
1

KitFox: Multi-Physics Libraries for Integrated Power,
Thermal, and Reliability Simulations

of Multicore Microarchitecture
William J. Song, Saibal Mukhopadhyay, Senior Member, IEEE, and Sudhakar Yalamanchili, Fellow, IEEE

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332
wjhsong@gatech.edu, saibal@ece.gatech.edu, sudha@gatech.edu

Abstract— With continued technology scaling and increased power
and thermal densities, processor operation and performance are increas-
ingly dominated by physical phenomena. Microarchitectural approaches
to mitigate these effects must be based on a profound understanding
of how the physics is manifested in microarchitectural executions
and system-level properties such as performance, energy efficiency, or
lifetime reliability. This requires a modeling and simulation environment
that incorporates multiple physical phenomena and their concurrent
interactions with microarchitecture. In this paper, we introduce an
integrated power, thermal, and reliability modeling framework, KitFox.
The goal of KitFox framework is to facilitate research explorations at
the intersection of applications, microarchitectures, and various physical
phenomena including energy, power, thermal, cooling, and reliability.
The KitFox framework implements a standard interface to bridge
multiple physical models, where individual models are encapsulated
into libraries and are interchangeable. This paper describes the de-
sign methodology of the library framework that orchestrates various
implementations of physical models and standardized interface to cycle-
level microarchitecture simulators. Several use cases are presented to
demonstrate the range of modeling capabilities of KitFox.

I. INTRODUCTION

Microarchitectural operations are limited by physical challenges.
Dynamic control schemes such as power or thermal management
combined with inherent workload dynamics create spatiotemporal
changes in thermal and voltage states. These in turn lead to variations
in leakage power, logic delay, or device degradation across a
processor die, which eventually impact system-level properties such
as performance, energy efficiency, and lifetime reliability. Modeling
and simulation of future microarchitectures and applications must
be holistic including power, energy, thermal, and reliability concerns
in that their coupled interactions are becoming major performance
determinants of processors. Hence, we require more sophisticated
modeling and simulation infrastructures that combine traditional
multicore timing simulation with interacting physical models.

We note that an integrated modeling and simulation infrastructure
must depart from the state of the practice to accurately capture
interactions between multiple physical phenomena and their impact
on microarchitectures. For instance, trace-driven simulations have
been widely used, where distinct physical properties are calculated in
the independent steps of simulations. Such approaches do not model
interdependency between physical phenomena such as temperature
and leakage power. Even if such feedback is implemented (usually in
a tool-specific manner), it cannot be correctly reflected in the entire
chain of models. Ideally, we need a modeling infrastructure where
interactions between all physical phenomena can be modeled and
driven by applications executing on a target multicore microarchi-
tecture; modeling of integrated application, microarchitecture, and
physics combinations encompassing all interactions and feedback
loops. We refer to the modeling of interactions between diverse
physical phenomena as multi-physics modeling in this paper. To
address this important modeling problem, we have been developing

KitFox, an open-source modeling framework (formerly called Energy
Introspector [20]). We have integrated KitFox with different multi-
core simulation infrastructures including Manifold [27], Structural
Simulation Toolkit (SST) [6], [16], and MacSim [12] and applied it
to a range of research problems requiring integrated multi-physics
and multicore simulations [1], [2], [12], [15], [21], [22], [29].

In this paper, we discuss the design methodology, implementation,
and usage of KitFox. Architecture-level multi-physics simulations
utilize various physical models. In particular, KitFox is based on
the integration of external models that simulate different physical
properties; reliability, power, and thermal including popular tools
in the architecture community such as HotSpot [7] and McPAT
[11]. Each type of model in KitFox is encapsulated into a standard
class called library (e.g., energy, thermal, or reliability library). Any
new or updated models can be seamlessly integrated into KitFox by
encapsulating them into the respective libraries. There are no hidden
software dependencies between libraries, and all interactions are
explicitly managed via a standard library interface to avoid modifi-
cations to the third party tools. Microarchitecture simulations invoke
KitFox through user application programming interface (API), which
relieves microarchitecture modelers from orchestrating all multi-
physics interactions. Microarchitecture simulators themselves do
not need to incorporate and handle the physical models. Figure 1
illustrates the concept of standard libraries and user API. KitFox
has the following features and contributions:

• Standard library: Each model is encapsulated into a standard
class called library and integrated to KitFox. No cross-dependency
in software integration is created between models, and any new
models can be seamlessly added to the framework.

• Interacting library models: Interactions between physical models
are orchestrated inside KitFox via a standard library interface. It
minimizes user involvement in data management to coordinate
multiple libraries and subclass models.

• Simple user API: KitFox provides a set of user API functions to be
used in microarchitecture simulations. The same function is used
for calculating the same physical property via the standard library
interface, regardless of which individual model is used inside the
framework. For instance, all thermal models can be accessed the
same way from microarchitecture simulators.

• Configurable processor model: KitFox provides a configuration
method that users can define the microarchitectural and physical
hierarchy of a processor package and associate individual physical
models with constituent processor components to be simulated.

• Parallel simulation via MPI interface: KitFox supports parallel
simulation of physical models via message passing interface
(MPI) implementations. A microarchitecture simulator and KitFox
can execute in parallel in separate MPI processes, and KitFox
itself can also be divided into multiple MPI ranks.

2

Standard multi-physics library interface (KitFox)

Power library
(McPAT)

Power library
(DSENT)

Power library
(DRAMsim/Micron)

Power library
(Others)

Library Library Library Library

Library

Reliability library
(RAMP)

Library

Thermal library
(HotSpot)

Library

Thermal library
(3D-ICE)

Library

Thermal library
(Others)

…

…

Microarchitecture simulation framework

API functions / MPI interface

Figure 1. Multiple physical models are integrated into KitFox as
libraries. It standardizes the integration and use of models, and it
provides microarchitecture simulators with a set of API functions to
invoke the models [7], [11], [17], [23], [24], [25].

The remainder of the paper is organized as follows. We first
explain our motivation for developing KitFox and distinctions from
related efforts. We outline the process of building a full-system
simulation environment including applications, microarchitectures,
and various physical models. Then, we detail the methodology of
architecture-level multi-physics simulations based on the proposed
standard library approach. In particular, we describe how multiple
physical models are integrated into KitFox and how their interactions
are orchestrated. Various engineering problems encountered in the
development and solutions we developed are discussed, such as data
manipulation and time synchronization. Finally, we present several
use cases of KitFox to demonstrate the versatility of the framework.

II. DESIGN MOTIVATION AND DISTINCTION FROM

PREVIOUS WORK

We are motivated by two major issues. First, we note that there
already exist a variety of popular point tools used in the architecture
community and also many other custom models in industry. Consid-
erable efforts have been already invested to develop, validate, and
release these models. Utilizing them is a pragmatic, cost-effective,
and convenient start rather than re-investing resources and time
to develop new models with similar capabilities. Furthermore, the
architecture research community continues to develop new models or
update existing tools as technology evolves. Therefore, it is desirable
for a modeling framework to support the integration of various
implementations of tools and be open to the easy integration of
new models as they are developed and become available.

The second challenge is the efficient integration of these models
with microarchitecture simulators while supporting multi-physics
interactions between them. To date, this has normally been a
tedious, laborious, and error-prone engineering effort. We argue that
standardization of model interface is a logical approach and should
take the form of an API that is standardized across model types
and invocations. Such a framework is portable across multicore
simulation infrastructures with only engineering efforts for porting
the API rather than re-integrating physical models into each detailed
microarchitecture simulator.

There are several related efforts towards the development of a
multi-physics simulation environment. Coskun et al. [5] presented
a trace-driven simulation method including power, thermal, and
reliability models. Traces are the easiest way of connecting disparate
simulation tools, but this approach is fundamentally limited in its
ability to capture runtime dynamics. For example, a runtime control
via dynamic frequency scaling (DFS) significantly changes time-
sampled data in traces. It requires artificial post-processing of pre-
generated traces to reflect dynamic changes, which is difficult to

perform accurately and is error-prone. In contrast, KitFox takes a
more holistic approach by integrating various models into the same
framework. It provides a simple and standardized API to microar-
chitecture simulators to facilitate the use of integrated models.

