
Energy Introspector: Standard Physical Library Interface for
Full-System Microarchitecture and Multi-Physics Simulations

William J. Song†, Saibal Mukhopadhyay†, Arun Rodrigues‡, and Sudhakar Yalamanchili†
†School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332

‡Sandia National Laboratories, Albuquerque, NM 87185

I. CHALLENGES AND MOTIVATION

Modeling and simulation of future microarchitectures and
applications require more than performance measurement and
estimation. Analysis must be “holistic” including power, energy,
thermal, and reliability concerns since these physical constraints
and their coupled interactions have become major performance
determinants of processors. Various models of different physical
phenomena have been developed and released in tools such as 1)
power models in Cacti/McPAT [8], [18], Orion/DSENT [5], [17],
DRAMsim [10], 2) thermal models of HotSpot [4] and 3D-ICE
[14], 3) wear models including negative-bias temperature instability
(NBTI), time-dependent dielectric breakdown (TDDB) [15], [16], and
4) other proprietary or custom models [2], [19]. However, they are
not generally integrated with microarchitecture simulators. We note
that as a general practice these models are independently employed,
for example via the prevalent use of offline trace-driven simulations,
in which a trace generated from a simulator or tool drives another
modeling tool as independent simulations shown in Fig. 1-(a). Such
a practice is oblivious to the interacting nature of multiple physical
phenomena and fundamentally limits studies of advanced research
problems lying at the intersection of performance, energy/power,
thermal/cooling, and reliability. To address this, we have been
developing the Energy Introspector (EI) [11], [12] and integrating
it with different simulation frameworks including Manifold [20],
MacSim [7], Structural Simulation Toolkit (SST) [9], and IBM
POWER7+ Architecture proprietary simulators. It is our position
that the Energy Introspector will enable the holistic analysis which
future processors will require. The EI has proven its ability to work
with multiple simulation infrastructures, and its unique capability
demonstrates a path forward for community-wide adoption. In this
paper, we report on the design and motivate the use of an integrated
physical modeling library interface, central to building full-system
application-microarchitecture-physics co-simulation environment.

II. OUR APPROACH AND DESIGN

The primary goal of the Energy Introspector (EI) [11], [12] is
to enable the holistic analysis across microarchitecture, application,
power, energy, thermal, and reliability, as illustrated in Fig. 1-(b).
The integration of the EI with microarchitecture simulators builds
full-system simulation environment including all these component
models. The EI provides a standard library interface for the
integration of various distinct physical modeling tools. Each physical
model is encapsulated into a standardized class called library; for
example the HotSpot thermal model [4] is encapsulated into a library
class. The EI transparently handles multi-physics interactions by
transferring and synchronizing data between the libraries inside the
framework, driven by simple user application programming interface
(API) functions such as calculate temperature(). Integration of
physical models via standardized APIs in the EI enables the users
to simply choose the most appropriate models to configure and

Acknowledgement: This research was supported by the Semiconductor
Research Corporation under task #2084.001, IBM/SRC Graduate Fellowship,
and Sandia National Laboratories.

Multi-Physics Interactions

Floor-plan Power

Functional Emulation
(Frontend)

Microarchitecture
Timing Simulation

Instruction Stream

Benchmarks

Microarchitecture
Configuration

Power Modeling

Access Counter Statistics

Thermal Modeling

Microarchitecture
and Physical

Configuration

Package
Configuration and

Floorplanning

Cum
ulative

Failure Rate

Controller

Voltage

Floor-plan
Temperature

Clock Frequency

Reliability Modeling

Le
ak

ag
e

Fe

ed
ba

ck

Management Algorithms

Dynamic
Energy

Leakage
Energy

+!

Microarchitecture
Simulations

Power Modeling

Performance*
Counters*

Thermal Modeling

Power*Traces*

Wear Modeling

Thermal*Traces *

Instantaneous*
Failure*Rates*

(a) (b)
Fig. 1. (a) General practices of using physical models via trace-driven
simulations. Each model forms an independent stage of simulations
in an open loop manner [3]. (b) Full-system simulation with
multi-physics interactions. All models are concurrently simulated
within the same framework.

simulate different processor and package designs. In addition, any
new or updated physical models can be added to the EI without
creating cross-dependencies with existing models, while the physical
interactions are captured via the standard library interface, as shown
in Fig. 1-(b). This design significantly eases its integration into
microarchitectural simulation infrastructures, making it particularly
seamless with componentized simulation frameworks such as SST
[9] and Manifold [20].

