.edu

Molham Aref
LogicBlox Inc.

molham.aref@logicblox.com

Sudhakar Yalamanchili
Georgia Institute of Technology

sudha@ece.gatech.edu

ABSTRACT

We investigate applying general-purpose join algorithms to
the triangle listing problem on heterogeneous systems that
feature a multi-core CPU and multiple GPUs. In partic-
ular, we consider an out-of-core context where graph data
are available on secondary storage such as a solid-state disk
(SSD) and may not fit in the CPU main memory or GPU
device memory. We focus on Leapfrog Triejoin (LFTJ), a
recently proposed, worst-case optimal algorithm and present
“boxing”: a novel yet conceptually simple approach for par-
titioning and feeding out-of-core input data to LFTJ. The
“boxing” algorithm integrates well with a GPU-Optimized
LFTJ algorithm for triangle listing. We achieve significant
performance gains on a heterogeneous system comprised of
GPUs and CPU by utilizing the massive-parallel computa-
tion capability of GPUs. Our experimental evaluations on
real-world and synthetic data sets (some of which containing
more than 1.2 billion edges) show that out-of-core LFTJ is
competitive with specialized graph algorithms for triangle
listing. By using one or two GPUs, we achieve additional
speedups on the same graphs.

CCS Concepts

•Information systems → Relational parallel and dis-
tributed DBMSs; •Theory of computation → Data
structures and algorithms for data management; Mas-
sively parallel algorithms;

Keywords

Triangle Listing, Data partitioning, GPGPU

1. INTRODUCTION

∗This work was done while Daniel was at LogicBlox; Daniel
is now working at Google.

GPGPU-9

Triangle listing is the building block for many other graph
algorithms and key ingredient for graph metrics such as tri-
angular clustering, finding cohesive subgraphs etc [7, 17, 18,
16]. In addition, it attracts extensive attention in the re-
search literature among several fields: graph theory, databases
and network analysis to name a few. Here, both in-memory
as well as out-of-core algorithms have been studied.

This work is motivated by the desire of building general-
purpose systems that can empower their (domain) users to
pose and run queries in a declarative and general language,
such as SQL or Datalog , and the execution speed to be
competitive with hand-crafted special-purpose algorithms.

In addition, the use of GPGPU has appeared as a po-
tential vehicle for relational computations [6, 22, 24] with
an order of magnitude or more performance improvement
over traditional CPU-based implementations. We therefore
investigate the problem on a heterogeneous system that fea-
tures both the CPU and the GPUs. Discrete GPU accel-
erators provide massive fine-grained parallelism, higher raw
computational throughput, and higher memory bandwidth
compared to multi-core CPUs; however, their device mem-
ory is limited. Best-in-class card currently have only up to
32GB memory, with a relatively small CPU-GPU commu-
nication bandwidth through the PCIe bus. We thus focus
on the out-of-core setting as input or intermediary data may
not fit in the main CPU memory or the GPU device.

Towards this end, we select a state-of-the-art general-
purpose join algorithm and apply it to triangle query in an
out-of-core setting. The selected join algorithm is Leapfrog-
Triejoin (LFTJ) by Veldhuizen [21] which is known for its
elegance that allows efficient implementations with various
optimizations, low intermediary data usage that makes it a
good candidate in the out-of-core context and strong theo-
retical worst-case optimal guarantees. We also implement it
on GPUs [24] with additional optimizations.

However, we observe excessive I/O operations when run-
ning LFTJ for triangle listing in the out-of-core setting for
either CPUs or GPUs. To reduce this overhead, we then pro-
pose a partitioning and feeding strategy called “boxing” that
can be used together with LFTJ on both the CPU and the
GPU. The goal of this partitioning algorithm is to maintain
the good computation complexity of the in-memory LFTJ
in the out-of-core setting and lower the I/O cost to prevent
it from becoming the main bottleneck. Note that while we
discuss the specific triangle listing problem in this work, the
“boxing” techniques can apply to any generic LFTJ imple-

a w v

b u u

b v u

b v v

b z w

b z x

b z y

(a) R

r

a b

u vw z

u vv xu w y

(b) Trie of R

val0 a b ·

idx0 0 1 4

val1 w u v z ·

idx1 0 1 2 4 7

val2 v u u v w x y ·

:
:

:
:

:

(c) TrieArray of R

Figure 1: Trie and TrieArray of a ternary relation R

mentations either on the CPU or the GPU. Specifically, we
make the following contributions:

1. We present and analyze a novel strategy called box-
ing for out-of-core execution of LFTJ, and apply the boxed-
LFTJ to the triangle-listing problem on large scale out-of-
core data sets.

2. We improve the performance of a GPU-optimized LFTJ
implementation and integrate it with the boxed-LFTJ frame-
work to utilize the computation capability of GPUs.

3. We perform an experimental evaluation of boxed-LFTJ-
based triangle listing for out-of-core graphs on a heteroge-
neous system, which features a multi-core CPU and multiple
GPUs. The results demonstrate that boxed-LFTJ has low
CPU and I/O overhead and shows that the overall execution
time is competitive with the specialized triangle listing al-
gorithm MGT [7]. The integration of the GPU-optimized
LFTJ further improves the performance by utilizing the
massively-parallel computation capability of GPUs.

2. LEAPFROG-TRIEJOIN
LFTJ is a worst-case optimum multi-predicate join algo-

rithm. We restrict our attention to full-conjunctive queries,
and use a Datalog syntax and terminology to describe queries
(or joins). Some notation is necessary: for a binary relation
R(x, y), let R(x,) denote the set of values in the first col-
umn, i.e., R projected to its first attribute. Then, R(a,)
is the projection to the second attribute after only selecting
tuples that have the constant a as the first attribute.

LFTJ operates by first fixing an order of the variables
occurring in the rule body, e.g. x, y, z. Then, LFTJ finds
all possible values a for the variable x by performing an
intersection of R(x,) and S(x,). Now, as soon as the first
of such a is found, LFTJ is looking for values b of y, the
next variable in the variable-order. Here, LFTJ computes
the intersection of R(a, y) and T (y,). Again, after the first
b is found, LFTJ is looking for values c for z by computing
the intersection of S(a, z) and T (b, z). If any of these c is
found LFTJ reports the tuple (a, b, c) in the output. LFTJ
then back-tracks its search to the variable y and looks for
the next b. Back-tracking continues up to the first variable
and LFTJ finishes when no new a can be found anymore.

Trie representation for relations. A Trie is a tree that
stores each tuple of a relation as a path from the root node
r to a child node. See Fig. 1(a) for an example of a ternary
relation with its Trie in Fig. 1(b). In general, a Trie for
a relation with arity h has a height of h. For a relation
R(x1, . . . , xh), the nodes at height i store values from the
ith column of R. We require that child nodes of the same
node n are unique and ordered increasingly. For example in
Fig. 1(b) at level 2, the children of b are the values u, v, and
z, which are in increasing order.

�

��

���

���

���

�
��
��
�
�
��
�
	

��
�

��������	�

��������	�
��

�������

�������

������

�

�

�

�

��

��

��

��

�
��
��
�
�
��
�
	

��
�

��������	�

��������	�
��

�������

�������

������

��� ���

Figure 2: Performance of GPU-Optimized LFTJ: (a)
Finding Triangles; (b) Finding Four-Cliques.

