
On the Feasibility of Dynamic Power Steering

Kevin J. Barker and Darren J. Kerbyson
Performance and Architecture Lab

Pacific Northwest National Laboratory
Richland, WA USA

{Kevin.Barker,Darren.Kerbyson}@pnnl.gov

Eric Anger
College of Computing

Georgia Institute of Technology
Atlanta, GA USA

eanger@gatech.edu

Abstract— While high performance has always been the
primary constraint behind large-scale system design, future
systems will be built with increasing energy efficiency in mind.
Mechanisms such as fine-grained power scaling and gating will
provide tools to system-software and application developers to
ensure the most efficient use of tightly constrained power
budgets. Such approaches to-date have been focused on node-
level optimizations to impact overall system energy efficiency. In
this work we introduce Dynamic Power Steering, in which power
can be dynamically routed across a system to resources where it
will be of most benefit and away from other resources to
maintain a near-constant overall power budget. This, a higher-
level algorithmic approach to improving energy efficiency,
considers the whole extent of a system being used by an
application. It can be used for applications in which there is load-
imbalance that varies over its execution. Using two classes of
applications, namely those that contain a wavefront type
processing, and a particle-in-cell, we quantify the benefit of
Dynamic Power Steering for a variety of workload
characteristics and derive some insight into the ways in which
workload behavior affect Power Steering applicability.

Keywords—Energy-efficient Computing, Large-scale Systems,
Dynamic Power Steering, Dynamic Workloads

I. INTRODUCTION
The High Performance Computing (HPC) landscape is

evolving rapidly on the way towards Exascale computing.
Whereas ultimate performance was previously the sole metric
for computing platform success, future systems will be
required to achieve unprecedented levels of performance
within tightly constrained power budgets. For instance, the
current drive to Exascale systems has a power budget goal of
20MW [1]. This new emphasis on energy efficiency within the
context of high performance will necessitate new approaches to
optimizing power at all levels from the underlying technology,
up through the software-stack, to and including the
applications.

Sea changes are imminent in both system hardware and
software architecture as well as application design in response
to the pressures imposed by this new emphasis on energy
efficiency. On the system side, restrictive power budgets imply
that it may be the case that not all architectural components
may be utilized at their full capabilities simultaneously. In turn,
fine-grained power allocation and measurement capabilities
will allow system software and applications to closely monitor

power consumption across the system and adapt the power
distribution to characteristics of the executing workload. In
other words, the parallel system may be used in a “throttled-
down” configuration, or, alternatively, an asymmetric power
distribution may be employed across the machine.

On the application side, it is expected that applications will
become increasingly more adaptive and asynchronous, varying
over time and across the parallel system in ways that are input
dependent. The evolving nature of the ongoing simulation will
lead to dynamic and input-dependent load imbalance, making
static performance prediction and power allocation impossible
and thus necessitating the need for dynamic mechanisms to
respond to the evolving workload.

In response to these needs we introduce here Dynamic
Power Steering whose goal is to maximize performance within
a fixed power budget and thereby optimizing energy
consumption. Dynamic Power Steering routes power to
resources (processor-cores) that are assigned the most work
and thus lie along the performance-critical path of the
application. Such situations arise in most applications that
exhibit load-imbalance and that often require complex load
balancing that approximately equalizes work across the system
resources but at the cost of increasingly complex load-
balancing operation and with extensive data movement. In
order to keep the overall system within the prescribed power
budget, power is diverted away from other resources in such a
way as to not negatively impact overall performance.

Of particular interest is the following open question: what
application characteristics will enable Dynamic Power Steering
approaches to be most successful? This work explores this
question through the use of two representative workloads,
namely those that contain a wavefront type processing, and a
particle-in-cell that is used to simulate a charged field between
two electrical plates. A third is used as a control case
containing work that is a randomly distributed across the
system. These represent many applications and are
implemented in the form of a synthetic workload in which
sequential and parallel workload characteristics can be
explicitly controlled. The use of a synthetic workload addresses
the “chicken and egg” problem that this feasibility study faces:
we are exploring future system and application architectures,
neither of which currently exists. Dynamic Power Steering is a
critical enabling technology for Exascale systems and must be
developed concurrently with future applications and
architectures.