Pseudo'Component'
(Package)'

Pseudo'Component'
(Floor6plan:'Core0)'

Pseudo'Component'
(Floor6plan:'CoreN)'

Pseudo'Component'
(Uncore:'Floor6plan)'

Pseudo'Component'
(Cores:'Intermediate)'

Pseudo'Component'
(Source:'Registers)'

Pseudo'Component'
(Source:'ALUs)'

…"

Library'='
Thermal'Model'

Library'='
NULL'

Pseudo'Component'
(Source:'L2$)'

Library'='
Power'Model'

Library'='
Reliability'Model'

Library'='
Reliability'Model'

…"

Library'='
Power'Model'

Library'='
Power'Model'

Library'='
Reliability'Model'

…"

Instruc(on*
Window*

Fetch*
Buffer*

Instruc(on*
Decoder*

ALU*

ALU*

FPU*… *

… *

… *
… *

Physically)Composed)
Microarchitectural)Units)

Thermal)
Floor8planning)

Packaging)
&)Cooling)

Data)Transfers)
(Physical)Interac@on))

Data)Transfers)
(Physical)Interac@on))

Fig. 2. In the Energy Introspector, a processor is described as
the hierarchy of pseudo components that represent different levels
of processor abstraction. Pseudo components are associated with
libraries that encapsulate individual physical models being simulated.
The Energy Introspector manages data transfers and synchronizations
between pseudo components, as illustrated in Fig. 1-(b).

The physical properties of a processor, and hence choice of
physical models, are defined at different levels of processor
abstraction. For instance, power is typically characterized at the
level of functional components based on their circuit-level models
(e.g., caches with SRAM models) in proportion to microarchitectural

activities (e.g., performance counters), but temperature is calculated
by a package-level model based on power distributions on source
dies. Therefore, there has to be a method to construct this physically
represented hierarchy of a processor and associate each component
in the hierarchy with an appropriate library and its constituent
physical model. These physically represented components in the
EI are called pseudo components. A processor is defined as the
hierarchy of these pseudo components (see Fig. 2), and the tree is
composable to configure different processor or package designs. A
pseudo component itself does not represent any functional or physical
unit, but its role depends on which library is associated with it.
Technically all pseudo components function in the same way, but they
have different availability of data depending on where they are located
in the hierarchy and which libraries are associated with them. The use
of pseudo component hierarchy to represent physical constitution of a
processor enables seamless interconnection between multiple libraries
that encapsulate different individual models.

Qsim Functional Emulator

Simulation Kernel

Component
(Core)

Component
(Unore)

Component
(Controller)

…"

Manifold
Parallel, Discrete Event Timing Simulator

Architecture
Component

Architecture
Component

Architecture
Component

Thermal
Floorplans

Thermal
Floorplans

Package
Instruc(on*
Stream*

Energy Introspector
Multi-Physics Library Interface

…"

…"

MPI"In
terfa

ce"

or"Fu
nc0o

n"Ca
lls"

Fig. 3. Integration of Energy Introspector multi-physics library
interface with Manifold microarchitecture simulator. The EI provides
a set of API functions to be called by the microarchitecture simulator.

The Energy Introspector is driven by microarchitecture
simulations. It provides a set of user API functions to be
called by the simulators. Fig. 3 shows an example of full-system
application/OS-microarchitecture-physics co-simulation environment
based on the integration of Qsim [6], Manifold [20], and Energy
Introspector [12]. The Qsim instance performs functional executions
of application binaries on a Linux kernel, and the component timing
models of Manifold fetch and simulate the execution of instructions
generated from Qsim, as also shown in Fig. 1-(b). Each Manifold
component collects activity statistics (e.g., access counters) of
microarchitectural units being physically modeled in the EI for
power calculations. At every defined sampling interval, the Manifold
components call the EI functions (either via function calls or MPI
interfaces) to calculate the power of microarchitectural units. On the
reception of requests, the EI calculates the power of corresponding
pseudo components based on provided activity statistics, and the
pseudo components are updated and synchronized in the tree (see
Fig. 2). Any pseudo components (e.g., floor-plan or package-level
pseudo components that are not even associated with power models)
can be probed to retrieve the power data since they are all internally
synchronized within the EI framework. After power calculations are
completed for the given sampling interval, temperature calculation is
invoked. The EI ensures correct calculations of models by detecting
errors when pseudo components have asynchronously time-stamped
data. Re-calculations of models (e.g., temperature and leakage power
feedback, dynamic voltage-frequency scaling, etc.) are internally
managed when data are transferred and synchronized between
pseudo components. Therefore, microarchitecture simulators are
only required to call a set of simple computational and probing
functions. This has enabled the construction of a simple, standardized
API for multi-physics modeling [11].