TrieArrays. We use a simple array-encoding for Tries,
which is inspired by the Compressed-Sparse-Row (CSR) for-
mat, a commonly used format to store graphs. As an exam-
ple see Fig. 1(c) for the representation of the Trie given in
Fig. 1(b). The data values are stored in flat arrays called
value-arrays. Index arrays are used to separate children at
the same tree level but from different parent nodes. An n-
ary relation has n value arrays and n − 1 index arrays. In
particular, the children of a node n stored in the value array
vali at position j are stored in the array vali+1 starting at
the index from idxi[j] until the index idxi[j+1] exclusively.
E.g. in Fig. 1(c), the children w, x, y of z from val1[3] are
stored in val2 from idx1[3] = 4 to idx1[4] = 7.

Implementation. A basic building block of Leapfrog Triejoin
(LFTJ) is Leapfrog Join (LFJ). It computes the intersection
of multiple unary relations by using a linear iterator for each
of its input relations to search values that are in all input
unary relations. The searching process used in LFJ is es-
sentially implemented as a binary search. When extending
LFJ to LFTJ, the linear iterator is extended to TriItera-
tor. LFTJ works on multiple Tries and each Trie has its
TriIterator. These TrieIterators cooperate with each other
to traverse the Tries in a depth-first order to find the in-
tersections in each level of the Tries. The details of LFTJ
including the computation complexity can be found in [21].
Section 4 has an example of running LFTJ on three relations
to find triangles.

3. GPU-OPTIMIZED LFTJ
As described in [24], LFTJ has been efficiently ported to

run on GPUs which is called GPU-Optimized LFTJ. The al-
gorithm shares the same data structure (TrieArray) and pro-
gram interface as the CPU LFTJ for easy substitution; it ap-
plies two optimizations for GPUs: (1) It turns the depth-first
order into breadth-first order because breadth-first exposes
more fine-grained parallelism at the cost of larger memory
footprint. (2) It replaces binary search with linear search
for good memory access patterns and load balance in GPUs
at the cost of worse computation complexity.

This paper improves GPU-Optimized LFTJ described in
[24] resulting in a faster algorithm with support of much
larger input data sets. In particular, we (1) solve the prob-
lem of the increased memory footprint caused by the breadth-
first order. When expanding nodes in breadth-first traversal,
the new algorithm expands nodes in multiple rounds if the
total size of the expanded nodes is larger than the avail-
able memory size. (2) balance the tradeoff between linear
search and binary search to take advantage of the better
computational complexity of binary search. For example,
when intersecting two sorted arrays with a large difference
in their size, we use binary search to find the first and the

Algorithm 1 Steps Performed by Leapfrog-Triejoin on the
Triangles Query T (x, y, z)← E(x, y), E(x, z), E(y, z).

1: for a ∈ E(x,) ∩ E(x,) do

2: for b ∈ E(y,) ∩ E(a, y) do

3: for c ∈ E(a, z) ∩ E(b, z) do

4: yield (a, b, c) ⊲ triangle found

last elements of the short array in the long array to reduce
the search scope of the following linear search.

Fig. 2 reports the throughput of GPU-Optimized LFTJ
with three other algorithms in finding cliques (e.g. trian-
gles and 4-cliques) from some randomly generated graphs
which still fit in the GPU main memory. All vertices of the
graphs are 64-bit. Red Fox [22] runs a state-of-the-art GPU
binary join algorithms and it does not support large graphs
because its memory footprint is too large to fit in the GPU
memory. LFTJ-CPU runs multiple vanilla LFTJ algorithms
in different CPU threads in parallel. LFTJ-GPU is similar
to LFTJ-CPU but runs vanilla LFTJ in GPU threads. The
environment of the experiment is the same as the one used
in Section 7. All GPU experiments are conducted on a K40
GPU. Fig. 2 shows that GPU-Optimized LFTJ is always the
fastest algorithm and can run the largest graph supported
by the other algorithms. When evaluating 100M-edge graph,
GPU-Optimized is 8x faster than CPU-LFTJ in triangle list-
ing and 11x faster than CPU-LFTJ in 4-clique listing.

4. LFTJ FOR TRIANGLE QUERY
We first explain the idea of using LFTJ for the triangle

query (LFTJ-∆) and highlight the necessary steps. Our for-
mal setting is standard for I/O efficient algorithms: input I,
intermediary and output data can exceed the size of available
CPU main memory or GPU device memory M (measured
in words to store one atomic value), in which case it can be
read (written) from (to) secondary storage such as SSD for
CPU or via PCIe bus for GPU with the granularity of a page
that has size P . Reading or writing a page incurs 1 unit of
I/O cost. The following example shows that LFTJ can suffer
from excessive I/O operations in an external-memory setting
with a page-based least-recently-used memory replacement
strategy. These I/O operations happen independently of
whether LFTJ runs on CPU or GPU.

Given a simple, undirected graph G and let G⋆ = (V,E)
be its directed version, that is for each edge {a, b} in G,
E contains the pair (min{a, b},max{a, b}). An example of
G, G⋆ and E(G⋆) is shown in Fig. 4(a) (b) (c). The query
(refereed as (∆))

T (x, y, z)← E(x, y), E(x, z), E(y, z), x < y < z. (∆)

computes all triangles inG⋆ of the form: a b c. The output
T coincides with the triangles in G.

The steps that LFTJ performs for the triangle query are
summarized in Algorithm 1. First, the leapfrog join at level
x for the atoms E(x, y) and E(x, z) computes the intersec-
tion between E(x,) and E(x,). Then, for each found value
a for x, we perform a Leapfrog Join at level y computing the
intersection of E(a, y) with E(y,), because the variable y
occurs in the atoms E(x, y) and E(y, z). In the last step,
we find bindings for z by intersecting E(a, z) with E(b, z)
because z occurs in the atoms E(x, z) and E(y, z).

The LFTJ-∆ may have excessive I/O operations because
(1) each lookup in the intersection may load a separate page

E :

0, 24
1, 20
2, 16
3, 12
4, 8
5, 4
6, 24
7, 20
.. ..

18, 24
.. ..

23, 4
24, 24

(a) Graph G

.

a b c E(a, y) E(b, z) I/O

0 24
0 24 24 24 1
0 24 24 24 24 1
1 20
1 20 20 16 1
1 20 − 20 16 1
2 16
2 16 16 8 1
2 16 − 16 8 1
3 12
3 12 12 24 1
3 12 − 12 24 1
..

.

(b) LFTJ-∆ steps when running on G

Figure 3: Example input graph that causes LFTJ-∆
to use many I/Os. Parameters: M = 40, P = 4,
N = 24, T = 6. Graph has N + 1 = 25 edges.

and (2) similar to cache thrashing, pages loaded by earlier
lookups may be swapped out before any uses from subse-
quent lookups and have to be reloaded.