2014 Energy Efficient Supercomputing Workshop

978-1-4799-7036-0/14 $31.00 © 2014 IEEE
DOI 10.1109/E2SC.2014.6

60

The main contributions of this work are as follows:

• We introduce Dynamic Power steering that is a system-
wide approach to optimize performance within a fixed
power budget and thereby optimizes energy consumption

• We explore Dynamic Power steering for a range of
application workload characteristics on a medium sized,
1K-processor-core system, that allows for the emulation
of a constrained power-budget

• We demonstrate that Dynamic Power Steering can
improve performance and hence improve energy
efficiency by up to 40%, by keeping the power budget
near-constant for a wide-range of workload
characteristics

Our initial feasibility study of Dynamic Power Steering
clearly illustrates that such an approach can be used to
optimize power use across a system for load-imbalanced
applications when there is a power constraint to the system
operation. It utilizes a current system that is power constraint,
but instead mimics a power-constraint by setting the default
power-state (p-state) to be at a mid-point, and allowing the p-
state to vary up or down under control of Dynamic Power
Steering depending on the availability of work. The approach
is general and can be applied to future power-constrained
systems.

The rest of this paper is organized as follows. Section 2
details related work in the field of large-scale energy efficiency
and dynamic energy optimization. Section 3 details the
principles and approach of Dynamic Power Steering. Section 4
describes the three test-case workloads. The experimental setup
including the software infrastructure and the parallel system
utilized for our experiments is detailed in Section 5. Section 6
provides the results of our exploration and a discussion.
Conclusions drawn from this work are given in Section 7.

II. RELATED WORK
Much of our work has been driven by the observation that

future systems will be power constrained, that is not all
resources will be active at any one time as insufficient power
will be available. This has been noted at the processor socket
level, and the term dark-silicon has been analyzed by several
including work that points to how such power constraints may
impact future architecture design [2]. Power constraints have
also been considered in the context of job scheduling to make
best use of an available power budget [3]. However, current
systems do not have power constraints and so most current
research is focused on improving energy efficiency using both
application independent and application driven approaches.

Current work on improving energy efficiency includes the
Adagio runtime system for slack prediction and provides
energy optimization for applications including UMT2K and
Paradis [4]. However, the approach assumes Bulk Synchronous
Parallelism (BSP) in which the model of execution consists of
multiple steps each containing a compute followed by
communication that is often global. This does not provide the
best energy efficiency for applications with complex and time-
dependent processing patterns including those in wavefront
applications that have benefited from the Energy Template

approach [5]. Approaches for the static analysis of power use
by dividing applications into phases have also been used [6]. A
framework that exploits barriers for energy efficiency has also
been explored [7]. Green building blocks and methodologies
for hybrid execution for providing energy efficiency in the
runtime system was proposed in [8] and [9]. Several techniques
that use Dynamic Voltage Scaling, including a just-in-time
method [10], enable a processor-core to slow down if the
assigned computation is lower than on others. Energy
efficiency for one-sided communication runtime systems has
also been proposed [11] that considered the use of DVFS and
interrupt-driven execution. Methods for designing energy
efficient collective communication primitives using MPI have
been studied for a range of applications [12]. Recent work
includes designing energy efficient runtimes for hybrid
programming models [13], and graph algorithms [14].
However, these approaches are either reliant on power
reduction [15] or more focused towards reduction in runtime,
which will have an automatic effect on energy consumption.

Our work is rather different from that on improving energy
efficiency alone. It provides a higher-level view of power-
optimization across a system that has an overall power
constraint. It trades the principle of load balancing for power
balancing whilst also aimed at satisfying an overall system
power budget.

III. DYNAMIC POWER STEERING APPROACH

A. Overview of Dynamic Power Steering
Dynamic Power Steering addresses a key challenge

envisioned with future extreme scale systems: restrictive power
budgets will mean that not all system components may be fully
utilized simultaneously. Combined with increased software
complexities that will lead to adaptive and dynamic
applications, whose behavior and resource requirements will
evolve with simulation progression, will create the need for
novel methodologies that will require the optimization of
energy in order to extract maximum performance. Our
Dynamic Power Steering approach addresses these challenges
by routing power to components across a system where it
provides the most benefit in response to changing demands
imposed by the executing workload.