III. ASSESSMENT

1) Challenges: We address three main challenges; i)
application-driven multi-physics modeling and interactions (i.e.,
power/energy, thermal/cooling, and reliability) in heterogeneous
multicore processors, ii) coupling the impacts of these physical
phenomena to microarchitectural performance, and iii) facilitation
of using various physical modeling tools with microarchitecture
simulation frameworks.

2) Maturity: This standard library approach has been applied to
several application/OS-microarchitecture-physics modeling problems.
For example, Xiao et al. [21] explored how much leakage power
saving can be achieved by employing microfluidic cooling in 3D
ICs, and presented a method of optimizing cooling system physical
geometry (i.e., the pin fin dimensions) that maximizes the energy
efficiency and leakage saving (see Fig. 4-(a)). The unique aspect
is that the EI provided environment to easily measure the tradeoffs
between energy, performance, thermal, and coolant flow rate based
on full-system simulations of application binaries.

30#

35#

40#

45#

50#

55#

0.1# 0.3# 0.5# 0.7#

Le
ak
ag
e&
Po

w
er
&[W

]&

Coolant&Flow&Rate&[m/s]&

Baseline#

Op2mized#

0.0#

0.3#

0.6#

0.9#

1.2#

1.5#

1.0# 1.5# 2.0# 2.5#

N
or
m
al
iz
ed

&T
hr
ou

gh
pu

t&&

Normalized&Life@me&

Throughput#

Trend#Line#

(a) (b)
Fig. 4. Case Study (a): leakage reduction by optimizing pin fin
geometry in 3D-ICs [21]. Case Study (b): characterization of
throughput vs lifetime reliability tradeoff in multicore processor [13].

3) Uniqueness: Existing approaches have developed point
solutions for specific combinations (e.g., microarchitecture-power
simulations). However, as point solutions they are not easily
extensible to include “other physical models” or configure “different
microarchitectural designs”. Nor have these approaches attempted to
address the software engineering aspects of such modeling problems.
We argue that there ought to be a standard API for physics modeling,
and the EI provides the standard interface as one of the features.

4) Novelty: To the best of our knowledge, this novel
framework uniquely enables research at the intersection of
performance, energy/power, thermal/cooling, and reliability at
full-system cycle-level multicore simulations. A few related works
used simulation environment with power, thermal, and/or reliability
models [1], [3], but they fundamentally differ in being trace-driven
simulation and integrated with specific models rather than designed
for interchangeable physical models (i.e., extensibility). In particular,
the related efforts 1) lack modeling of concurrent interactions between
multiple physical phenomena and their impact on microarchitecture
performance and 2) do not have flexibility of alternative model
configurations, but rather provide point solutions to specific models.

5) Applicability: We have strived to organize the EI to be scalable
across multiple distinct types of physical phenomena. This means new
libraries (corresponding to new phenomena) can be added, and new
models (of existing library types) can be easily added.

6) Effort: The stable infrastructure and API specifications
have been developed. This cross-layer implementation requires
comprehensive understanding of underlying processor physics. The
standard API of the EI minimizes the efforts to integrate multi-physics
modeling with microarchitecture simulation infrastructures.

REFERENCES

[1] A. Bartolini, M. Cacciari, A. Tilli, L. Benini, and M. Gries, “A Virtual
Platform Environment for Exploring Power, Thermal, and Reliability
Management Control Strategies in High-Performance Multicores,”
GLSVLSI, May 2010.

[2] M. Cho, K. Ahmed, W. Song, S. Yalamanchili, and S. Mukhopadhyay,
“Post-Silicon Characterization and On-Line Prediction of Transient
Thermal Field in Integrated Circuits Using Thermal System
Identification,” Trans on. CPMT, Mar. 2012.