Take Fig. 3(a) for an example. The graph has N +1 = 25
edges. With M = 40 and P = 4, the assumed memory is
able to store 10 pages. The two columns of E are stored
separately using the TrieArray data representation, where
one page contains four consecutive atomics from one col-
umn (e.g. (0,1,2,3) from the first column is in one page and
(24,20,16,12) from the second column is in another page).
We place values in the second column of E by P apart which
will cause LFTJ to perform an I/O for every lookup of b in
E(y,) for line 2 in Algorithm 1. For example, the first
lookup of b in line 2 corresponds to a = 0 and E(a, y) = 24,
resulting in b = 24 and loading the page containing ‘24’ of
the first column of E. The second lookup of b corresponds
to a = 1 and E(a, y) = 20, requiring loading b = 20 which
is a different page containing ‘20’ of the first column of E.
Furthermore, values in the second column repeat in groups
large enough that loading all pages in a group will preempt
the first page from memory effectively prohibiting the algo-
rithm to reuse the earlier loaded pages. The example uses
a group size T = 6. The first 5 lookups of b (‘24’, ‘20’, ...,
‘8’) will load 5 pages. Each lookup of E(b, z) to compute
c using the step of line 3 in Algorithm 1 requires another
I/O to load from the second column of E. For example,
E(b, z) = 24 corresponding to b = 24 requires loading the
page containing ‘24’ from the second column of E. Together
the triangle searches for the first 5 nodes in E using Algo-
rithm 1 load 10 pages which fill up the memory so that the
6th lookup of b (‘4’) corresponding to a = 5 has to evict
the least-recently-used page ‘24’ of the first column of E.
However, this page will be immediately required and loaded
by the 7th lookup of b corresponding to a = 6, requiring
another I/O. The complete I/O cost for the example data
are shown in Fig. 3(b).

In general cases, for a graph GN = (V,E), we set edges
E = {(x, y) |x = 0, . . . , N and y = N − P × (x mod (T))},
2N ≥ M + 2P where N + 1 is the number of edges, and
group size T = M/(2P) + 1. Each node in E causes two
page I/Os in LFTJ-∆: the first one comes from looking up
each b in E(y,) corresponding to E(a, y) and the second
one comes from loading E(b, z) for each found b to perform
intersection E(a, z) ∩ E(b, z). Therefore LFTJ-∆ incurs at
least 2|E(GN)| I/Os for the above defined graph GN with a
TrieArray data representation and a LRU memory replace-
ment strategy.

To reduce the number of I/Os incurred in LFTJ-∆ and
thereby increase I/O efficiency, we propose “boxing” which
is an innovative and effective approach to deal with out-of-
core data sets by sectioning them into boxes that can fit into
memory. We adapt LFTJ to utilize the boxing strategy and
then apply it to the triangle query.

5. BOXING LFTJ

5.1 High-Level Idea
LFTJ with a variable order x1, . . . , xn computes the join

by essentially searching over an n dimensional space in which
each dimension i spans over the domain of the variable xi. In
our approach, we partition the n-dimensional search space
into “hyper-cubes” or boxes such that the required data for
an individual box fits into memory. LFTJ is then run over
each box individually—finding all input data ready in mem-
ory, so that no extra I/Os are necessary for loading data as
described in Section 4.

Fig. 4 illustrates this strategy for LFTJ-∆. The join
uses three variables x, y, z – resulting into a 3-dimensional
search-space. If the input graph G represented via a TrieAr-
ray does not fit into the available memory, then we partition
the search space into boxes, for example as in Fig. 4(e). The
partitioning is chosen such that the input data restricted to
an individual box fits into memory. LFTJ-∆ is then exe-
cuted for each box individually one after another while join
results are written append-only in a streaming fashion. Note
that in the triangle listing problem, the search space can be
triangular if constraining the space with x < y < z. How-
ever, the framework we built can be used to compute any
relational joins. In that sense, we hope illustrating “boxes”
at this higher level exposes the generality. We first intro-
duce the concept of TrieArray Slices which are subsets of
the input trie and can be obtained through the two pro-
cesses called provisioning and probing. Then we explain the
boxing procedure using TrieAray Slices.

5.2 TrieArray Slices
As defined in Section 2, the input data are given on ex-

ternal storage in a TrieArray representation and are directly
processed to load a subset into the main memory.

As an example, consider the binary relation E from Fig. 4(c)
and its TrieArray T in Fig. 4(d). We are interested in the
subset S of T that restricts the first attribute to the interval
[3, 5], i.e., S = {(x, y) ∈ T |x ∈ [3, 5]}. We call this a slice of
S at level 0 from 3 to 5. A TrieArray for this slice is shown
at the top of Fig. 4(f). To build this slice, we can simply
copy the values in val0 for the interval [3, 5]; then look up
where the corresponding y values are in idx0 and copy them.
We then add a wrapper during accesses dynamically to the
index arrays that can subtract the offset which is the first
index in idx0 of the slice (wrapper shown as idx0[−5] at
the top of Fig. 4(f)). In this way all data used in the arrays
of the slice are simply sub-arrays of the original data. Sim-
ilarly, restricting the second attribute to the interval [6,∞]
results in a slice shown at the bottom of Fig. 4(f).

In general, for an n-ary relation R, we are interested in
creating slices at a level k, 0 ≤ k < n. At level k the values
are restricted to an interval given by a low-bound l and a
high-bound h; at levels 0, . . . , k − 1, the slice contains only
a single element each, all of which together combine to a k-
ary prefix. Formally: Let R be an n-ary relation, 0 ≤ k < n

1 2

3 4 5

6 7

(a) Graph G

x 1 1 1 2 2 3 4 4 5 6
y 2 3 6 4 5 6 5 7 7 7

(b) E(G⋆)

1 2

3 4 5

6 7
(c) Dir. graph G⋆

val0 1 2 3 4 5 6 ·

idx0 0 3 5 6 8 9 10

val1 2 3 6 4 5 6 5 7 7 7 ·

:
:

:

(d) TrieArray T for E = E(G⋆)

∞

−∞

x
z−∞

−∞

∞

∞

y

2 3 5 6

5

4

2

6

3

(e) Boxed Search Space

Box [3 ··· 5, 6 ··· ∞,−∞ ··· ∞]

Slice for E(x, y)&E(x, z)
val0 3 4 5 6

idx0[−5] 5 6 8 9

val1 6 5 7 7 7

:
:

:

Slice for E(y, z)
val0 6 ·

idx0[−9] 9 10

val1 7 ·

:
:

:

(f) Example Box & TrieSlices

Figure 4: Example for out-of-core technique for
LFTJ-∆, i.e. T (x, y, z)←E(x, y), E(x, z), E(y, z) on E(G⋆)

an integer, s be a k-ary tuple prefix, and l and h be two
domain values. The Slice S of R at level k for s from l to h
(in symbols S = Rs

l→h) is the defined as:

S = {(x0, ..., xn−1) ∈ R | (x0, ..., xk−1) = s and l ≤ xk ≤ h}
We create and store Slices in the TrieArraySlice data struc-

ture, which is a conventional TrieArray—except that the
index arrays can be parameterized with an offset to per-
form dynamic index-adaptation as explained in the example
above. As with TrieArrays, we identify the Slice (set of tu-
ples) with the TrieArraySlice data structure and vice versa
in the rest of the paper.

Provisioning. Given a relation R on secondary storage,
we can create slices of R efficiently. This process is called
provisioning. The provisioning process of slice S = Rs

l→h

is as follows: using k binary searches on the value arrays
val0, . . . ,valk−1, we locate the prefix s in R; the slice is
empty if the prefix does not exist. Then, using two more
binary searches we locate the smallest element l′ ≥ l and
the largest h′ ≤ h in valk of R. Their positions are the
boundaries in valk and idxk for the interval we copy into
the slice. For the remaining n−k value arrays and n−k−1
index arrays, we iteratively follow the pointers within the
idx arrays and copy the appropriate ranges. As a last step
we adjust the index-array’s offset parameter: for each j =
k, . . . , n−2, we set the offset parameter of idxj to −idxj[0].