Traditional techniques to optimize execution time typically
involve dynamic load balancing, in which computation tasks or
data are migrated from over-loaded processors to under-loaded
ones in an attempt to dynamically smooth out variations in
workload across a parallel system. Thus processors will step
through the execution of an application at approximately the
same rate. This often requires significant movement of data
from one memory domain to another, a cost which increases
with system scale. In addition, carefully constructed data
distributions may be altered to the detriment of performance.
In successful load balancing techniques, the cost (in terms of
time) of both evaluating a load-balancing decision-making
algorithm as well as data movement is less than the idle time
lost to load imbalance and thus provides an overall reduction in
runtime. However, the complexity for determining optimum
(or even reasonable) balanced distributions, as well as
determining which data to migrate, is increasingly complex for
irregular data such as that used in many adaptive applications.

61

Given the tight power constraints of future Exascale
systems, there will be more resources available than can be
actively powered at any one time. Thus there is a clear need for
active power management to ensure that maximum power
thresholds are not exceeded.

(a) Non-uniform distribution of particles across a domain

(b) Uniform load-balancing of particles across processors (denoted by grid

lines marking sub-domains) with uniform power distribution

(c) power distribution for Dynamic Power Steering in which particles are left
in-place across processors and power allocation is optimized

Figure 1: Example distribution of particles within a 2-D

domain showing both load-balancing and Dynamic Power
Steering (color indicates relative power allocation from

low to high: blue to orange to red)

Our Dynamic Power Steering approach optimizes the
power consumption in two primary ways:

1. Minimization of the power associated with data
movement by eliminating the load-balancing of data
between computation resources

2. Determining how power can be assigned to those
resources that have more work to perform.

Dynamic Power Steering is most suited where the static
calculation of an ideal power distribution is impossible such as
to applications that are naturally load-imbalanced and whose
load varies dynamically over time in an input-dependent
manner. Further, applications whose performance is impacted
by changes to the node or core p-state are most amenable to
this approach; routing more power to over-loaded resources
should have caused a significant improvement in performance.

For example, consider the example non-uniform
distribution of particles across a 2-D domain in Figure 1. Using
a classical load-balancing operation the assignment of particles
to processors could result in the mapping as shown in Figure
1(b) with a uniform power distribution (as indicated by
uniform color). However, if a constant domain decomposition
of the space is assumed, as shown in Figure 1(c), Dynamic
Power Steering can be used to assignment more power (shown
in red) to processors with more work (or particles), and less
(shown in blue) to processors with little or no work. With
Dynamic Power Steering, there is no load balancing, but the
power will be assigned to processors in proportion to the
amount of work (particles).

Dynamic Power Steering results in a power-optimized system
in which power is directed to the work being performed instead
of to the data movement associated with load-balancing. This
goes some way towards allowing applications to be tolerant of
power constraints while still enabling the optimization of
performance and thereby increasing energy efficiency.

B. Power Assignment to Processor-cores
Central to Dynamic Power Steering is the routing of power

to processor-cores that are assigned more work. This can be
achieved at a local-level by assigning each processor-core a
suitable p-state that is in proportion to the amount of work
whilst also satisfying the constraint of not exceeding a global-
power budget. Determining the correct p-state to use for each
processor-core depends on several elements. The first is the
notion of the global power budget, the system-wide quantity of
power capable of being assigned to the system at any one
point. Only the available power in the global power budget
may be allocated across the system. By lowering the p-state of
under-utilized cores, the savings in power draw may be
reallocated to other processor-cores with more assigned work
which improves the performance of those processor-cores that
are in the performance critical-path. The processor-core with
the highest work will always be the one limiting the
performance of the application, due to all other cores waiting
idle at a global synchronization. If enough power is freed by
other ranks to allow this rank to move to a higher p-state,
overall execution time will improve.