[3] A. Coskun, T. Rosing, K. Mihic, G. Micheli, and Y. Leblebici, “Analysis
and Optimization of MPSoC Reliability,” JOLPE, Jan. 2006.

[4] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,
and M. Stan, “HotSpot: A Compact Thermal Modeling Methodology for
Early-Stage VLSI Design,” Trans. on VLSI, Nov. 2006.

[5] A. Kahng, B. Li, L. Peh, K. Samadi, “Orion 2.0: A Fast and Accurate
NoC Power and Area Model for Early-Stage Design Space Exploration,”
DATE, Apr. 2009.

[6] C. Kersey, A. Rodrigues, and S. Yalamanchili, “A Universal Parallel
Frontend for Execution Driven Microarchitecture Simulation,” RAPIDO,
Jan. 2012.

[7] H. Kim, J. Lee, N. Lakshminarayana, J. Sim, J. Lim, and T. Pho,
“MacSim: A CPU-GPU Heterogeneous Simulation Framework,” User
Manual.

[8] S. Li, J. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi,
“McPAT: Integrated Power, Area, Timing Modeling Framework for
Multicore Architectures,” MICRO, Dec. 2009.

[9] A. Rodrigues, E. Cooper-Balis, K. Bergman, K. Ferreira, D. Bunde,
and K. Hemmert, “Improvements to The Structural Simulation Toolkit,”
SIMUTOOLS, Mar. 2012.

[10] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMsim2: A Cycle
Accurate Memory System Simulator,” Computer Architecture Letters,
Jan. 2011.

[11] W. Song, S. Mukhopadhyay, A. Rodrigues, and S. Yalamanchili, “Energy
Introspector: A Microarchitecture Framework for Integrated Power,
Thermal, Reliability Simulations,” User Manual.

[12] W. Song, S. Mukhopadhyay, and S. Yalamanchili, “Energy
Introspector: A Parallel, Composable Framework for Integrated
Power-Reliability-Thermal Modeling for Multicore Architectures,”
ISPASS (Short Paper), Mar. 2014.

[13] W. Song, S. Mukhopadhyay, and S. Yalamanchili, “Lifetime Reliability
and Accelerated Execution,” SRC TECHCON, Sept. 2013.

[14] A. Sridhar, A. Vincenzi, M. Ruggiero, T. Brunschwiler, and D. Atienza,
“3D-ICE: Fast Compact Transient Thermal Modeling for 3D ICs with
Inter-Tier Liquid Cooling,” ICCAD, Nov. 2010.

[15] J. Srinivasan, S. Adve, P. Bose, and J. Rivers, “The Case for Lifetime
Reliability-Aware Microprocessors,” ISCA, June 2004.

[16] J. Srinivasan, S. Adve, P. Bose, and J. Rivers, “Lifetime Reliability:
Toward An Architectural Solution,” IEEE Micro, May 2005.

[17] C. Sun, C. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L. Peh, and
V. Stojanovic, “DSENT - A Tool Connecting Emerging Photonics with
Electronics for Opto-Electronic Networks-on-Chip Modeling,” NOCS,
May 2012.

[18] S. Thoziyoor, J. Ahn, M. Monchiero, J. Brockman, and N. Jouppi,
“A Comprehensive Memory Modeling Tool and Its Application to The
Design and Analysis of Future Memory Hierarchies,” ISCA, June 2008.

[19] Z. Wan, Y. Kim, Y. Joshi, “Compact Modeling of 3D-Stacked
Die Inter-Tier Microfluidic Cooling Under Non-Uniform Heat Flux,”
IMECE, Nov. 2012.

[20] J. Wang, J. Beu, R. Bheda, T. Conte, Z. Dong, C. Kersey, M. Rasquinha,
G. Riley, W. Song, H. Xiao, P. Xu, and S. Yalamanchili, “Manifold: A
Parallel Simulation Framework for Multicore Systems,” ISPASS, Mar.
2014.

[21] H. Xiao, Z. Wan, S. Yalamanchili, and Y. Joshi, “Leakage Power
Characterization and Minimization in 3D Stacked Multi-core Chips with
Microfluidic Cooling,” SemiTherm, Mar. 2014.