Probing. As the last building block, we are interested in
provisioning slices that will fill up a certain budgeted amount
of memory. This process is referred as probing. In particu-
lar, for a TrieArray T on secondary storage, we specify the
prefix-tuple s and lower bound l as before. But instead of
providing an upper bound h, we give a memory budget m
in pages as shown in Fig. 5. We are then interested in a
maximal upper bound h ≥ l such that the slice at s from l
to h requires no more than m pages of memory. The process
is similar to slice provisioning, except that we do a binary

function Probe(T , s, l, m) returns h
in: n-ary TrieArray T ⊲ on secondary storage
in: k-Tuple s ⊲ start tuple for attributes 0,.., k − 1
in: value l ⊲ Lower bound for attribute k
in: int m ⊲ memory budget in pages
out: Maximal h ≥ l such that the slice T s

l→h
occupies

out: ≤ m pages of memory, or SPILL if no such h exist.

Figure 5: Interface for Single Slice Probing

1: l ← −∞ ⊲ Value at the start of the search space
2: repeat

3: probe R, S, T from l for upper bounds hR, hS , hT

4: h← min(hR, hS , hT)
5: provision R, S, T from l to h
6: run LFTJ on the provisioned slices
7: l← succ(h) ⊲ lower bound is successor of old upper
8: until ∞ = h ⊲ until we have searched all space

Figure 6: Example: Boxing for R(x), S(x), T (x)

search for the upper bound and check for each guess how
many pages the TrieSlice would occupy. This can be done
by following the idx pointers. Note that for skewed data, it
is possible that the slice T s

l→h requires more than m pages
of memory, even when h = l. Should this case occur, we
report via the sentinel value SPILL instead of returning an
upper bound h.

5.3 Boxing Procedure
To help exposition, we first describe aspects of the boxing

approach via examples, before we cover the general case.

Joins with one variable. Consider a join over multiple
unary relations such as

Q(x)← R(x), S(x), T (x).

Imagine each of the body relations is larger than the avail-
able internal memory M . We can divide the internal mem-
ory into four parts, one for the output data and one for each
of the input relations. Since the output is written append-
only, a relatively small portion of memory, which is written
to disk once it fills up, is sufficient. We thus divide up the
bulk of the memory for the three input relations. We can
use the simple strategy to evenly divide the space. A boxed
LFTJ execution would then simply alternate probing, pro-
visioning, and calling LFTJ as described in Fig. 6.

Unary cross-products. Consider the cross-product of m
unary relations, with each relation larger than M :

Q(x1,..., xm)← R1(x1), . . . , Rm(xm).

We again split the bulk of the available memory across the
m input relations. The boxing procedure is recursive where
each dimension i of the recursion corresponds to a variable
xi (See Fig. 7). The procedure starts with i = 1. In general,
at a dimension i, we loop over the predicate Ri via the probe-
provisioning loop. Then, for each slice at dimension i, we
do the same recursively for the next higher dimension. At
the bottom of the recursion—when we reached the i = m,
we call LFTJ on the created slices. Then, the slices provide
data for the box [low···high], i.e., in which the variable xi can
range from low[i] to high[i]. Note that (like above) we can
run the original query over the slice data since the slices are
guaranteed to not have data outside their range and thus
the boxes partition the search-space without overlap.

General joins. The general approach combines the two
previous algorithms while also considering corner cases. Let

variables: m-Tuple low, high ⊲ Box boundaries
1: procedure Main

2: BoxUp(1)

3: procedure BoxUp(int i) ⊲ i corresponds to xi

4: low[i] ← −∞
5: repeat

6: probe inputs Ri from low[i] for upper bound hi

7: high[i]← hi

8: provision Ri from low[i] to high[i]
9: if i < m then : BoxUp(i+1)
10: else: run LFTJ on slices ⊲ Box: [low···high]

11: low[i]← succ(high[i])
12: until ∞ = high[i]

Figure 7: Example: Boxing for R1(x1),..., Rm(xm)

Q be a general full-conjunctive join of m atoms, and vari-
able order π = x1, . . . , xn with no atom containing the same
variable twice, and all atoms in Q mentioning variables con-
sistent with π. We first group the atoms based on their first
variable xj : we place all atoms that have as first variable
xj into the array atoms[1..n] at position j. To follow the
exposition, consider the join

Q(x1, x2, x3)← R(x1, x2), S(x1, x3), T (x2, x3), U(x1)

where we put R,S, and U into atoms[1] and T into atoms[2].
Like for cross-products, we recursively provision for the di-
mension i ranging from 1 to n. For each i, we use the method
for joining unary relations for the atoms in atoms[i]. In par-
ticular, for each Aj ∈ atoms[i] we probe and create slices
for Aj at level 0 regardless of i or the arity of Aj . Thus, at
dimension i, we iteratively provision atoms with xi as their
first attribute restricting the range of xi but not any of the
other variables xk, k > i. This ensures that we can freely
choose any partitions we might perform on these variables
xk for k > i. Like with cross-products, we call LFTJ at the
lowest level when i = n.
The above works well unless any of the probes reports a

SPILL, which can occur if a relation exhibits significant skew.
For example, imagine there is a value a for which |Sa(x3)|
exceeds the allocated storage. Then, at dimension i = 1,
probing S at level 0 with a lower bound a will return SPILL.
We handle these situations by setting the upper bound at
level i = 1 to a, and essentially marking Sa as a relation
that needs to be provisioned at the dimension of its second
attribute (eg, 3) alongside the atoms in atoms[3]. Note that
a relation of arity α can spill α− 1 times in worst case.

The general algorithm is given in Algorithm 2. We evenly
divide the available storage among the n dimensions, and
assign the atoms A to atoms[i] accordingly (lines 3-4). We
also use a variable leftoverMem to let lower dimensions uti-
lize memory that was not fully used by higher dimensions.
In line 11, we union the spills from the previous level to the
atoms we need to provision. The method probe in line 12,
probes atoms in atms to find an upper bound such that all
atoms can be provisioned. We here, evenly divide mem by the
size of atms. The lower bound for probing are taken from
low, which is also used to determine the starting tuples for
possible spills. The method sets the upper bound at the cur-
rent dimension and fills the spills predicate if necessary. The
method provision provisions the predicate A with bounds
from low and high adapted to the variables occurring in A.
It returns the slice and the size of used memory.

I/O Complexity. Using the analysis and method described
in [26], the I/O complexity of boxed LFTJ with n variables,
input I and output of size K is O(|I|n/(Mn−1P) + K/P).

