

COMPUTER ARCHITECTURE AND SYSTEMS LAB

Amdahl's Law for Lifetime Reliability Scaling in Heterogeneous Multicore Processors

HPCA 2016 – Session 8B Barcelona, Spain

William Song, Saibal Mukhopadhyay, and Sudhakar Yalamanchili

School of Electrical and Computer Engineering Georgia Institute of Technology

03/16/2016

- Introduction
- Review of Performance and Energy Models
- Compact Thermal Estimation
- Amdahl's Law for Heterogeneous Multicore Reliability
- Conclusion

Introduction

- The paradigm of designing processors has been shifting.
 - Performance → energy efficiency
 - Heterogeneous multicore processors
 - Big core: faster sequential executions
 - Small core: energy-efficient parallel executions
- Amdahl's Law in heterogeneous processors
 - Performance speed-up model from Hill and Marty, Computer (2008)
 - Energy scaling model from Woo and Lee, Computer (2008)

SC: Small Core (i.e., in-order execution) BC: Big Core (i.e., out-order execution)

Problem Description

- Reliability bottleneck in heterogeneous processors
 - Failure of the only big core:
 - No other cores can replace it.
 - Failure of the entire processor or significant performance penalty
 - Failure of a small core:
 - Exploiting component redundancy
 - Relatively minor performance loss

SC: Small Core (i.e., in-order execution) BC: Big Core (i.e., out-order execution)

Modeling Method

- Heterogeneous multicore reliability is a *function of (f, b, n)*:
 - Amdahl's factor f determines stress duration.
 - Multiple big cores b can share serial loads.
 - Processor size n affects total execution time.

- Introduction
- Review of Performance and Energy Models
- Compact Thermal Estimation
- Amdahl's Law for Heterogeneous Multicore Reliability
- Conclusion

Revisiting Performance and Energy Models from "Hill and Marty" and "Woo and Lee"

- Multicore models studied in prior work:
 - 1. Homogeneous processor of small cores
 - 2. Homogeneous processor of big cores
 - 3. Heterogeneous processor of one big core and many small cores
 - 4. Composed processor of small cores

sc sc sc sc sc sc
sc sc <mark>sc sc</mark> sc sc
sc sc <mark>sc sc</mark> sc sc
sc sc sc sc sc sc
SC SC SC SC SC SC

SC: Small Core (i.e., in-order execution) BC: Big Core (i.e., out-order execution)

Revisiting Performance and Energy Models from "Hill and Marty" and "Woo and Lee"

- Modified assumptions in multicore models:
 - Unused cores are *power-gated*.
 - Heterogeneous processor includes *multiple big cores*.
 - Maximum scheduling: big cores take part in parallel executions.
 - Dynamic scheduling: big cores are turned off in parallel phases.

Revisiting Performance and Energy Models from "Hill and Marty" and "Woo and Lee"

Heterogeneous processor with maximum scheduling

- *f*: Amdahl's factor (parallelizable fraction)*n*: processor size (in unit of small cores)
- 1: small core area, performance, power.
- *r*: big core area.
- s: big core performance $s \propto \sqrt{r}$ (Pollack's Rule, MICRO 1999)
- *p*: big core power $p \propto (\sqrt{r})^{\alpha}$ (Chung's model MICRO 2010)
- *i*: big core idle-state power

	IBM BlueGene/Q	IBM POWER7	Intel Atom Z520	Intel i7 960
Core execution type	In-order	Out-of-order	In-order	Out-of-order
Technology node	45nm	45nm	45nm	45nm
Estimated die area	360mm ²	567mm ²	26mm ²	263mm ²
Number of cores	18	8	1	4
Cores-to-die area ratio	34%	32%	37%	37%

- Focus on the cores: No discernible correlation is found between cores-to-die area ratio and core types, number of cores, or other uncore configurations.
- r = 3 is chosen: Big and small core area ratio is estimated around r = 2.5-4.4

	IBM POWER7+	Intel i7 2700K	Intel i7 3770K
Core execution type	In-order	Out-of-order	Out-of-order
Technology node	32nm	32nm	22nm
Core area scaling from prev. gen.	0.68x	0.66x	0.66x
Number of cores	8	4	4
Cores-to-die area ratio	37%	37%	37%

Evaluation of Performance and Energy Efficiency Models

- The most energy efficiency and performance speed-up are achieved when a heterogeneous processor includes one big core (b=1) and many small cores.
- Including multiple big cores penalizes the performance and energy efficiency of heterogeneous multicore especially for small *n* or large *f*.