Bartolini et al. [4] introduced a MATLAB-based infrastructure
interfaced with a conventional C/C++-written microarchitecture sim-
ulator via copying of data structures to/from shared memory space.
Although MATLAB is a powerful toolkit, it is not suitable to be used
in the direct integration of already time-consuming microarchitecture
simulations. The authors implemented empirically obtained physical
models in MATLAB, whereas KitFox pursues support of various
validated, open-source modeling tools that are written in C/C++ and
popularly used in the research community.

Sajjadi-Kia and Ababei [18] developed a thermal-reliability sim-
ulation framework to optimize floorplanning. Their framework used
the detailed circuit-level information of an IP block from a SPICE
simulation. The authors targeted at exploring various floorplanning
options by varying design parameters, which was conducted in a
static manner at each step of iterative simulation. Priyadarshi et al.
[14] presented a simulation framework for the thermal pathfinding
of 3D ICs. The authors used simplified system description instead
of using detailed and therefore slow CAD models. Their framework
also aimed at implementing a metric-driven tool flow to find an
optimal 3D design by changing design parameters. KitFox frame-
work is distinct from these efforts in that it models workload-driven
runtime dynamics in microarchitecture operations and multi-physics
interactions. It also pursues flexibility in system description that
enables users to compose different processor designs instead of
enforcing a particular system such as 3D IC.

Developing an integrated multi-physics simulation environment
involves numerous software engineering challenges to implement
a standardized, configurable, and scalable simulation framework. In
this paper, we introduce a novel multi-physics simulation framework,
KitFox. The goal of KitFox framework is to provide a standardized
integration method and interface to bridge various implementations
of physical models and facilitate research explorations at the in-
tersection of application, microarchitecture, power, energy, thermal,
cooling, and reliability. We will also point out later other advantages
including the use of interchangeable physical models with no modifi-
cations to simulators. Such features and capabilities are distinguished
from the state of the practice that incorporates specific point tools
via tight integration with simulators [4], [5], [14], [18]. To the best of
our knowledge, there does not exist a microarchitecture-level multi-
physics modeling framework with modularized models.

III. LIBRARY INTEGRATION OF PHYSICAL MODELS

KitFox framework provides a standardized method to integrate
various implementations of physical modeling tools. An individual
tool in general is specialized to model a single type of physical
property, and different tools have different functionalities and usages.
In KitFox, we define classes called libraries, where each library hosts
different type of models; energy, thermal, and reliability libraries.
For each model being integrated into KitFox, a wrapper class is
created. The wrapper class is defined as the subclass of one of the
standard library classes listed in Table I. It includes header/source
files of the tool to be integrated and re-defines the usage of the
model according to the virtual functions of the corresponding library
class. As a result, models of the same library type can be used in
an identical way. For instance, HotSpot [7] and 3D-ICE [23] are
popular tools used for package-level thermal modeling. Both models
are integrated into the thermal library in KitFox and driven by the
same functions, although their implementations are different. When
KitFox is used in a microarchitecture simulator, the choice of one

3

TABLE I. Standard Library Classes in KitFox
Library types Description

Energy
library

• Estimation of per-access energies of different access
types (e.g., read, write, logical switching)

• Area estimation based on circuit-level models
• Runtime updates of variables (e.g., voltage, clock

frequency, temperature)
• Integrated models: McPAT (including Cacti) [11],

[26], DSENT (previously named Orion) [9], [25],
DRAMSim (Micron model) [17], IntSim [19]

Thermal
library

• Floor-planning and power grid mapping
• Calculation of steady-state or transient temperatures
• Runtime updates of variables (e.g., ambient temper-

ature, coolant flow rate, power distribution)
• Integrated models: HotSpot [7], 3D-ICE [23]

Reliability
library

• Calculation of cumulative failure rates
• Runtime updates of variables (e.g., temperature)
• Integrated models: RAMP-like failure models in-

cluding electro-migration (EM), bias temperature in-
stability (BTI), time-dependent dielectric breakdown
(TDDB), hot carrier injection (HCI), stress migration
(SM) [8], [24], [28]

or the other model can be made with no changes to the simulator;
model selection is specified in an input configuration file. Table I
summarizes the functions of library classes.

A. Energy Library and Circuit-Level Modeling

A power (or energy) modeling tool is integrated as the sub-
class of energy library. Power is characterized at microarchitecture-
level components whose circuit-level designs are estimated from
supported tools based on technology-dependent parameters and
microarchitectural configurations. For each component of simulated
microarchitecture, a model of the energy library estimates per-access
dynamic energies of distinct operation types (e.g., read, write, logical
switching) and leakage power [11], [17], [19], [25], [26]. Total
dynamic energy is calculated by multiplying estimated per-access
energies with counters of corresponding access types that can be col-
lected from microarchitecture simulations. For example, to estimate
the power dissipation of a register file, read and write access counters
of this component are collected from a microarchitecture simulation.
Per-access energy of a read or write operation is estimated by a
selected circuit-level model. Dynamic power is calculated as the sum
of the products of access counters and per-access energies for each
access type, divided by timing interval that the counters have been
collected during the microarchitectural simulation. Leakage power
has exponential dependency on temperature, so it requires a thermal
analysis for accurate power modeling. While KitFox supports several
popularly used tools in the architecture community, integration is not
limited to these tools, and new models can be seamlessly added.

B. Thermal Library and Package-Level Modeling

Temperature modeling tools are encapsulated into thermal library.
Temperature is characterized at package level. A processor package
is represented as the stack of layers with thermal grids. Each thermal
grid cell is expressed as a thermal RC connection. Calculating
thermal field over a processor package is equivalent to solving
the differential equations of this thermal RC network. Components
constructing a processor on a die are organized and represented
by floorplans [7], [23]. Each floorplan block represents a set of
microarchitectural units, where the power dissipation of each unit is
estimated from a linked energy library model and microarchitectural
timing simulation. The power estimates of floorplans are supplied
to a gridding process that computes power at each grid cell at a

finer resolution (configurable within a thermal model). This fine-
grained power grid (e.g., 0.01mm2 per cell) is the input to the
thermal model, and temperature field over this grid is calculated.
Temperature changes are coupled to leakage power and create a
feedback loop between the energy and thermal libraries.

C. Reliability Library and Lifetime Prediction

Device aging phenomena include electro-migration (EM), neg-
ative bias temperature instability (NBTI), time-dependent dielectric
breakdown (TDDB), hot carrier injection (HCI), and stress migration
(SM). Since these failure mechanisms reflect long-term behaviors,
they are impractical to simulate across the entire processor at
cycle level. Thus, high-level abstractions are generally employed
in lifetime reliability studies [24]. In KitFox, detailed modeling
of physical interactions is utilized to calculate failure rates and
evaluate lifetime reliability. Cumulative failure rates are calculated
with respect to time-varying stress conditions including voltage
and thermal states that are induced by workload dynamics and
microarchitectural operations. Core or processor-level failure rates
are calculated as the sum of failure rates of all constituent com-
ponents. This library is coupled with thermal and energy libraries
through physical interactions chain. The architecture-level modeling
of lifetime reliability and multi-physics interactions enables us to
explore more complex problems such as understanding the reliability
criticality of different applications or dynamic execution controls
(e.g., turbo-mode executions). For example, if core execution is
accelerated by elevating voltage and clock frequency, it increases
switching activities of core components and voltage stress. Increased
power and heat dissipation accelerates device degradation processes.
As a result, the failure rate of the core rises, and predicted lifetime
decreases. Such interactions cannot be correctly captured without
detailed multi-physics modeling.