62

The heuristic shown below is used in this work to select the
p-state for all processor-cores in an iteration of an application.
The maximum amount of work is calculated over all
processors Pi (step 3), and its associated time cost using a
performance model or empirical measurements (step 4). The p-
state for all other processor-cores is calculated as being the
slowest that does not impact the overall execution time (step
5). If the global power is exceeded then the p-state of the
highest loaded processor is reduced and the assignment
heuristic is repeated from step 3.

Power assignment heuristic used in this work

Start

1. PWRmax = maximum globally available power

2. p-statemax = fastest p-state

3. Nwork_max = max(Nwork_i) i { Pi }

4. twork_max = Nwork_max . twork(p-statemax)

5. i {Pi | Pi <> Pwork_max} find the slowest p-state
such that twork_i < twork_max

6. PWRi = twork_i(p-statei)

7. PWRglobal = (p-statei)

8. If PWRglobal > PWRmax then reduce p-statemax and repeat 3.

9. Assign p-state calculated to each processor-core

End

This algorithm optimizes the selection of p-states so that
the most heavily loaded rank has the highest performance
possible. Since applications are typically synchronized per
iteration, the slowest rank is the limiting factor in the overall
performance of the application. Most processor-cores will enter
a polling state when they reach a global synchronization. This
strategy reduces the latency of collective operations, but
drastically increases processor utilization and by extension
power. For this work, we also estimate how long each iteration
will require and put any ranks that reach the barrier early to
sleep, as below:

 (1)

In addition, every processor-core enters the lowest-power
p-state before sleeping. This ensures that all ranks are
consuming as little power as possible while they wait to
proceed. Lowering power consumption at collectives allows us
to explore the maximum potential benefit of power steering.

IV. WORKLOAD CASE STUDIES
We consider two types of workload that represent the

underlying processing characteristics of many large-scale
applications: the processing of a wavefront whose position
varies over time, and a particle-in-cell processing for a charged
field between two electrical plates. In addition a third random
assignment of work across the processors in a parallel system
is used as a control case. To explore the impact of Dynamic
Power Steering, each of the workloads are kept as

(a) Charged Field

(b) Wavefront procssing

(c) Random distribution

Figure 2: Maps of processor load levels for the three
workloads on an 8x8 processor configuration (color

indicates relative processor load from blue to orange to
red)

general as possible without reference to a particular
application. Their processing characteristics are generated
through a workload generator that allows for compute, load-
imbalance as well as temporal aspects to be easily changed. We
assume that the processing flow in each step of the workload
consists of: concurrent computation performed by each
processor-core, followed by a global synchronization. This
flow corresponds directly to most large-scale applications.
Each processor-core determines its own work assignment

63

locally, which is then shared globally; p-state settings are
determined based upon the local work in relation to the global
work state to optimally assign power. p-states are then set
according to each processor-cores assigned work, and the
processing of the step begins.

Work is assigned based on the three workload distributions,
is shown in Figure 2 for an 8x8 processor configuration; two
represent patterns typically manifest in HPC workloads, while
the third captures a control case. The first HPC pattern
represents the density of charged particles in two-dimensional
space placed between two charged plates. Due to the electric
field caused by the charged plates, particles move over time
toward the plates. Given that the global spatial domain is
equally decomposed across the available, the initial load of
randomly distributed particles is well balanced. However, as
the simulation progresses and particles migrate towards the
charged plates, the load becomes imbalanced. In Figure 2(a),
this load imbalance is indicated using color; the red shows
processor cores with the highest concentration of particles.
These processor-cores are the ones that would most benefit
from an increase in performance afforded by an additional
power allocation.

Rather than perform the actual calculations of this
workload, an analytic model is used. As time approaches
infinity, points will follow a Gaussian distribution in distance
from the closer of the two plates:

 (2)

Work assignment to each processor-core is determined by
weighing a sample from each distribution that puts more
weight on the even distribution earlier in time and on the
Gaussian distribution later in time, as in Equation 3.

 (3)

The Weight value monotonically increases with each
application iteration.

The second type of workload replicates the propagation of a
wavefront through a two-dimensional space (Figure 2(b)). The
wavefront begins in the upper-left corner of the two-
dimensional global domain and expands with each subsequent
iteration. As with the charge field, the space is partitioned
along two dimensions with a single subdomain assigned to
each available processor-core. The amount of work assigned to
each core is inversely proportional to the distance of that core’s
subdomain from the wavefront according to the Gaussian
distribution curve defined in Equation 2.