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

- Introduction
- Review of Performance and Energy Models
- <u>Compact Thermal Estimation</u>
- Amdahl's Law for Heterogeneous Multicore Reliability
- Conclusion

Compact Thermal Estimation

- Reliability and temperature dependency
 - Assuming uniform temperature or failure rate is not a reasonable approach.
 - Goal: thermal difference → reliability difference estimation
- Thermal difference is created by:
 - Processor composition (homogeneous or heterogeneous)
 - Execution phase (sequential or parallel)
 - Thread scheduling (maximum or dynamic)
- Baseline: homogeneous processor of small cores in parallel executions
 - Steady-state temperature difference: $\Delta \mathbf{x}' = \mathbf{C} \Delta \mathbf{u}$
 - x': steady-state temperature vector
 - C: power input to temperature conversion factors
 - u: power input vector

Compact Thermal Estimation

- Steady-state temperature difference: $\Delta \mathbf{x}' = \mathbf{C} \Delta \mathbf{u}$
- Thermal change of floorplan at *j*: $\Delta x'_j = C_{jj} \Delta u_j + \sum_{k=1}^{n} C_{kj} \Delta u_k$

due to power input at *j*

Thermal change Thermal change due to power input at $k \neq j$

For unknown floorplanning, a scalar approximation is used.

$$\Delta \mathbf{x}_j' = \mathbf{C}_{jj} \Delta \mathbf{u}_j + \bar{\mathbf{C}}_{kj} \Delta \bar{\mathbf{u}}$$

Average of power changes and thermal impact

If *j* belongs to a big core

$$\Delta \bar{\mathbf{u}}_b = \frac{(b-1)r}{n-r}\delta(p_b-1) + \frac{n-b \times r}{n-r}\delta(p_s-1)$$

Average power changes Average power changes of other big cores at $k \neq j$ of other small cores at $k \neq j$

If j belongs to a small core:

f: Amdahl's factor (parallelizable fraction) *n*: processor size (in unit of small cores) 1: small core area, performance r: big core area b: big core count s: big core performance p_h : big core power If *j* belongs to a small core: $\Delta \bar{u}_s = \frac{b \times r}{n-1} \delta(p_b - 1) + \frac{n-1-b \times r}{n-1} \delta(p_s - 1) \begin{cases} p_b & \text{signation} \\ p \propto (\sqrt{r})^{\alpha} & \text{when active, 0 if power} \\ p_s & \text{small core power} \\ 1 & \text{when active, 0 if power-gated} \end{cases}$ $p \propto (\sqrt{r})^{lpha}$ when active, 0 if power-gated

Accuracy of Compact Thermal Estimation

Comparison to a detailed thermal model (HotSpot)

	Maximum difference (°C) to HotSpot model				
	Sequential execution		Parallel execution		
Processor type	Big core	Small core	Big core	Small core	
Homogeneous: small cores	N/A	-0.41	N/A	Baseline	
Homogeneous: big cores	+0.63	N/A	+0.45	N/A	
Heterogeneous: max. sch.	+0.63	Unused	-0.19	-0.01	
Heterogeneous: dyn. sch.	+0.63	Unused	Unused	-0.58	
Composed: small cores	N/A	-0.32	N/A	Same as Baseline	

Compact thermal estimation has less than 1°C difference to a detailed model.

- Introduction
- Review of Performance and Energy Models
- Compact Thermal Estimation
- Amdahl's Law for Heterogeneous Multicore Reliability
- Conclusion

Lifetime Reliability Model

- Hot carrier injection: $MTTF_{HCI} = A_{HCI} I_{sub}^{-n} e^{(E_{a HCI}/kT)}$
- Negative bias temperature instability: $MTTF_{NBTI} = A_{NBTI} V_{qs}^{-r} e^{(E_{a NBTI}/kT)}$
- Exponential model: MTTF = $1 / \lambda$
- Sum of failure rates (SOFR)
 - $\lambda = \lambda_{HCI} + \lambda_{NBTI}$ for each core
 - $\lambda_b = r \times \lambda_s$ for the same operating conditions

 λ is obtained from *compact thermal estimation* for each *core type* of different *processor composition* and *execution phase*.

Multicore Lifetime Reliability Model

Heterogeneous processor with maximum scheduling

Lifetime Reliability Evaluation

(b) n = 64, b = 1 (d) n = 64, b = 2

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

(f) n = 64, b = 4

Conclusion

Contributions

- 1. Extended performance and energy efficiency models
- 2. Compact thermal estimation for reliability modeling
- 3. Heterogeneous multicore reliability models
- 4. Lifetime reliability assessment of heterogeneous processors

Insights

- Reliability bottleneck:
 - Small b/n ratio puts biased stress on big cores.
 - Diminishing parallelization fraction f shifts stress from small to big cores.
- Performance and reliability tradeoff:
 - Increasing b/n ratio relieves big core criticality.
 - But, large b/n ratio i) decreases peak parallel throughput, ii) extends total execution time, and thus iii) has an adverse impact on reliability.