IV. PROCESSOR PHYSICS: MODELING

APPLICATION-MICROARCHITECTURE-PHYSICS INTERACTIONS

We refer to interactions between diverse physical phenomena
and their impact on multicore processor performance as processor
physics. Modeling the processor physics is an important but chal-
lenging task. Execution controls for system-level tasks such as power
or thermal management create spatiotemporal variations of physical
phenomena in multicore processors in addition to that created by
executed applications. It is impossible to model such interacting
physical phenomena with the first-order analysis (e.g., steady-state or
trace-driven simulation), where a single physical property is charac-
terized at a time under oversimplified assumptions of the behaviors
of other physical effects. Therefore, integrated cross-layer, multi-
physics simulation is an imminent modeling challenge for system-
level research explorations across applications, microarchitectures,
and diverse physical phenomena.

In KitFox framework, multiple physical models are concurrently
simulated, and their interactions are captured at user-defined sam-
pling rate. At every sampling interval, KitFox is invoked by a cycle-
level microarchitecture simulator. Figure 2 depicts an architecture-
level abstraction of interactions between multiple physical properties
and associated models. Execution of workloads in the microarchitec-
ture simulation generates switching activities of functional compo-
nents (e.g., register file). Architectural activities are represented by
access counters (e.g., read, write) and used to calculate the dynamic
power dissipation of modeled components [11], [17], [19], [25], [26].
Leakage power is estimated by assuming a constant temperature
during a sampling interval. Power results are mapped onto user-
created thermal floorplans, and temperature is calculated based on

4

Multi-physics interactions

Floorplan powers

Functional emulation
(frontend)

Microarchitecture
timing simulation

Instruction stream

Application binaries

Microarchitecture
configuration

Power modeling

Component access counters

Thermal modeling

Technology
parameters

Package design
/ floorplanning

Fa
ilu

re
 ra

te

Controller

Voltage

Floorplan
temperatures

Clock frequency

Reliability modeling

Le
ak

ag
e

fe

ed
ba

ck

Management algorithms
/ optimization metrics

Dynamic
power

Leakage
power +

Timing back-pressure

Figure 2. Architecture-level abstraction of interactions between mul-
tiple physical properties and microarchitecture. These interactions
are captured concurrently during simulation runtime [20], [21].

the spatial distribution of input powers and thermal grid states [7],
[23]. Thermal changes cause feedback interactions between temper-
ature and leakage power, and recalculated leakage power is used
for temperature calculation in the next sampling period. Reliability
characteristics (i.e., failure rate and lifetime prediction) of modeled
components are calculated with respect to time-varying operating
conditions (i.e., voltage and temperature). The chain of physical
interactions creates a loop and is repeated at every sampling interval.
Execution controls such as dynamic voltage and frequency scaling
(DVFS) may intervene in this chain of events and dynamically
change operating conditions and resulting physical phenomena.

V. DATA MANIPULATION AND ERRORS

In KitFox, data queues are used to store calculated results
from multicore timing simulations and associated physical models.
Organization and operation of data queues are central to the correct
modeling of multi-physics interactions. Their design, implementa-
tion, and operation are described in this section.

A. Data Formats

When integrating multiple physical models (especially third-party
tools) in the same framework, the same physical quantity may be
expressed in multiple distinct ways across the tools using different
notations, data types (e.g., fixed vs floating point), or even units (e.g.,
V vs mV). There are pragmatic engineering problems to convert
between different formats of data shared across multiple tools.
KitFox defines the data formats of common physical phenomena
(e.g., voltage, power), and the wrapper classes of integrated tools
handle data conversions. Therefore, library classes return computed
results in consistent data formats that can be shared with other
libraries, and data manipulation can be standardized in KitFox.

B. Data Queues and Operations

A challenge in data management is the maintenance of time-
varying data that are shared across multiple libraries. For instance,
power is calculated by an energy library model and used to compute
temperature by a thermal model. Changes in temperature cause
feedback interactions with leakage power and update temperature-
dependent variables of the energy model. If users or other libraries
naively refer to the power data or variables stored in the energy
library model, inconsistent results will be returned depending on
whether the request is made before or after the calculations or
feedback interactions are performed. Thus, time synchronization and
retaining calculated results are essential to the correct modeling
and calculation of multi-physics interactions. In KitFox, computed

results from each physical model are stored in data queues to handle
cross-reference between libraries and runtime updates of models.
Each data queue stores a single type of data (e.g., power) and is
identifiable with type information that indicates which type of data
is stored within. Each element in the queue is time-stamped with i)
simulation time at which it was created and ii) sampling interval at
which it was recorded. Since computed results are stored in separate
structures rather than overwriting the variables of models, users or
other libraries can refer to the correct results with time tags while
runtime updates of the models can independently proceed without
corrupting the results. There are two types of queues to manage
time-varying data as follows.
1) Closed queue (for periodic data): Discrete-time data such as

power or temperature are calculated and stored at the end of
sampling interval, time = t, based on observed statistics during
period p. These data are regarded as valid during (t − p, t]
duration, and the queue returns the data for any access requests
between t − p and t (sec) including t (sec).

2) Open queue (for aperiodic data): Some types of data are aperiod-
ically collected during runtime simulations. For example, clock
frequency remains constant until a control mechanism (e.g., DFS)
decides to change the frequency. In such a case, datum stored at
time = t is valid for [t, ∞) or until a new value is inserted at t+δ

(sec). The queue returns the data for access requests between t
and t +δ (or ∞) including t (sec).

There are three operations defined for data queue accesses; push
(data insertion), pull (data retrieval), and overwrite (data replace-
ment). Push and pull are basic write and read operations of the
queue, respectively. A pull operation does not dequeue an entry,
but dequeueing is implicitly handled when the queue becomes full
(at user-defined capacity). An overwrite function replaces an existing
entry with a new value. All queue operations require a data identifier
(i.e., enumerated type) and tag information (i.e., time t and sampling
period p). A queue operation first finds a data structure with the data
identifier, where each queue stores a single type of data. Time tag
is checked at every queue operation, and error detection is provided
for functional correctness and debugging. For a push operation, data
intervals must be contiguous, and timing violations set error codes
(e.g., non-contiguous, overlapped, out-of-order). If the period p is
not provided (i.e., p = 0), the queue operation implicitly derives
the period value by checking the last entry in the queue. For a
pull operation, a data request must match with the time tag (t
and p pair) of an existing entry. If no matching entry is found,
an error code is set (e.g., tag-mismatch, out-of-queue-range). If the
period p is not provided, it tries to find an interval that the time t
falls into and returns the data value of that interval. Overwrite is a
combined operation of pull and push accesses. It first performs the
same process as the pull operation and then replaces a data value if
matching entry is found.

C. Data Queues and Library Callbacks

Data queues are coupled with library classes such that inserting
new data into the queues (e.g., push operation) triggers the callback
functions of associated libraries. The callback functions perform
updating the variables of library models that are dependent on the
inserted data type. For instance, if a microarchitecture simulator
needs to perform dynamic voltage scaling (DVS), this is simply
inserting a new voltage value into the data queue associated with an
energy library model through a KitFox API call. Then, the push
operation triggers the callback function of linked energy library,
which updates the voltage-dependent variables of subclass power
model. As such, runtime updates of library models can be greatly

5

TABLE II. Error Propagation in Physical Interactions Chain
Power inputs Error propagation in results

Power density
(avg. temp.)

Max input
error

Resulting
temp. error

Resulting
MTTF error

50 W/cm2

(68◦C)

10% 1.6% 2.6%
30% 4.9% 7.9%
50% 7.6% 12.7%

100 W/cm2

(90◦C)

10% 2.4% 3.7%
30% 6.9% 11.3%
50% 11.4% 20.2%

125 W/cm2

(101◦C)

10% 2.8% 4.2%
30% 7.7% 12.4%
50% 12.6% 21.7%

simplified and automated by managing data in the queues since
transferring data between the queues implicitly incur the updates of
associated libraries. Specific implementations of callback functions
have to be defined by the wrapper classes of individual models.