The final type of workload serves as a “control case” and
assigns a random distribution of work across all processor-
cores (Figure 2(c)). Note that this is not a random uniform
distribution of particles, but is instead a random distribution of
load across processor-cores, meaning that some are assigned
proportionally higher or lower values of work in a random
fashion.

The specific parameter space we explore is controlled by
two parameters. The first is termed computational intensity and
reflects the ratio of computation to memory access within the
sequential computation. The computational intensity is uniform
across all processor-cores. The computational intensity is able
to reflect the characteristics of a multitude of applications; as
the value is increased more work is performed in the core.
Performance of a compute-bound application is more sensitive
to changes in core p-state than an application that is memory
bound. The second parameter is load-imbalance. The degree of
load-imbalance across the system can be varied so as to again
represent multiple applications. The lower the load-imbalance,
the closer each processor-core’s assigned work is to a set
maximum per-core load value.

V. EXPERIMENTAL SETUP
Since current systems are not power constrained we utilize

an exiting system under an assumed power constraint. As we
describe below, the power constraint is set to be the power use
when setting all processor-cores’ p-states to the mid-point of
the available p-states. This allows for some cores to be
allocated more power (when more heavily loaded), and at the
same time for some cores to be allocated less power (when less
loaded) with the same overall power budget.

For this work we utilized the PAL cluster located at Pacific
Northwest National Laboratory (PNNL). This system contains
power instrumented Power Distribution Unit (PDU) rails with
which power consumption can be measured on a per-outlet
basis at a frequency of 0.3 Hz. The cluster contains 144 nodes
in total, each comprised of two sockets of AMD Opteron 6272
Interlagos processors with a maximum clock frequency of 2.1
GHz. Each socket consists of a dual-chip module with each
chip containing four AMD Bulldozer dual-core modules (i.e.,
eight cores in total per chip). Because each dual-core Bulldozer
module contains only a single floating-point unit, our
experiments utilize a total of 16 of the available 32 cores per
node. Each 8-module chip contains 8x64KB instruction caches,
as well as 16x16KB L1 data cache, a 4x2MB L2 data cache,
and a 2x8MB L3 data cache. Each node has 64GB DDR3
memory connected to the processors via a 3200MHz front-side
bus. The Thermal Design Point (TDP) of each processor socket
is 115W.

PAL is housed in three racks, with each rack containing 48
nodes physically organized as 12 quad-node units. Each quad-
node contains two power supplies and is supplied by two
outlets from the instrumented PDU rails. No direct power
measurement of the InfiniBand switches was performed.
Monitoring and storage of the power use of all nodes was
enabled at the system’s normal operating frequency of 0.3 Hz.
PAL’s installed O/S was Red Hat Enterprise Linux version 5.7
distribution containing the Linux kernel version 2.6.32.
Pathscale version 4.0.10 compilers were used, along with the
OpenMPI version 1.5.4 MPI libraries.

The characteristics of PAL are summarized in Table 1.

64

Table 1: Summary of the PAL cluster

Per-Socket Info
Total Cores 16
Cores Used 8
Max. Frequency (GHz) 2.1
Power Gating Available No
DVFS Available Yes
Idling Cores Available Yes

Per-Node Info
Total Sockets 2
Memory (GB) 64
Nodes/Rack 48

Software Info
Linux Kernel 2.6.32
Compiler Pathscale v4.0.10
MPI Library OpenMPI v1.5.4

Network 4xQDR InfiniBand
Power Info

Socket TDP (W) 115
Rack Idle Power (KW) 10.4
Rack Active Power (KW) 14.2
Measurement Rate (Hz) 0.3

DVFS is available on PAL at available clock frequencies of
2.1, 1.9, 1.7, 1.5, and 1.4 GHz. The frequency domain is a
single dual-core Bulldozer module. A “baseline” power budget
is assumed corresponding to all processor-cores set at a 1.7
GHz. This baseline defines the power budget which may not be
exceeded across and enables improved performance on some
cores by increasing the clock frequency to 2.1 GHz at the
expense of requiring other cores to be reduced to 1.4 GHz to
compensate.