Algorithm 2 Boxing Leapfrog Triejoin
in: memmax ⊲ available memory in pages
in: A1, . . . , Am ⊲ body atoms and TrieArrays
in: x1, . . . , xn ⊲ key order, n variables
variables:

in: n-Tuple low, high ⊲ Box boundaries
in: Array of AtomSet atoms[1..n] ⊲ atoms per level
in: Array of SliceSet S[1..n] ⊲ provisioned slices
in: Array of AtomSet spill[0..n] ⊲ spilled-over atoms
in: Array of int budget[1..n] ⊲ of memory in pages

1: procedure Main

2: for i ∈ {1, . . . , n} do

3: budget[i] ← memmax/n
4: atoms[i] ← {Ai | xi is first variable in Ai}

5: BoxUp(1, 0) ⊲ 1st variable, no leftover memory

6: procedure BoxUp(i, leftoverMem)
7: mem ← budget[i] + leftoverMem
8: low ← [−∞, ...,−∞]; high ← [∞, ...,∞]
9: repeat

10: S[i] ← ∅ ; usedMem ← 0
11: atms ← atoms[i] ∪ spill[i− 1]
12: spill[i], high[i] ← probe(i, atms, mem, low)
13: for A ∈ atms \ spill[i] do
14: slice, m ← provision(A, low, high)
15: usedMem ← usedMem + m
16: S[i] ← S[i] ∪ slice

17: if i < n then

18: leftoverMem ← mem− usedMem
19: BoxUp(i + 1, leftoverMem)
20: else

21: run LFTJ on
⋃

k=1..n

S[k] on Box[low···high]

22: low[i] ← succ(high[i])
23: until ∞ = high[i]

Applying boxed LFTJ to the triangle query generates an I/O
complexity for LFTJ-∆ of O(|E|3/(M2P) +K/P). If there
are no spills the complexity is O(|E|2/(MP) +K/P) which
matches the I/O complexity of MGT [7] and is optimal if
M ≥ |V | as shown in [7].

6. IMPLEMENTATION
We implement a general-purpose join-processing frame-

work using the proposed boxed-LFTJ on a heterogeneous
system. Predicates (stored as TrieArrays) can have variable
arities and we support marking a prefix of the attributes
as key (the TrieArray then needs fewer index arrays). For
CPU, the system uses secondary storage which is SSD (via
memory-mapped files) to allow processing of data that ex-
ceeds the main memory. For GPU, if the data size exceeds
the device memory, they can be retrieved first from the CPU
main memory and then from the SSD.

6.1 Optimizations on CPU
We are also deploying a parallelization scheme for LFTJ

to utilize multiple CPU cores by evenly mapping the first
variable to the threads to perform independent LFTJ, i.e.
each thread has a fixed range for the first variable. In the
boxed LFTJ version, boxes are worked on one after another,
yet LFTJ utilizes available cores while processing a box.

In the boxing procedure, using more memory at smaller
dimensions reduces the number of boxes created. We pick a
ratio of 4:1 for dividing up the memory between x:y in the
triangle query. We also do not allocate budget to dimensions
j that do not have an atom using xj as first variable (e.g.,
z). In case there is a spill the budget for the spilling relation
will be moved over to the next dimension.

Runtime

Main Thread

Slicer
GPU-Optimized

LFTJ

Slicer
GPU-Optimized

LFTJ

CPU GPU1

GPU Management Thread

GPU Management Thread

Launch GPU

Kernel

Launch GPU

Kernel

GPU0

Figure 8: Integration of GPU-Optimized LFTJ

Slice 0 Slice 1 Slice 2 Slice 3

Slice 0 Slice 1 Slice 2 Slice 3

PCIe

CPU

GPU

Figure 9: Use double buffer to hide CPU boxing and
PCIe data movement.

We envision that for some queries, an optimizer, aided
by constraints provided by the user, can avoid provisioning
certain boxes because it can infer that there cannot possibly
be a query result within that box. For example, in our case,
we know that x < y < z. This can easily be inferred from
the constraint a < b for any (a, b) ∈ E. Based on this, we
do not need to provision at dimension y if the high bound
for y is smaller than the low bound for x. We have put a
hook into the boxing mechanism to bypass provisioning if
after probing this condition is met.

6.2 GPU-Optimized LFTJ Integration
We integrate the GPU-Optimized LFTJ algorithm with

the boxed LFTJ framework as shown in Fig. 8. The inte-
gration is seamless because the CPU and GPU LFTJ use
the same data structure and program interface. Multi-GPU
implementation is also supported by the system. The main
thread in the CPU spawns several new threads, each for one
GPU in the system, to perform boxing by the slicer, send
the slices to the GPUs and invoke the GPU-Optimized LFTJ
kernels on the GPUs. Therefore, CPU is in charge of par-
titioning data when GPUs take control of the computation.
The boxing algorithm is multi-thread safe. The boxes gen-
erated by different threads are not overlapped and can be
processed independently by different GPUs. The GPU man-
agement threads complete after all the data are processed.

We further optimize the performance by concurrently ex-
ecuting different stages on the GPU by using double buffer-
ing [23]. Three stages can run concurrently: CPU boxing,
PCIe data transferring, and GPU LFTJ computation. Con-
sidering the fact that GPU LFTJ computation dominates
the overall time, the integrated system overlaps the first
two stages with GPU LFTJ execution as shown in Figure 9.
Thus, the time spent in preparing data for GPU is hidden
by the computation.

7. EXPERIMENTAL EVALUATION
In our experimental evaluation, we focus on the trian-

gle listing problem on a heterogeneous system that has a
multi-core CPU and multiple GPUs. we investigate and an-

Mem Measured Mem BW Core # Max Core Freq

K40c 12GB 203GB/s 2880 745 MHZ
Titan 6GB 220GB/s 2688 876 MHz

Figure 10: Comparison of GPUs used in the exper-
iments

LiveJournal(LJ) Orkut RAND16 RMAT16 RAND80 RMAT80 Twitter

csv 500MB 1.8GB 4.1GB 4.0GB 22GB 22GB 25GB
TA 315MB 1.2GB 2.3GB 2.2GB 11GB 11.2GB 10GB
|V | 4 Mio 3 Mio 16 Mio 16 Mio 80 Mio 80 Mio 42 Mio
|E| 35 Mio 117 Mio 256 Mio 256 Mio 1.28 Bill 1.28 Bill 1.2 Bill
|E|
|V |

8.7 38.1 16 16 16 16 28.9

#∆ 178 Mio 628 Mio 5457 2.2 Mio 5491 884,555 35 Bill

Figure 11: Characteristics of the data sets. Self and
duplicate edges are removed. The CSV sizes refer
to the CSV data where each undirected edge {a, b} is
mentioned only once. TA stands for the TrieArray
representation as described in the earlier sections.

alyze the overhead of boxed LFTJ, its behavior with limited
available main memory and its performance compared to
best-in-class competitors.

Evaluation environment. We use a desktop machine with
an Intel i7-4771 core, that has 4 cores (8 hyper-threaded),
each clocked at 3.5GHz. The machine has 32GB of physi-
cal memory and a single SSD disk. It is running Ubuntu
14.04.1 with a stock 3.13 Linux kernel. Two GPUs are
attached to the system, one Tesla K40c and one Geforce
GTX Titan. Fig. 10 compares the key parameters of them.
In general, K40c has larger memory but lower bandwidth,
more cores but lower frequency. If the data fit in GPU
memory, K40c and Titan have similar throughput for GPU-
Optimized LFTJ. The CPU and two GPUs appeared in the
market about in the same time and they are the most ad-
vanced devices at that time.

Data. We use both real-world and synthetic input data
of varying sizes. The data statistics are shown in Fig. 11.
The real-world data include graphs from online community:
“LiveJournal (LJ)” [25], “Orkut” [12] and “Twitter” [9]. We
also consider synthetically generated data due to its bet-
ter understood characteristics. We focus on two datasets:
“RAND” and “RMAT”. Each comes in a medium-sized ver-
sion (RAND16 and RMAT16) and a large version (RAND80
and RMAT80). In the RAND dataset, we create edges
by uniformly randomly selecting two endpoints from the
graph’s nodes. The RMAT data contains graphs created by
the Recursive Matrix approach [3] that closely match real-
world graphs such as computer networks, or web graphs.
The LiveJournal and the synthetic graphs were also used
by the MGT work in [7] and earlier work [4] to evaluate
out-of-core performance for the triangle listing problem.