D. Error Propagation in Physical Interactions Chain

With interacting physical models, inaccuracies in one model can
propagate through (and sometimes be amplified by) other models.
As described earlier, KitFox does provide the detection of timing
and synchronization errors. We view the need for model validation
as being important but distinct from the goals of this paper, which is
developing a multi-physics simulation environment with interacting
models. Moreover, the individual models (i.e., third-party modeling
tools) are not the contribution of this paper. As KitFox is designed
to incorporate external modeling tools, we are concerned with how
inaccuracies can propagate through interacting models and thereby
affect simulation results.

To study this issue, we created 8×8 checkerboard floorplans of
256mm2 area and assumed even power density on the die. Steady-
state temperature and resulting mean time to failure (MTTF) of each
floorplan were calculated under these conditions. Then, uniformly
distributed errors were added to the power inputs, and corresponding
changes in resulting temperature and MTTF were measured. We used
HotSpot steady-state thermal model with default parameters [7] in
this experiment, and wear models presented in the work of Song et
al. [21] were used to estimate the MTTF. Table II shows the changes
of resulting temperature and MTTF due to injected errors in the
power inputs. With increasing power density, the same input error
magnitude produces larger absolute changes in power density and
hence resulting temperature and MTTF. Due to thermal spreading
and low-pass filtering effects, temperature changes are much smaller
than the error rates induced in the power inputs. However, non-
linearity in MTTF equations is biased against thermal hotspots, and
its error increases with greater unevenness in power and thermal
densities. In overall, this experiment reveals that errors in power
inputs are at least not significantly magnifying through the physical
interactions chain.

VI. PROCESSOR COMPONENT HIERARCHY AND DESCRIPTION

We seek to devise a composable framework that enables users
to simulate various different microarchitectures or package designs.
A principal challenge is in interconnecting multiple libraries and
configuring their subclass models corresponding to a target processor
design to simulate, while being able to flexibly change model pa-
rameters or modify processor designs. In KitFox, this is achieved by
implementing a unified configuration method to define a processor
component hierarchy (e.g., packages, floorplans, microarchitecture
components), where each component in the hierarchy is associated
with a library model.

Pseudo component
(package)

Pseudo component
(floorplan: core0)

Pseudo component
(floorplan: coreN)

Pseudo component
(floorplan: uncore)

Pseudo component
(intermediate: cores)

Pseudo component
(source: registers)

Pseudo component
(source: ALUs)

…

Library:
thermal model

Library: null

Pseudo component
(source: cache)

…
…

Library:
energy model

Library:
reliability model

Library:
energy model

Library:
energy model

Library:
reliability model

Library:
reliability model

Package modeling

Floorplanning

Microarchitecture decomposition

Data transfers
(physical interaction)

Data transfers
(physical interaction)

Fetch
Buffer

Instruction
Decoder Scheduler

ALU

ALU

ALU …"

…"

…"

…"

Figure 3. A processor is represented with pseudo component hier-
archy in KitFox. Pseudo components are physically defined units
where associated libraries and their subclass models simulate phys-
ical phenomena. Physical interactions are emulated by transferring
data between the data queues of pseudo components [20].

A. Representation of Processor Component Hierarchy

In KitFox framework, a processor is represented as the hierarchy
of pseudo components. Pseudo components are abstract units for
which library models are attached to simulate physical phenomena.
Different physical properties are characterized at different levels
of processor abstraction. For instance, power is characterized at
microarchitecture or circuit-level components using activity counts
(refer to Section III-A for the energy library and power calculation
method). Temperature is calculated at package level based on the
power distribution of a processor die. As such, pseudo components
can represent different levels of processor abstraction depending on
which library models they are associated with and which physical
properties are characterized. A pseudo component may represent
a microarchitecture component when an energy library model is
associated with it to calculate power or energy dissipation. Or it
can be a processor package if a thermal library model is attached. A
pseudo component hierarchy can be flexibly composed to simulate
different processor designs. There are no inherent restrictions on the
number of levels in the pseudo component tree, and each pseudo
component can have as many sub-components as necessary.

Figure 3 illustrates an example of how KitFox framework serves
to interface pseudo components and libraries to simulate a proces-
sor design. Simulated microarchitecture is decomposed into basic
components (shown as “sources” in the figure), where power is
estimated by energy library models. Each energy library may derive
a different tool, so it enables choosing the most appropriate model
for different microarchitecture components (refer to Section III for
the description of libraries or wrapper classes). Pseudo components
can be grouped into another upper-level pseudo component (shown
as “floorplans” in the figure) depending on their microarchitectural
and technological similarities (e.g., core, cache). Higher-level com-
ponents may represent larger processor units such as cores or regions
on the die. The root component in the example represents a processor
package and is linked to a thermal library model. It can designate any
descendant components in the tree as its constituent floorplans. Some
intermediate components without linked libraries can also be created
for the convenience of processor description or data collection. Every
pseudo component includes data queues to store computed results
of library models and shared data (e.g., voltage, clock frequency,

6

power) for cross-referencing between pseudo components (refer to
Section V for data queue operations).

When composing a pseudo component hierarchy, users have to
know what the models of choice are capable of simulating and how
they are configured. The users should specify the input parameters
of each model to be used at the corresponding pseudo component.
KitFox itself does not perform microarchitecture-aware automation.
Technically, KitFox only recognizes the pseudo component hierarchy
and libraries associated with the components. For instance, KitFox
does not know if a pseudo component is representing a register file or
cache but treats each pseudo component in the tree as a unit linked to
one of the libraries. Microarchitecture simulators are responsible for
providing complete activity statistics (e.g., access counters, timing
information) with KitFox and its library models. This approach
tackles a problem that developers write simulators in many different
ways. There is no common way to organize the simulation models of
microarchitectural blocks into specific C/C++ functions or classes.
The notion of pseudo components enables simulator users to map
code segments from specific simulators to KitFox library models
thereby making it easier to incorporate the multi-physics framework
into any existing simulators and to do so in a portable manner.

B. Steps in KitFox Framework Executions and API Functions

KitFox provides a set of API functions for data calculation or
manipulation that can be used in user microarchitecture simulators.
A pseudo code example is shown in Algorithm 1. Microarchitecture
simulation is organized as a sequence of sampling intervals. At
the end of every sampling interval, collected access counters are
used to calculate the power dissipation of modeled components, and
the results are stored in the data queues of corresponding pseudo
components. Power data are synchronized in the pseudo component
hierarchy by aggregating the values from the leaves toward the root
of the tree. The data queues of pseudo components without energy
libraries (e.g., floorplans or package) are also updated based on the
power values of constituent components. Since data in the queues
are tagged with time information, timing violation can be detected
when pseudo components have asynchronous power data or if the
powers of some components are mistakenly not calculated (refer to
Section V for data queue operations). This synchronization process
is handled inside KitFox, and any pseudo components can be probed
to retrieve the power data after synchronization.