In order to analyze the impact on power consumption
caused by changing the processor-core p-state, we measured
the active power on a per-core basis under load. This was
executed for each p-state and Figure 3 shows the power
consumption for a single core. Initial core idleness can be seen
in the first 30s, followed by the sharp increase in power
consumption corresponding to the execution of the benchmark.
On benchmark completion, the power drops to the idle level. It
can be clearly seen that higher frequencies correspond to
higher power draws, and also to shorter runtimes. However, the
impact on runtime is dependent on the sensitivity of the
benchmark to clock frequency.

Of particular note is that the power consumption groups
into three bands consisting of the highest frequency (2.1 GHz),
the middle three frequencies, and the lowest frequency (1.4
GHz). For this reason we consider only three p-states: 2.1, 1.7,
and 1.4 GHz in this work. From this, we derive the per-core p-
state power draw values given in Table 2.

Table 2: Per-core power utilization for each p-state

Frequency (GHz) Core Active Power (W)
2.1 21.1
1.7 18.0
1.4 15.6

Figure 3: Measured power states for an AMD Interlagos

core on the PAL system

VI. RESULTS AND DISCUSSION
We conducted a set of experiments using PAL and the three

workload case studies as detailed in Section IV. For all
application configurations, 576 processor-cores were utilized
across 36 nodes of the PAL cluster. Results are presented
relative to executing the workloads without Dynamic Power
Steering thus enabling its impact to be assessed. Positive
values indicate improvement over the baseline and thus the
advantage of using Dynamic Power Steering. Below the results
of our experiments are presented and a discussion of the more
general observations is provided.

Figure 4 indicates the improvement in runtime
improvement when using Dynamic Power Steering for all three
application configurations with varying degrees of load
imbalance and compute intensity. For each graph, the x-axis
denotes the level of computational intensity, on a scale from
zero (entirely compute bound, executing in cache) to one
(memory bound with very few arithmetic operations). The y-
axis denotes the load-balance across processor-cores in the
parallel system, again with zero indicating a high degree of
load-imbalance and one indicating a perfect load-balance
across all processor-cores.

In the case of the Charge Field synthetic workload, Figure
4(a), a clear trend emerges. First, when using Dynamic Power
Steering and allowing each of the processor core’s p-state rto
change results in a greater change in performance when the
workload exhibits a higher level of computational intensity.
This is due to the fact that, on PAL, changing processor core p-
state equates with altering clock frequency. Workloads that are
bound by memory performance are sensitive to processor-core
frequency, and thus less impacted by changes in p-state.
Compute intensive workloads therefore benefit from increased
clock frequency on those processor cores that are overloaded.

Second, the performance improvement increases with
increased load-imbalance, although the effect is more dramatic
than for increased computational intensity. One reason for this
is the coarse granularity of the available p-states on the PAL
system. The workload has to exhibit a fairly high level of
imbalance before lowering a processor core’s p-state does not

65

place it onto the performance critical path, thereby increasing
overall runtime.

We note that the performance improvement for the
Wavefront workload is non-zero even in cases of load balance.
This is due to the load not being perfectly distributed due to
work being distributed according to a Gaussian distribution for
a given distance from the wavefront; however, the Gaussian
distribution always assigns more work along the wavefront
itself so that a degree of load imbalance always exists. Given a
smooth load distribution, we feel that the performance
improvement for a well-balanced load distribution would be
negligible.

Although the Random load distribution distributes load
levels across processor cores randomly, ranging from under-
loaded to over-loaded load levels, there is still sufficient load
imbalance across the system (in some configurations) to afford
a performance improvement of over 25% (Figure 4(c)). An
notable side-effect of the Dynamic Power Steering
methodology is that, by eliminating the data movement
typically associated with dynamic load balancing, data locality
is preserved to the greatest extent possible. In the case of the
Random load distribution example, this is especially relevant
as data may be required to migrate a great distance away from
its originating processor core to evenly distribute the load.