Methodology. We measure and present the time for run-
ning our TrieArray-based implementation of LFTJ and two
competing algorithms on the mentioned data sets with vari-
ous configurations and memory restrictions. The TrieArray-
based experiments are conducted on both CPU and GPUs.
Input data for LFTJ are given in TrieArray format.

CPU Overhead of Boxed-LFTJ. We advise boxed LFTJ
to only use memory the size equaling a fraction of the input
during execution to test the impact of the box size on the
CPU overhead. Recall that the input workloads in SSD are
memory mapped. To further (almost completely) remove
I/O, we prefix the execution by cat-ting all input data to

/dev/null, which essentially pre-loads the Linux file-system
cache. The boxing is performed in one CPU thread and CPU
LFTJ runs with eight threads to fully exploit the four cores
of the CPU. We now consider the three questions (i) What
is the CPU overhead for probing and copying? (ii) What
is the overhead introduced by running LFTJ on individual
boxes in comparison to running LFTJ on the whole input
data? and (iii) What is the performance of running LFTJ
on one or multiple GPUs?

To answer these questions, we run four variants: (a) the
full CPU LFTJ, (b) the full GPU LFTJ, (c) probing and
copying data into TrieArraySlices without running LFTJ,
and (d) only probing without copying input data nor running
LFTJ. Results are shown in the first row of Fig. 12. On
the X-Axis, we vary the space available for boxing. The
individual points range from 5, 10, . . . up to 200% of the
input data size in TrieArray representation. We choose to
range up to 200% since the input is essentially read twice by
LFTJ-∆: once for each of the dimensions x and y.

Results. Answering question (i): We can see that the CPU
work performed for probing and copying is very low in com-
parison to the work done by the CPU join evaluation, even
when the box sizes are limited to as little as 5% of the size
of the input. Answering (ii), we look at the top lines for
LFTJ and compare the curve with the value at the far right
as this one is achieved by using a single box which is essen-
tially the same as the vanilla LFTJ. The real-world data sets
behave as expected: starting at around 25%, they level out
demonstrating that the CPU overhead is low if the available
memory is not too much smaller than the input data size.
Now, for the synthetic data sets, we see that unexpectedly,
using more boxes reduces the CPU work (memory range
10%–200%). We speculate that this is because the boxed
version might reduce the work done in binary searches since
the space that needs to be searched is smaller. Only at
5%, does this trend reverse and using more smaller boxes
takes longer. Answering question (iii): The second top lines
of the five figures represents the performance of executing
GPU-Optimized LFTJ in K40c. The largest box size sup-
ported by GPU is much smaller than CPU because GPU
has much smaller memory size and GPU-Optimized LFTJ
uses much larger memory footprint. The GPU number is
not shown in the TWITTER graph because GPU perfor-
mance is more than 10x slower than its CPU counterpart
for this power-law graph. The linear search used by GPU-
Optimized LFTJ is not efficient for this graph. Replacing
linear search by binary search in GPU is even worse which
can cause another 10x slow down. For the rest of graphs,
GPU-Optimized LFTJ is 1.46-2.95x faster compared with
the CPU approach even when CPU uses 200% boxes. The
CPU overhead of probing and copying is still less than 15%
when LFTJ is performed in GPU.

Boxing with limited memory. We are also interested
in the performance of the boxing technique when disk I/O
needs to be performed. Here, we run the same experi-
ments as above but we clear all Linux system caches be-
fore we start a run. We further use Linux’s cgroup feature
to limit the total amount of RAM used for the program
(data+instructions) and any caches used by the operating
system to buffer I/O on behalf of the program. As actual
limit we use the value given to the boxing and shown on the
X-Axis plus a fixed 100MB (that accounts for the output
buffer and the size of the executable).

 0

 2

 4

 6

 8

 10

 5 25 50 75 100 150 200

boxed CPU LFTJ
boxed GPU LFTJ

probing + boxing only
probing only

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5 25 50 75 100 150 200

boxed CPU LFTJ
boxed GPU LFTJ

probing + boxing only
probing only

 0

 50

 100

 150

 200

 250

 300

 5 25 50 75 100 150 200

boxed CPU LFTJ
boxed GPU LFTJ

probing + boxing only
probing only

 0

 50

 100

 150

 200

 250

 300

 350

 5 25 50 75 100 150 200

boxed CPU LFTJ
boxed GPU LFTJ

probing + boxing only
probing only

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 5 25 50 75 100 150 200

boxed CPU LFTJ
probing + boxing only

probing only

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 5 25 50 75 100 150 200

boxed CPU LFTJ
boxed GPU LFTJ

probing + boxing only
probing only

 0

 10

 20

 30

 40

 50

 60

 70

 80

 5 25 50 75 100 150 200

boxed CPU LFTJ
boxed GPU LFTJ

probing + boxing only
probing only

 0

 100

 200

 300

 400

 500

 600

 700

 5 25 50 75 100 150 200

boxed CPU LFTJ
boxed GPU LFTJ

probing + boxing only
probing only

 0

 100

 200

 300

 400

 500

 600

 700

 5 25 50 75 100 150 200

boxed CPU LFTJ
boxed GPU LFTJ

probing + boxing only
probing only

 0

 500

 1000

 1500

 2000

 2500

 5 25 50 75 100 150 200

boxed LFTJ
probing + boxing only

probing only

 0.1

 1

 10

 100

 1000

 5 25 50 75 100 150 200

boxes
I/O [times input]

(a) LJ

 0.1

 1

 10

 100

 1000

 5 25 50 75 100 150 200

boxes
I/O [times input]

(b) ORKUT

 0.1

 1

 10

 100

 1000

 5 25 50 75 100 150 200

boxes
I/O [times input]

(c) RAND80

 0.1

 1

 10

 100

 1000

 5 25 50 75 100 150 200

boxes
I/O [times input]

(d) RMAT80

 0.1

 1

 10

 100

 1000

 5 25 50 75 100 150 200

boxes
I/O [times input]

(e) TWITTER

Figure 12: Boxed LFTJ Analysis. On the X-Axis, we vary the total memory available for boxing shown as percent of
the size of the input relation. We vary from 5%, 10%, 25%,... to 200%; we choose 200% to hold the input twice: once for
E(x, y) and once for E(y, z). First row shows total runtime on the Y-Axes in seconds without OS-level (cgroup) main-memory-
restrictions and warm caches to evaluate the additional CPU work necessary for boxing. For performance in an out-of-core
scenario, we enforce OS-level memory restrictions and have all caches cleared before execution in the second row; which also
plots wall-clock execution time on the Y-Axis. The third row shows the number of boxes and the amount of provisioned
memory in multiples of the size of the input data. Omitted graphs for {RAND|RMAT}16 look like the “80” variants.