Updated power information of floorplan-level components is used
to calculate temperature. A thermal library model internally converts
floorplan powers to grid-level power distribution, updates thermal
states, and translates grid-level thermal states to floorplan tempera-
tures. When synchronizing temperature data in the pseudo compo-
nent tree, it is assumed that temperature is uniform within each floor-
plan component if no further placement information is provided with
its sub-components. If there are multiple sub-components belonging
to the same floorplan component, they are updated with the same
temperature. This process is technically inserting new temperature
values with time tags into data queues (i.e., push operation). As a
result, the callback functions of library models (e.g., energy library)
are invoked, and dependent variables and states are updated (e.g.,
thermal and leakage power dependency). Since the calculated results
are stored in data queues, library models can safely update their
internal variables and states based on defined interactions with time-
varying physical properties. Lifetime reliability is characterized at
floor-level components in the example. Cumulative failure rates are
calculated with respect to time-varying stress conditions including
voltage and temperature, and resulting MTTF is estimated. Instead of
using one representative value (e.g., average temperature) for the en-
tire processor, KitFox utilizes these interacting physical phenomena

1 while (program runs) do

2 /* Access counters of all decomposed components are
collected during microarchitecture simulations. */

3 do (microarchitecture simulation and counters collection)

4 /* At the end of interval, KitFox API functions are called. */
5 if (at the end of sampling interval) then

6 /* Calculate the power dissipation of all modeled
microarchitecture components. */

7 for (all microarchitecture components) do
8 kitfox−>calculate power(uarch component id,

current time, sampling interval, counters);
9 end

10 /* Temperature is calculated after power calculations are
done. Data synchronizations are internally performed. */

11 kitfox−> calculate temperature(pkg component id,
current time, sampling interval);

12 /* Failure rates are calculated with the components
associated reliability library (see Figure 3 illustration). */

13 for (all floorplan components) do
14 kitfox−> calculate failure rate(flp component id,

current time, sampling interval);
15 end

16 /* Any pseudo components can be probed to retrieve
data from their queues. */

17 power t core power;
18 int err = kitfox−> pull data(core component id,

current time, sampling interval,
KITFOX DATA POWER, &core power);

19 /* Voltage scaling can be done by inserting a new value
into the queue and synchronizing pseudo components. */

20 Volt core voltage = 1.0; // 1.0V
21 int err = kitfox−> push and synchronize data

(core component id, current time, sampling interval,
KITFOX DATA VOLTAGE, &core voltage);

22 /* Reset access counters at the end of interval. */
23 do (reset all microarchitectural access counters)
24 end
25 end

Algorithm 1: A pseudo code example of KitFox API functions in
a microarchitecture simulation loop.

during microarchitectural simulations for reliability characterization.
Although this approach may not give precise prediction for unknown
future operations, the likelihood estimation of MTTF can be used to
address relative reliability criticality of different microarchitecture
operations or applications.

After data synchronization, any pseudo components can be probed
to retrieve data from queues. Dynamic execution controls such as
voltage or frequency scaling can be simply applied by inserting new
values into the queues and synchronizing the data in the pseudo
component hierarchy. Voltage and frequency synchronizations are
performed in a similar manner as temperature synchronization; all
descendent components are updated with the same voltage and
frequency values, and the callback functions of library models are
invoked to update dependent variables. For instance, changing the
voltage of a core-level component (shown as one of the floorplans in
Figure 3) updates all its sub-components within the core to the same
voltage. In sum, pseudo components enable flexible composition of
processor designs and interconnection of various library models.

7

Microarchitecture
simulation process

Microarchitecture
simulation process

Microarchitecture
simulation process

…

KitFox
client

KitFox
client

KitFox
client

API functions

API functions

API functions

KitFox
server

KitFox
server

KitFox process

KitFox process

API functions

API functions

MPI intra-communicator
MPI intra-communicator

M
P

I i
nt

er
-c

om
m

un
ic

at
or

Figure 4. An example of multi-process execution of KitFox frame-
work in parallel with microarchitecture simulation processes via MPI
implementations and split communicators.

Physical interactions can be easily modeled via data queue oper-
ations and callback functions of libraries. Although KitFox supports
automated synchronization and timing error checking for easier data
manipulation and correct data calculations, it does not implement
optimizing system configurations with respect to particular metrics
(e.g., energy efficiency). Such optimizations are realized external to
the modeling environment (i.e., controller in Figure 2) by utilizing
KitFox to extract physical data (e.g., power, thermal) and tune model
parameters via API functions.

C. Parallel Interface for Scalable Simulations

Serial simulations can be time consuming when employing
computationally intensive physical models over large number of
components (e.g., high core-count processors). KitFox framework,
developed with SST [16] and Manifold [27] parallel simulators,
supports parallel simulation environment via MPI implementations.
In particular, KitFox framework can run in parallel with microarchi-
tecture simulators, or KitFox itself can run in multiple MPI processes
by dividing pseudo component hierarchy into multiple parts.

In multi-process simulations, each KitFox process initiates a
server to handle MPI messages from/to other KitFox instances in
different processes as well as client microarchitecture simulators.
KitFox servers wait for MPI messages to arrive, identify message
types, call necessary KitFox API functions, and return the results if
necessary. Calculation functions are all non-blocking functions, and
microarchitecture simulation can proceed without waiting for the
KitFox processes to finish calculations. However, data manipulation
has to be blocking since it requires return values (e.g., access to
data in queues) for the request. To run KitFox in parallel with an
MPI-based microarchitecture simulator, the MPI communicator (i.e.,
a message channel) has to be split to isolate the communication
of parallel microarchitecture simulation from the parallel KitFox
processes. Otherwise, the microarchitecture simulator may happen
to wait for the MPI barriers of KitFox processes, or vice versa.
KitFox servers are fully connected with each other within an MPI
intra-communicator, and messages from/to client simulators are
through an inter-communicator. By dividing the pseudo component
hierarchy into multiple processes, each KitFox instance only creates
and initializes pseudo components that are modeled in its process.
The microarchitecture simulator calls KitFox API functions through
client objects that handle message interfaces to KitFox servers.
The KitFox servers remain active until all the simulator processes
terminate by sending disconnect messages.

The major difficulty of using parallel simulations is in the correct
synchronization of parallel processes. Currently, KitFox runs in a
user-driven manner, which requires user microarchitecture simula-
tors to invoke KitFox API functions in a correct time sequence.
When API invocations occur out of order in parallel simulations,
KitFox detects timing errors and prevents time-incorrect calculations.

KitFox
Reliab.
Therm.
Power
MPI

 54%

 9%
 1%

 34%

 2%

0%
20%
40%
60%
80%

100%

10
0n

s

1µ
s

10
µs

10
0µ

s

1m
s

10
m

s

S
im

ul
at

io
n

tim
e

br
ea

kd
ow

n

Sampling interval

KitFox

Reliab.

Therm.

Power

Arch.

(a)

KitFox
Reliab.
Therm.
Power
MPI

 54%

 9%
 1%

 34%

 2%

0%
20%
40%
60%
80%

100%

10
0n

s

1µ
s

10
µs

10
0µ

s

1m
s

10
m

s

S
im

ul
at

io
n

tim
e

br
ea

kd
ow

n

Sampling interval

KitFox

Reliab.

Therm.

Power

Arch.

(b)

Figure 5. (a) Time breakdown of an exemplary multi-physics and
microarchitecture simulation with varying sampling intervals. (b)
Time breakdown of multi-physics calculations in an 8-process par-
allel simulation at 1ms sampling rate.

Synchronization across parallel processes becomes more difficult
when microarchitecture components dynamically change operating
clock frequencies. A possible improvement will be relaxing the
user responsibility for correct thread synchronization in parallel
simulations by allowing KitFox to detect the progress of parallel
threads. Such parallel simulation optimizations present substantive
research challenges in their own right.