The Dynamic Power Steering approach provides improved
performance for workloads executing on a parallel system
under power budget constraints. It is important to ensure that
power allocation is within a global limitation. Figure 5 denotes
the change in power when using Dynamic Power Steering
relative to default execution. Because of the coarse granularity
of processor-core p-states and the fact that Dynamic Power
Steering aims to keep overall power consumption below a
specified threshold, it is often the case that an execution of all
three workloads actually consumes less power than a default
execution.

In some cases, however, the power budget is exceeded by
less than 5%. The reason is that the models used to predict
execution time and power consumption for workload execution
under different processor p-states have a small margin of error.
This results in an overall prediction within power constraints,
but measurements resulting in slightly higher power
consumption. As the focus of this research is in assessing the
viability of the Dynamic Power Steering approach, we do not
see this as a limitation in the methodology. Future work will be
in developing accurate power modeling approaches that can be
integrated with the Dynamic Power Steering methodology.

Improved performance combined with nearly equivalent
power consumption will result in improved energy efficiency,
and that is indeed what is shown in Figure 6. For all three
workload types, energy efficiency is improved; in the case of
the Wavefront workload, energy efficiency is improved by
nearly 45%, for the charged field by 27%, and for the random
load by up to 20%. The greatest improvement in general
corresponds to the cases of greatest compute intensity and
load-imbalance.

(a) Charge Field performance improvement

(b) Wavefront performance improvement

(c) Random Load performance improvement

Figure 4: Relative runtime improvement for all three
workload types when using Dynamic Power Steering

66

Figure 5: Relative power improvement for all three
workloads when using Dynamic Power Steering

(a) Charge Field energy improvement

(b) Wavefront energy improvement

(c) Random Load energy improvement

Figure 6: Relative energy improvement for all three
workloads when using Dynamic Power Steering

(a) Charge Field power improvement

(b) Wavefront power improvement

(c) Random Load power improvement

67

Figure 7: Average performance, power, and energy

consumption results for all workloads

A summary of the average improvement in performance, in
power consumption, and in energy efficiency for all three
workloads is shown in Figure 7. This is taken over all
computational intensity and load-balance cases shown in
Figures 4-6. Clearly, performance is improved in all cases.
Combined with slight improvements in power consumption,
this results in slightly greater improvements in overall energy
efficiency. The Wavefront workload exhibits greater
improvements because as a slight degree of load imbalance
persists in all cases allowing for improved performance as
discussed earlier.

VII. CONCLUSIONS
In this work, we have explored the feasibility of Dynamic

Power Steering, a method by which performance and energy
efficiency of load-imbalanced applications may be optimized
on power-constrained large-scale systems. In contrast with
traditionally dynamic load balancing, data migration is
eliminated, conserving the power expenditure associated with
data movement. Instead, power is dynamically routed to
processing resources with the greatest load allowing them to
execute at a higher rate of performance. To compensate, power
is routed away from under-loaded resources, thereby
minimizing idle-time.

To assess its feasibility, we use three workloads that
represent many large-scale applications and allow us to “dial
in” the characteristics of a wide range of workloads. We
simulate a power-constrained system by restricting the global
power budget across a state-of-the-art cluster; by specifying the
nominal p-state to be that of each processor core executing at
1.7 GHz, the middle p-state available. This allows each
processor core room to improve performance by increasing the
power allocating to the core, requiring other cores in the
system to reduce their power consumption by utilizing a p-state
of lower performance and power.

In this work, we have focused on two application
characteristics that are the most significant: computational
intensity and degree of load imbalance. Our results indicate
that significant performance gains are possible in the cases in
which the application is significantly load-imbalanced and
compute intensive. Large degrees of load imbalance provide
the most opportunity for power routing, as there are under-

loaded processors able to “donate” power to over-loaded cores
in a power constrained system. Compute intensity, in turn,
determines the impact increases in p-state will have on core
performance; processors that are bound by compute
performance, as opposed to memory performance, are more
likely to exhibit a change in performance when core frequency
is altered. Across the three workloads, we demonstrate an
average performance improvement of greater than 11%,
resulting in an average improvement in energy efficiency of
13%.