Results are shown in the second row of Fig. 12. These
results are end-to-end which include all the overhead that
happens in real world when running out-of-core data set. In
this scenario, we see that probing is still very cheap even
for the 5% memory setting; Provisioning the data now has
noticeable costs for low-memory settings (25% and below).
However, even then, it is mostly dominated by the time to
actually perform the in-memory joins. This is even more
so for the real-world data sets. Overall, with around 25%
or more memory, boxed LFTJ’s performance stays constant
indicating that I/O is not the bottleneck. For example, we
can count all 37 billion triangles in the TWITTER dataset
in around 29 minutes without I/O and only need up to 35
minutes with disk I/O. For this power law graph, the I/O
overhead is negligible. If executing LFTJ in GPU, the total
execution time is still 1.30-1.73x faster than using the same
box size to run CPU LFTJ for the first four graph. The ratio
of probing and provision increases since GPU is faster in
joining. Note PCIe overhead is not included in the provision,
but included in the boxed GPU LFTJ. In two real-world
graphs, LJ and Orkut, the overhead is still less than 1/3.
But in two synthetic graphs, the overhead is between 66%-
75% which indicating that the I/O is the bottleneck. In
these cases, we can perform two level of boxing: first find
a large box from the secondary storage and then find small
boxes to send to GPU from this large box. This should
significantly reduce the I/O cost because the second row of
Fig. 12 proves finding large box has much smaller overhead
than finding small box from SSD and the first row of Fig. 12
proves boxing from memory has negligible cost.

When using GPU to do triangle listing, either the GPU
computation or disk I/O are the main bottlenecks depending
on the characteristics of the graph. Here, PCIe overhead can
be hidden by overlapping computation. However, previous

(a) 5% (b) 10% (c) 25% (d) 35% (e) 75% (f) 100%

Figure 13: Selected boxes for TWITTER dataset

research shows that when only standard binary joins are
processed [2], the PCIe can become the bottleneck.

In the third row of Fig. 12, we show number of boxes used
as well as the total amount of memory copied for provision-
ing as a multiple of the TrieArray input size from Fig. 11.
We see that the number of boxes is generally below 100 un-
less the memory is restricted to below 25%; similarly, we
never copy more than 15x of the input data even for a 5%
memory restriction. An example for how the boxes were
chosen for the TWITTER data set is shown in Fig. 13. The
figures show how these boxes are created by projecting the
3-D input space onto the x-y plane. Darker pixels indicate
areas where there is more data. In particular, the image
was created as follows: For E(x, y) of the directed graph for
the TWITTER dataset which can be viewed as a point-set
in 2D space, create a 2D histogram H with 150x150 bins.
Then, because we slice along the first dimension and collect
the nodes plus their neighbors, we aggregate over H’s sec-
ond dimension (eg, y) values to obtain a 1D histogram D
showing the total number of neighbors the nodes in a cer-
tain bin have. We then spread this 1D histogram into a 2D
space by setting the value at position x, y to D(x) + D(y).
This “image” is indicative of the total amount of data for a
rectangular box.

Spill is a corner case that never occurred for any of the
tested graphs as long as the available memory fraction is
larger than or equal to 5% of the total input size. As sug-

 0

 10

 20

 30

 40

 50

 60

LJ O
R
KU

T

R
AN

D
16

R
M

AT16

R
AN

D
80

R
M

AT80

TW
ITTER

S
p
e
e
d
u
p

boxed: 25% of input
boxed: 35% of input

(a)

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

LJ O
R
KU

T

R
AN

D
16

R
M

AT16

S
p

e
e

d
u

p

LFTJ-1 LFTJ-8

(b)

Figure 14: (a) Speedup of Boxed LFTJ over Vanilla
LFTJ. Memory restrictions are 25% and 35% of in-
put size respectively. (b) Speedup of LFTJ over
Graphlab for single and 8 threaded configurations
without resource limitations.

gested in Fig. 12, it is not beneficial to use even smaller
fractions for boxing because the number of boxes grows ex-
ponentially when the memory shrinks. We include spill in
the algorithm for correctness.

Last, we are interested in how the boxed LFTJ compares
to a variant without our extension. Since LFTJ as presented
in [21] is a family of algorithms that needs to be parame-
terized by how data is physically stored and how the TrieIt-
erator operations are implemented, answering this question
is hard since conclusions for one specific implementation of
the data back-end might not hold for another. In particular,
our approach of storing data in huge arrays and performing
mostly binary searches over them might be particularly bad
from an I/O perspective. However, having these consider-
ations in mind, we also ran our version of LFTJ with the
cgroup memory restrictions and a provisioning mode that
does not copy the data but leaves it in memory-mapped
files. The data is thus paged in (from the input file) by
the Linux virtual memory system that using a standard re-
placement strategy. Results for this experiment are shown
in Fig. 14(a): The average speed ratios of vanilla over boxed
for the memory levels of 10%, 25%, and 35% are 65x, 30x,
and 20x, respectively.

Comparison to competitors. We compare to (1) the tri-
angle counting algorithm presented in [19] and implemented
in Graphlab [10]. We chose this algorithm as our in-memory
competitor since it supports multiple threads and was used
in other comparisons [24] before. We also (2) compare to the
MGT algorithm [7] as the (to the best of our knowledge)
currently best triangle listing algorithm in the out-of-core
setting. Our results are shown in Fig. 14(b) and Fig. 15.
The boxed LFTJ is on average 65% slower than Graphlab,
both when run in single-threaded mode as well as in multi-
threaded mode with 8 threads. Graphlab, being optimized
for an in-memory setting with optional distribution, was not
able to run any of our large data sets getting “stuck” once
all of the 32GB of main memory and 32GB of swap space
had been consumed.

Comparing to MGT (Fig. 15): We used the cgroup-memory
restrictions and cleaned caches for running MGT and boxed-
LFTJ. When we run in single-threaded mode, then MGT
outperforms boxed LFTJ by a factor of 3.1, 2.9, and 2.9 in
the configurations with 10%, 25%, and 35% of the mem-
ory, respectively. When we allow LFTJ to utilize all of the
4 available cores, we are on average 47%, 22%, and 28%,
respectively, faster than the single-threaded MGT. We have
not investigated how well MGT parallelizes. Note that MGT

 0

 0.5

 1

 1.5

 2

 2.5

LJ O
R
KU

T

R
AN

D
16

R
M

AT16

R
AN

D
80

R
M

AT80

TW
ITTER

S
p

e
e

d
u

p

box1 box8

(a) Limit: 10% of input

 0

 0.5

 1

 1.5

 2

LJ O
R
KU

T

R
AN

D
16

R
M

AT16

R
AN

D
80

R
M

AT80

TW
ITTER

S
p

e
e

d
u

p

box1 box8

(b) Limit: 25% of input

Figure 15: Speedup of Boxed LFTJ (1,8 threads)
over MGT (1 thread) with limited memory.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

LJ O
R
KU

T

R
AN

D
16

R
M

AT16

R
AN

D
80

R
M

AT80

TW
ITTER

S
p
e
e
d
u
p

K40 K40+Titan

Figure 16: Speedup of one or two GPUs over CPU

internally uses only 32 bits as node identifiers (vs. our 64bit
identifiers). Nevertheless, we used the same values to con-
figure and limit the amount of memory for both MGT and
LFTJ. Note that boxed-LFTJ scales well with the number
of threads because the workload is often CPU bound.