D. Simulation Efficacy of Multi-Physics Simulations with KitFox

When multiple models are simultaneously simulated, simulation
speed is generally of a concern. Here, we demonstrate that multi-
physics simulations are not excessively time-intensive in typical
ranges of sampling rates. Figure 5 shows the simulation time
breakdown of an exemplary multi-physics simulation with KitFox
integrated with Manifold microarchitecture timing simulator [27].
The cycle-level timing simulation of Manifold is known to be
as fast as 200 kilo-instructions per second (KIPS) with a single-
thread simulation, which is several times faster than highly detailed
microarchitecture simulators that are generally known to run around
or less than 50 KIPS of simulation speed [13]. We choose Mc-
PAT [11] and HotSpot [7] that are the most popular open-source
power and thermal modeling tools in the architecture community. In
the exemplary simulation, 64 out-of-order cores are configured by
adapting the Intel Xeon processor model of McPAT, and the transient
thermal model of HotSpot is used with 64×64 grid configuration.
The pseudo component hierarchy of KitFox is built similar to Figure
3. Simulation time depends on i) which models are selected, ii) how
they are configured (e.g., number of cores), and iii) actual hardware
that runs the simulation. Hence, results in Figure 5 are to show the
performance of an exemplary multi-physics simulation and do not
represent the optimized (or the best) performance that individual
simulators or models can achieve. In Figure 5.(a), the interval
over which counters of the microarchitecture timing simulator are
sampled for calculations is varied between 100ns and 10ms. The
clock frequency of simulator components is set to 1.0GHz, so
100ns corresponds to 100 clock cycles in this example. The result
shows that the multi-physics simulation is primarily dominated by
KitFox operations when the sampling interval is short (less than
10µs), but the microarchitecture simulation becomes the bottleneck
when the interval is sufficiently long (greater than 100µs). Here,
the power, thermal, or reliability portion in the figure denotes
only computation time excluding the handling of input parameters,
status updates, or data synchronizations that are all counted as
KitFox operations. When these models are individually used, we
notice that they also spend significant duration of time on handling
input and output data rather than computations, and these parts

8

 Dynamic reliability
 management (DRM)

Application binaries

Microarchitecture
timing simulation

Power modeling

Thermal modeling

Access counters

Power distribution

Le
ak

ag
e

fe

ed
ba

ck

Reliability modeling

Thermal distribution
Failure rates

TTF prediction and profiling

N(µ, σ)

Variance reduction
algorithms Voltage

Clock crequency / thread migration

Figure 6. KitFox multi-physics simulation for lifetime reliability
characterization and management of multicore processors [21], [22].

are counted as KitFox operations in the integrated multi-physics
simulation. In the typical range of sampling intervals (e.g., 100µs or
greater), microarchitecture simulation is the bottleneck rather than
multi-physics calculations. Therefore, we argue that multi-physics
simulation is not as time-intensive as to be the bottleneck, while
developing such a multi-physics simulation environment via the
integration of various physical models is a highly complicated and
challenging task as addressed by KitFox.

Figure 5.(b) plots the time breakdown of multi-physics calcula-
tions when the sampling interval is 1ms in an 8-process parallel
simulation via MPI. We notice that the transient thermal calculation
time of HotSpot is increasing for larger sampling intervals, so
the breakdown in Figure 5.(b) appears different from those in
(a) with shorter sampling intervals. The result shows that KitFox
operations (mostly data manipulation and synchronization) take the
most time in multi-physics calculations, and parallelization via MPI
also adds non-negligible overhead to the overall simulation time.
However, as shown in Figure 5.(a), the simulation bottleneck is in
microarchitecture simulations rather than multi-physics calculations
for sufficiently long sampling intervals. Therefore, the main reason
for parallelization is to speed up microarchitecture simulations, and
KitFox should be able to support multi-process simulations.

VII. CASE STUDIES OF INTEGRATED RELIABILITY, THERMAL,
AND POWER SIMULATIONS

In this section, we present several case studies to show the applica-
tions of KitFox and motivate the use of this open-source framework
for cross-layer simulations and research. The breadth applications
described in this section demonstrate the versatility of KitFox. We
cite several studies that were conducted using KitFox framework,
formerly named as Energy Introspector [20], and describe how it
was used to drive those studies.

A. Lifetime Reliability Characterization and Management

In a multicore processor, cores experience different levels of
degradation depending on power and thermal status induced by
workloads, execution controls, etc. As a result, the processor ex-
periences non-uniform degradation on the multicore die, and early
failing cores limit the performance and lifetime of the processor.

Song et al. [21], [22] characterized how the parallel execution
of workloads created degradation variation on a multicore die and
studied how such application-induced variation was translated to
processor-level lifetime reliability. In particular, the spatial distri-
bution of degradation on the multicore die was characterized by
using a probabilistic model, and the study showed that reducing
the variance of degradation distribution was a key to improve

Optimized
3D package model

3D microarchitecture
timing simulation

Access counters

Power modeling

Floorplan powers

3D thermal modeling
& microfluidic cooling

Le
ak

ag
e

fe

ed
ba

ck

Coolant influx

Compact thermal
analysis

Pin fin optimization

Results

16MB shared
L2 cache die

16-core die

Pin fins

Application binaries

Figure 7. Simulation flow for leakage power characterization and
reduction in 3D ICs with microfluidic cooling [29].

processor-level lifetime and more critical than managing the average
of the distribution. In this study, KitFox framework integrated with
Manifold simulator [27] and Qsim functional emulator [10] pro-
vided a full-system microarchitecture and multi-physics simulation
environment including power, thermal, and reliability models. A
simulation flow is depicted in Figure 6. During microarchitectural
timing simulations, Manifold components invoked KitFox API func-
tions to calculate transient power, thermal, and reliability character-
istics. The integrated simulation environment using KitFox enabled
simultaneous, multi-dimensional explorations across applications,
microarchitectures, controllers, and diverse physical phenomena.

B. Leakage Power Reduction in 3D ICs with Microfluidic Cooling

3D stacking of integrated circuits improves performance and
energy efficiency by shortening interconnection lengths between
processing and memory entities. However, increased power density
per unit volume may threaten the thermal stability of the proces-
sor. Microfluidic cooling in 3D ICs can provide superior cooling
performance over conventional air-cooled packages.

Xiao et al. [29] explored the performance and energy bene-
fits of microfluidic cooling in a 3D-stack processor using KitFox
framework as illustrated in Figure 7. They presented an algorithm
that minimized junction temperatures under given power budget by
optimizing pin fin dimensions including pin diameter, height, spacing
and coolant flow rate. Then, 3D-ICE thermal model [23] integrated in
KitFox was configured to simulate the optimized 3D package design.
McPAT [11] was used for power modeling, and interactions between
leakage power and temperature were captured within the KitFox
framework. The authors evaluated the performance and energy
impacts of the optimized 3D package with microfluidic cooling by
simulating PARSEC benchmarks [3] in Manifold microarchitecture
simulator [27]. Results showed that the optimized pin fin geometry
could reduce leakage power by 20% for tested benchmarks. In
this research, KitFox automated the modeling of power-thermal
interactions, which helped the authors simulate the optimized 3D
package in the full-system simulation environment.

C. Power, Thermal, and Throughput Regulations via Adaptive Gain
Controllers in Multicore Processors

Microprocessors are designed to sustain the worst-case operations
such as thermal design power (TDP), but applications rarely operate
at these limits. From a performance perspective, it is preferred for
the system to be designed for average case behaviors (and therefore
higher average performance) and adapt to rarely occurring extreme
conditions. Rigorous control models can potentially enable such
adaptive operations.

9

System (plant)

Application binaries

Microarchitecture
timing simulation

Access counters

Dynamic power
modeling

Core powers (Pn)

Clock frequency (fn)

Voltage (Vn) +
Reference input
(desired power Ps) –

+

Discrete-time
adaptive gain

controller
Kn = 1

g’n(fn-1)

fn = fn-1 + Knen-1

en

Figure 8. A control system model for processor throughput, power,
or thermal regulation via an adaptive gain controller [1], [2], [15].

Thread dispatcher

Streaming
multiprocessor

Streaming
multiprocessor

Streaming
multiprocessor

Streaming
multiprocessor

Streaming
multiprocessor

Streaming
multiprocessor

…

…

L2
 c

ac
he

M
em

or
y

co
nt

ro
lle

r

G
lo

ba
l m

em
or

y

Instruction cache

Scheduler / dispatcher

Register file

SP

SP

LSU

LSU

SFU

SFU

Shared mem/L1 cache

Texture unit / cache

…

…

…

 Pseudo component hierarchy

Re-composition of microarchitecture components and library models

Pseudo component (GPU)

Pseudo component (cache) Pseudo component (SM) …

Pseudo component (SFU) Pseudo component (reg.) …

Energy library
(McPAT: FU model)

Energy library
(McPAT: array model)

Energy library
(McPAT: cache model)

Figure 9. GPU power modeling using KitFox that provides a method
to flexibly re-compose microarchitecture components and related
power models [12].