In future systems with more available p-states and a finer
degree of control in power routing, we expect the Dynamic
Power Steering approach to offer greater improvements.

ACKNOWLEDGEMENTS
This research was supported in part by Advanced Scientific
Computing Research (ASCR) office of the DOE Office of
Science. The Pacific Northwest National Laboratory is
operated by Battelle for the U.S. Department of Energy under
contract DE-AC05-76RL01830.

REFERENCES
[1] “Scientific Grand Challenges: Architectures and Technology for

Extreme Scale Computing,” Report from DOE workshop, San Diego,
Dec 8-10, 2009. (http://science.energy.gov/~/media/ascr/pdf/program-
documents/docs/Arch_tech_grand_challenges_report.pdf)

[2] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D.
Burger, “Dark Silicon and the End of Multicore Scaling”, in Proc. 38th
Int. Symp. on Computer Architecture (ISCA’11), pp. 365-376.

[3] M. Etinski, J. Corbalan, J. Labarta, and M. Valero, “Parallel Job
Scheduling for Power Constrained HPC Systems,” Parallel Computing,
28(12):615-630, Dec. 2012.

[4] B. Rountree, D.K. Lowenthal, B.R. deSupinski, M. Schulz, V.W. Freeh
and T. Bletsch, “Adagio: Making DVS Practical for Complex HPC
Applications,” in proc. Int. Conf. on Supercomputing (ICS), New York,
2009, pp. 460–469.

[5] D. J. Kerbyson, A. Vishnu, K. J. Barker, “Energy Templates: Exploiting
Application Information to Save Energy”, in proc. IEEE Cluster, Austin,
Sept. 2011.

[6] V.W. Freeh and D.K. Lowenthal, “Using multiple energy gears in MPI
programs on a power-scalable cluster,” in proc. ACM Symp. on
Principles and Practice of Parallel Programming (PPoPP), 2005, pp.
164–173.

[7] C. Liu, A. Sivasubramaniam, M. Kandemir and M.J. Irwin, “Exploiting
Barriers to Optimize Power Consumption of CMPs,” in proc. Int.
Parallel and Distributed Processing Symp. (IPDPS), Denver, April 2005.

[8] D.S. Nikolopoulos, “Green Building Blocks - Software Stacks for
Energy-Efficient Clusters and Data Centres,” ERCIM News 79, 2009.

[9] D. Li, D.S. Nikolopoulos, K. Cameron, B.R. deSupinski and M. Schulz,
“Hybrid MPI/OpenMP Power-Aware Computing,” in proc. Int. Parallel
and Distributed Processing Symp. (IPDPS), Atlanta, GA, April 2010.

[10] N. Kappiah, V.W. Freeh and D.K. Lowenthal, “Just In Time Dynamic
Voltage Scaling: Exploiting Inter-Node Slack to Save Energy in MPI
Programs,” in proc. IEEE/ACM Supercomputing (SC’05), Seattle, WA,
Nov. 2005.

[11] A. Vishnu., S. Song, A. Marquez, K.J. Barker, D.J. Kerbyson, K.
Cameron, and P. Balaji, “Designin Energy Efficient Communication
Runtime Systems for Data Centric Programming Models”, in proc.
IEEE Int. Conf. on Green Computing and Communications, Hangzhou,
China, Dec. 2010.

68

[12] K. Kandalla, E.P. Mancini, S. Sur and D.K. Panda, “Designing Power-
Aware Collective Communication Algorithms for InfiniBand Clusters,”
in proc. Int. Conf. on Parallel Processing (ICPP), Sept. 2010, pp. 218–
227.

[13] D. Li, B. de Supinski, M. Schulz, D. Nikolopolous, K. Cameron,
“Strategies for Energy Efficient Resource Management of Hybrid

Programming Models”, IEEE Transactions on Parallel and Distributed
Systems 24(1):144-157, Jan. 2013.

[14] N. Satish, C. Kim, Chugani, P. Dubey, “Large-scale Energy-efficient
Graph Traversal: A Path to Efficient Data-intensive Supercomputing”,
in proc. IEEE/ACM Supercomputing (SC’12), Salt Lake City, Nov.
2012.

69