Running multiple GPUs. The last experiment demon-
strates the capability of using multi-GPUs with the boxing
algorithm. Fig. 16 shows the speedup of using one K40 and
using both GPUs. The baseline is executing LFTJ in CPU
by using 1GB box. K40 and Titan both use 512MB boxes
so that the smallest graph, LJ, needs two boxes. Memory
is not restricted in this set of experiment. Recall that two
CPU threads execute the boxing algorithm as introduced
in Section 6 when two GPUs are used. One K40 can bring
around 2x speedup because of its high computation through-
put. When concurrently executing LFTJ in two GPUs, the
speedup increases to 2-4x compared with CPU LFTJ. Using
two GPUs is always faster than using one GPU. The scal-
ability differs from graph to graph. The extra GPU only
brings 5% additional speedup for LJ because there is not
enough data to saturate both GPUs. For all other bench-
marks, extra GPU can bring at least 40% additional speedup
including the largest TWITTER graph which has 90% ad-
ditional speedup because of the low cost of boxing and full
utilization of two GPUs executing the join algorithm.

8. RELATED WORK
The SociaLite effort [20] at Stanford also proposes to use

systems based on relational joins (in this case Datalog) for
graph analysis. They show that declarative methods not
only allow for more succinct programs but are also compet-
itive, if not outperform typical other implementations.

A worst-case optimal join algorithm has first been pre-
sented by Ngo et al. in [14] following the AGM bound [1]
that bounds the maximum number of tuples that can be pro-
duced by a conjunctive join. Most recently, Khamis et al. [13]
propose so-called beyond-worst-case-optimal join algorithms.
Here, the performed work is not measured against a worst-
case within a set family of inputs—but instead must be
proportional to the size of a shortest proof of the results
correctness. Furthermore, [8] combines ideas from geome-

try and resolution transforming the algorithmic problem of
computing joins to a geometric one.

Studies have been shown in the out-of-core context for
triangle listing. Following up on the MGT work [7], Ras-
mus et al. [15] improve the I/O complexity of MGT from

O(|E|2/(MP)) to an expected O(E3/2/(
√
MP)). They also

give lower bounds and show that their algorithm is worst-
case optimal by proving that any algorithm that enumerates
K triangles needs to use at least Ω(K/(

√
MP)) I/Os. Mene-

gola [11] proposes an algorithm with an I/O complexity of
O(|E| + |E|1.5/P); furthermore [5] proposes an algorithm
with an I/O complexity of O(|E|1.5/P · logM/P (|E|/P)).

9. CONCLUSION
For the well-studied problem of triangle listing, we have

investigated how a general-purpose & worst-case optimal
join algorithm compares against specialized approaches in
the out-of-core context. By using Leapfrog Triejoin, we are
able to devise a framework with the boxing strategy that re-
duces I/O cost and demonstrate competitive performance in
a heterogeneous environment with the CPU and the GPUs.
Our positive results can be interpreted as a confirmation for
the database community’s theme of creating systems to em-
power users via declarative query interfaces while providing
very good performance. Moreover, the proposed framework
is a complete query engine that can run any relational join.
It can be combined with a query optimizer to determine the
variable ordering to get better performance.

10. ACKNOWLEDGMENTS
We gratefully acknowledge the support of National Sci-

ence Foundation under grant CCF-1337177 and the Intel
Science and Technology Center on Cloud Computing.

11. REFERENCES
[1] A. Atserias, M. Grohe, and D. Marx. Size bounds and

query plans for relational joins. In FOCS’08, pages
739–748. IEEE, 2008.

[2] S. Baxter. Modern gpu.
http://nvlabs.github.io/moderngpu/, 2013.

[3] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT:
A recursive model for graph mining. In SDM,
volume 4, pages 442–446. SIAM, 2004.

[4] S. Chu and J. Cheng. Triangle listing in massive
networks and its applications. In SIGKDD, pages
672–680. ACM, 2011.

[5] R. Dementiev. Algorithm engineering for large data
sets. PhD thesis, Saarland University, 2006.

[6] G. Diamos, H. Wu, J. Wang, A. Lele, and
S. Yalamanchili. Relational algorithms for
multi-bulk-synchronous processors. PPoPP ’13, pages
301–302, 2013.

[7] X. Hu, Y. Tao, and C.-W. Chung. Massive graph
triangulation. In SIGMOD, pages 325–336. ACM,
2013.

[8] M. A. Khamis, H. Q. Ngo, C. Ré, and A. Rudra. A
resolution-based framework for joins: Worst-case and
beyond. CoRR, abs/1404.0703, 2014.

[9] H. Kwak, C. Lee, H. Park, and S. Moon. What is
Twitter, a social network or a news media? In WWW
’10, pages 591–600, New York, NY, USA, 2010. ACM.

[10] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin,
A. Kyrola, and J. M. Hellerstein. Distributed
graphlab: A framework for machine learning and data
mining in the cloud. Proc. VLDB Endow.,
5(8):716–727, Apr. 2012.

[11] B. Menegola. An external memory algorithm for
listing triangles. Technical report, Universidade
Federal do Rio Grande do Sul, 2010.

[12] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel,
and B. Bhattacharjee. Measurement and Analysis of
Online Social Networks. In IMC’07, San Diego, CA,
October 2007.

[13] H. Q. Ngo, D. T. Nguyen, C. Ré, and A. Rudra.
Beyond worst-case analysis for joins with
minesweeper. CoRR, abs/1302.0914, 2014.

[14] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case
optimal join algorithms:[extended abstract]. In PODS,
pages 37–48. ACM, 2012.

[15] R. Pagh and F. Silvestri. The input/output
complexity of triangle enumeration. In PODS’14,
pages 224–233, 2014.

[16] G. Palla, I. Derényi, I. Farkas, and T. Vicsek.
Uncovering the overlapping community structure of
complex networks in nature and society. Nature,
435(7043):814–818, 2005.

[17] J. W. Raymond, E. J. Gardiner, and P. Willett.
Rascal: Calculation of graph similarity using
maximum common edge subgraphs. The Computer
Journal, 45(6):631–644, 2002.

[18] N. Rhodes, P. Willett, A. Calvet, J. B. Dunbar, and
C. Humblet. Clip: similarity searching of 3d databases
using clique detection. Journal of chemical
information and computer sciences, 43(2):443–448,
2003.

[19] T. Schank. Algorithmic aspects of triangle-based
network analysis. Phd in computer science, University
Karlsruhe, 2007.

[20] J. Seo, J. Park, J. Shin, and M. S. Lam. Distributed
socialite: a datalog-based language for large-scale
graph analysis. Proceedings of the VLDB Endowment,
6(14):1906–1917, 2013.

[21] T. L. Veldhuizen. Triejoin: A simple, worst-case
optimal join algorithm. In ICDT, pages 96–106, 2014.

[22] H. Wu, G. Diamos, T. Sheard, M. Aref, S. Baxter,
M. Garland, and S. Yalamanchili. Red fox: An
execution environment for relational query processing
on gpus. CGO ’14, pages 44:44–44:54, 2014.

[23] H. Wu, G. Diamos, J. Wang, S. Cadambi,
S. Yalamanchili, and S. Chakradhar. Optimizing data
warehousing applications for gpus using kernel
fusion/fission. In PLC, IPDPSW ’12, pages
2433–2442, 2012.

[24] H. Wu, D. Zinn, M. Aref, and S. Yalamanchili.
Multipredicate join algorithms for accelerating
relational graph processing on GPUs. ADMS 2014,
September 2014.

[25] J. Yang and J. Leskovec. Defining and evaluating
network communities based on ground-truth. CoRR,
abs/1205.6233, 2012.

[26] D. Zinn. General-purpose join algorithms for listing
triangles in large graphs. CoRR, abs/1501.06689, 2015.