Almoosa et al. [1], [2] and Rao et al. [15] presented adaptive
gain controller algorithms that regulated throughput (i.e., instructions
per second), power, or temperature of multicore processors. The
proposed controller algorithms utilized core-level DVFS capability
to adjust operating voltages and clock frequencies of cores. A closed-
loop system drawn in Figure 8 shows how the system output tracks
the input reference based on Newton’s method. The authors proposed
system models and demonstrated their control algorithms using
McPAT [11] and 3D-ICE [23] integrated in KitFox. The DVFS-
based control algorithms could be easily applied via KitFox API
functions, while these features were not supported in the original
modeling tools.

D. Power Modeling of GPU Microarchitectures

Large number of stream multiprocessors (SM) and multiple levels
of memory hierarchy in GPUs collectively consume significant
amount of power. Power characterization is one of the key challenges
in GPU research. Considerable efforts have been invested in the
past decades to develop CPU power modeling methods and models,
but relatively fewer attempts are found regarding more recent needs
for GPU power modeling. Although GPU microarchitectures are
substantially different from CPUs, developing a new set of power
models involves costly and time-consuming efforts.

Lim et al. [12] approached the GPU power modeling problem
by using McPAT [11], a CPU power modeling tool. The authors

noted that McPAT was basically comprised of circuit-level models
including caches, interconnects, latches, etc., where many of these
models could be reused for GPU power modeling. Since McPAT
supported only CPU-based microarchitectural designs, the authors
used KitFox to re-factor the basic circuit-level models of McPAT
to configure an NVIDIA Fermi-like microarchitecture as depicted
in Figure 9. Since KitFox interface was independent of specific mi-
croarchitecture designs, it could easily adapt to simulate a different
microarchitecture while utilizing existing power models.

VIII. CONCLUSION

Modeling interacting physical phenomena in multicore processors
is becoming increasingly important. The proposed KitFox framework
facilitates the use of various implementations of physical modeling
tools as they are integrated as libraries. The library integration
method standardizes interfaces between the models and also enables
future extension to other different library types or incorporation of
new models. In sum, KitFox makes the following contributions:
• Standard integration of physical modeling tools via library inter-

faces without software inter-dependencies between the tools
• Coordinated interactions between the models of multiple distinct

physical phenomena
• User API for microarchitecture simulators to simplify the use of

physical models
• Composable framework to simulate different processor designs by

flexibly interconnecting the library models
• Parallel interface using MPI for scalable simulations

This framework enables multi-dimensional explorations at the
intersection of energy, power, temperature, and reliability in con-
junction with microarchitecture and application models. Possible
improvements to KitFox framework include the following items:
• Optimization of data manipulation and synchronization processes

to reduce KitFox overhead
• Easier thread synchronization in parallel simulations
• System or metric optimization modules
• Support of more libraries (e.g., PDN models)

ACKNOWLEDGEMENT

This research was supported by Semiconductor Research Corpo-
ration (SRC) under the tasks #2084.001 and #2318.001, IBM/SRC
Graduate Fellowship, and Sandia National Laboratories.

REFERENCES

[1] N. Almoosa, W. Song, Y. Wardi, and S. Yalamanchili, “A power capping
controller for multicore processors”, American Control Conf., pp. 4709-
4714, Jun. 2012.

[2] N. Almoosa, W. Song, Y. Wardi, and S. Yalamanchili, “Throughput
regulation in multicore processors via IPA”, IEEE Conf. Decision &
Control, pp. 7267-7272, Dec. 2012.

[3] C. Bienia, S. Kumar, and K. Li, “PARSEC vs SPLASH-2: quantitative
comparison of two multithreaded benchmark suites on processors”,
IEEE Int. Symp. Workload Charact., pp. 47-56, Sep. 2008.

[4] A. Bartolini, M. Cacciari, A. Tilli, L. Benini, and M. Gries, “A virtual
platform environment for exploring power, thermal, and reliability
management control strategies in high-performance multicores”, Great
Lakes Symp. VLSI, pp. 311-316, May 2010.

[5] A. Coskun, T. Rosing, Y. Leblebici, and G. Micheli, “A simulation
methodology for reliability analysis in multi-core SoCs”, Great Lakes
Symp. VLSI, pp. 95-99, May 2006.

[6] M. Hsieh, R. Riesen, K. Thompson, W. Song, and A. Rodrigues, “SST:
a scalable parallel framework for architecture-level performance, power,
area, and thermal simulation”, Comput. J., pp. 181-191, Jul. 2011.

[7] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,
and M. Stan, “HotSpot: a compact thermal modeling methodology for
early-stage VLSI design”, IEEE Trans. VLSI, vol. 14, no. 5, pp. 501-
513, May 2006.

10

[8] “Failure mechanisms and models for semiconductor devices”, JEDEC
Solid State Technology Association, JEDEC Publ. JEP122C, Mar. 2006.

[9] A. Kahng, B. Li, L. Peh, and K. Samadi, “ORION 2.0: a fast and
accurate NoC power and area model for early-stage design space
exploration”, Design, Automat. & Test Europe Conf. & Exhibit., pp.
423-428, Apr. 2009.

[10] C. Kersey, A. Rodrigues, and S. Yalamanchili, “A universal parallel
frontend for execution driven microarchitecture simulation”, Workshop
Rapid Simul. Perform. Eval., pp. 25-32, Jan. 2012.

[11] S. Li, J. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi,
“McPAT: integrated power, area, timing modeling framework for mul-
ticore architectures”, IEEE Int. Symp. on Microarchit., pp. 469-480,
Dec. 2009.

[12] J. Lim, N. Lakshminarayana, H. Kim, W. Song, S. Yalamanchili, and W.
Sung, “Power Modeling for GPU Architectures using McPAT”, ACM
Trans. Design Automat. Electron. Syst., vol. 19, no. 3, pp. 26:1-24, Jun.
2014.

[13] G. Loh, S. Subramaniam, and Y. Xie, “Zesto: a cycle-level simulator for
highly detailed microarchitecture exploration”, Proc. IEEE Int. Symp.
Perform. Anal. Syst. Softw., pp. 53-64, Apr. 2009.

[14] S. Priyadarshi, W. Rhett Davis, M. Steer, and P. Franzon, “Thermal
pathfinding for 3D ICs,” IEEE Trans. Compon. Packag. Manuf. Tech-
nol., vol 4, no. 7, pp. 1159-1168, May 2014.

[15] K. Rao, W. Song, S. Yalamanchili, and Y. Wardi, “Temperature regula-
tion in multicore processors using adaptive-gain integral controllers,”,
IEEE Conf. Control Appl., Nov. 2015.

[16] A. Rodrigues, K. Hemmert, B. Barrett, C. Kersey, R. Oldfield, M.
Weston, R. Riesen, J. Cook, P. Rosenfield, E. Cooper-Balis, and B.
Jacob, “The structural simulation toolkit”, Int. Workshop Perform.
Model. Benchmark. Simul. High Perform. Comput. Syst., pp. 37-42,
Mar. 2011.

[17] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMsim2: a cycle
accurate memory system simulator”, IEEE Comput. Archit. Lett., vol.
10, no. 1, pp. 16-19, Jan. 2011.

[18] H. Sajjadi-Kia and C. Ababei, “A new reliability evaluation methodol-
ogy with application to lifetime-oriented circuit design”, IEEE Trans.
Device Mater. Reliab., vol. 13, no. 1, pp. 192-202, Mar. 2013.

[19] D. Sekar, A. Naeemi, R. Sarvari, J. Davis, and J. Meindl, “IntSim: a
CAD tool for optimization of multi-level interconnect network”, IEEE
Int. Conf. Comput.-Aided Design, pp. 560-567, Nov. 2007.

[20] W. Song, S. Mukhopadhyay, and S. Yalamanchili, “Energy Introspector:
parallel, composable framework for integrated power-reliability-thermal
modeling for multicore architectures”, IEEE Int. Symp. Perform. Anal.
Syst. Softw., pp. 143-144, Mar. 2014.

[21] W. Song, S. Mukhopadhyay, and S. Yalamanchili, “Architectural reli-
ability: lifetime reliability characterization and management of many-
core processors”, IEEE Comput. Archit. Lett., Jul. 2014.

[22] W. Song, S. Mukhopadhyay, and S. Yalamanchili, “Managing
performance-reliability tradeoffs in multicore processors,”, IEEE Int.
Reliab. Physics Symp., pp. 3C.1.1-7, Apr. 2015.

[23] A. Sridhar, A. Vincenzi, M. Ruggiero, T. Brunschwiler, and D. Atienza,
“3D-ICE: fast compact transient thermal modeling for 3D ICs with
inter-tier liquid cooling”, IEEE Int. Conf. Comput.-Aided Design, pp.
463-470, Nov. 2010.

[24] J. Srinivasan, S. Adve, P. Bose, and J. Rivers, “Lifetime reliability:
toward an architectural solution”, IEEE Micro, vol. 25, no. 3, pp. 70-
80, May 2005.

[25] C. Sun, C. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L. Peh, and
V. Stojanovic, “DSENT - a tool connecting emerging photonics with
electronics for opto-electronic networks-on-chip modeling”, IEEE Int.
Symp. Network Chip, pp. 201-210, May 2012.

[26] S. Thoziyoor, J. Ahn, M. Monchiero, J. Brockton, and N. Jouppi, “A
comprehensive memory modeling tool and its application to the design
and analysis of future memory hierarchies”, Int. Symp. Comput. Archit.,
pp. 51-62, Jun. 2008.

[27] J. Wang, J. Beu, R. Bheda, T. Conte, Z. Dong, C. Kersey, M. Rasquinha,
G. Riley, W. Song, H. Xiao, P. Xu, and S. Yalamanchili, “Manifold: a
parallel simulation framework for multicore systems”, IEEE Int. Symp.
Perform. Anal. Syst. Softw., pp. 106-115, Mar. 2014.

[28] M. White and J. Bernstein, “Microelectronics reliability: physics-of-
failure based modeling and lifetime evaluation”, NASA JPL Publ. 08-5.
2008.

[29] H. Xiao, Z. Wan, S. Yalamanchili, and Y. Joshi, “Leakage power
characterization and minimization in 3D stacked multi-core chips with
microfluidic cooling”, Semicond. Therm. Meas. Manage. Symp., pp.
207-212, Mar. 2014.

William J. Song is a Ph.D. candidate at School
of Electrical and Computer Engineering, Georgia
Institute of Technology, Atlanta, GA. He received
his B.S. degree from School of Electrical Engineer-
ing, Yonsei University, Seoul, Korea. He has been
an IBM/SRC Graduate Fellow since 2012. He had
research internship at Sandia National Laboratories
in Albuquerque, NM (2010, 2011, 2012), AMD
Research in Bellevue, WA (2013), IBM T.J. Watson
Research Center in Yorktown Heights, NY (2014),
and Qualcomm in San Diego, CA (2015). He re-

ceived a Best Student Paper Award at IEEE Reliability Physics Symposium
(IRPS) 2015 and Best in Session Awards at SRC TECHCON 2013 and 2014.

Saibal Mukhopadhyay received his B.E. degree
in Electronics and Telecommunication Engineer-
ing from Jadavpur University, Calcutta, India, in
2000. He received a Ph.D. degree in Electrical
and Computer Engineering from Purdue University,
West Lafayette, IN, in 2006. He was with the IBM
T.J. Watson Research Center, Yorktown Heights,
NY, as a Research Staff Member. Since September
2007, he has been with the School of Electrical
and Computer Engineering at the Georgia Institute
of Technology, Atlanta, GA, where he is currently

an Associate Professor. His current research interests include neuromorphic
computing, low-power digital and mixed-signal systems, voltage regulation,
and power and thermal management. Dr. Mukhopadhyay received the Office
of Naval Research Young Investigator Award in 2012, the National Science
Foundation CAREER Award in 2011, the IBM Faculty Partnership Award
in 2009 and 2010, the SRC Inventor Recognition Award in 2008, the SRC
Technical Excellence Award in 2005, and the IBM PhD Fellowship Award for
years 2004-2005. He has received the IEEE Transactions on VLSI Systems
(TVLSI) Best Paper Award in 2014, the IEEE Transactions on Component,
Packaging, and Manufacturing Technology (TCPMT) Best Paper Award in
2014, the IEEE/ACM International Symposium on Low-power Electronic
Design (ISLPED) Best Paper Award in 2014 and 2015, the International
Conference on Computer Design (ICCD) Best Paper Award in 2004, the IEEE
Nano Best Student Paper Award in 2003, and multiple Best in Session Awards
in SRC TECHCON in 2014 and 2005. He has authored or co-authored over
150 papers in refereed journals and conferences, and has been awarded six
U.S. patents. He is a Senior Member of IEEE.

Sudhakar Yalamanchili earned his Ph.D. degree in
Electrical and Computer Engineering 1984 from the
University of Texas at Austin. After graduation, he
joined Honeywell’s Systems and Research Center
in Minneapolis where he worked as a Senior, and
then Principal Research Scientist from 1984 to
1989. During that time he served as an Adjunct
Faculty and taught in the Department of Electrical
Engineering at the University of Minnesota, and
served on Honeywell’s Program Technical Advi-
sory Committee to the Microelectronics Technology

Corporation (MSS). He joined the ECE faculty at Georgia Tech in 1989
where he is now a Joseph M. Pettit Professor of Computer Engineering. He
research interests lay at the intersection of high performance computing, and
power and thermal management techniques, and modeling and simulation of
parallel architectures and systems. He served as a Co-Director of the NSF
Industry University Research Center on Experimental Computer Systems
(CERCS) (2003-2013) and as a member of the Research Advisory Group
to the HyperTransport Consortium (2007-2012). He is the author of VHDL
Starters Guide, 2nd edition, Prentice Hall 2004, VHDL: From Simulation
to Synthesis, Prentice Hall, 2000, and co-author with J. Duato and L. Ni,
of Interconnection Networks: An Engineering Approach, Morgan Kaufman,
2003. Dr. Yalamanchili contributes professionally with regular service on
editorial boards and conference program committees. He has served on the
editorial boards of the IEEE Transactions on Parallel and Distributed Process-
ing and IEEE Transactions on Computers and IEEE Computer Architecture
Letters. He also contributes professionally through service on conference and
workshop program committees in the area of high performance computing
and computer architecture. He is a Fellow of the IEEE.

	Introduction
	Design Motivation and Distinction FromPrevious Work
	Library Integration of Physical Models
	Energy Library and Circuit-Level Modeling
	Thermal Library and Package-Level Modeling
	Reliability Library and Lifetime Prediction

	Processor Physics: Modeling Application-Microarchitecture-Physics Interactions
	Data Manipulation and Errors
	Data Formats
	Data Queues and Operations
	Data Queues and Library Callbacks
	Error Propagation in Physical Interactions Chain

	Processor Component Hierarchy and Description
	Representation of Processor Component Hierarchy
	Steps in KitFox Framework Executions and API Functions
	Parallel Interface for Scalable Simulations
	Simulation Efficacy of Multi-Physics Simulations with KitFox

	Case Studies of Integrated Reliability, Thermal, and Power Simulations
	Lifetime Reliability Characterization and Management
	Leakage Power Reduction in 3D ICs with Microfluidic Cooling
	Power, Thermal, and Throughput Regulations via Adaptive Gain Controllers in Multicore Processors
	Power Modeling of GPU Microarchitectures

	Conclusion
	References
	Biographies
	William J. Song
	Saibal Mukhopadhyay
	Sudhakar Yalamanchili

