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Abstract— While high performance has always been the 
primary constraint behind large-scale system design, future 
systems will be built with increasing energy efficiency in mind. 
Mechanisms such as fine-grained power scaling and gating will 
provide tools to system-software and application developers to 
ensure the most efficient use of tightly constrained power 
budgets. Such approaches to-date have been focused on node-
level optimizations to impact overall system energy efficiency. In 
this work we introduce Dynamic Power Steering, in which power 
can be dynamically routed across a system to resources where it 
will be of most benefit and away from other resources to 
maintain a near-constant overall power budget. This, a higher-
level algorithmic approach to improving energy efficiency, 
considers the whole extent of a system being used by an 
application. It can be used for applications in which there is load-
imbalance that varies over its execution. Using two classes of 
applications, namely those that contain a wavefront type 
processing, and a particle-in-cell, we quantify the benefit of 
Dynamic Power Steering for a variety of workload 
characteristics and derive some insight into the ways in which 
workload behavior affect Power Steering applicability. 

Keywords—Energy-efficient Computing, Large-scale Systems, 
Dynamic Power Steering, Dynamic Workloads 

 

I. INTRODUCTION 
The High Performance Computing (HPC) landscape is 

evolving rapidly on the way towards Exascale computing. 
Whereas ultimate performance was previously the sole metric 
for computing platform success, future systems will be 
required to achieve unprecedented levels of performance 
within tightly constrained power budgets. For instance, the 
current drive to Exascale systems has a power budget goal of 
20MW [1]. This new emphasis on energy efficiency within the 
context of high performance will necessitate new approaches to 
optimizing power at all levels from the underlying technology, 
up through the software-stack, to and including the 
applications.  

Sea changes are imminent in both system hardware and 
software architecture as well as application design in response 
to the pressures imposed by this new emphasis on energy 
efficiency. On the system side, restrictive power budgets imply 
that it may be the case that not all architectural components 
may be utilized at their full capabilities simultaneously. In turn, 
fine-grained power allocation and measurement capabilities 
will allow system software and applications to closely monitor 

power consumption across the system and adapt the power 
distribution to characteristics of the executing workload. In 
other words, the parallel system may be used in a “throttled-
down” configuration, or, alternatively, an asymmetric power 
distribution may be employed across the machine. 

On the application side, it is expected that applications will 
become increasingly more adaptive and asynchronous, varying 
over time and across the parallel system in ways that are input 
dependent. The evolving nature of the ongoing simulation will 
lead to dynamic and input-dependent load imbalance, making 
static performance prediction and power allocation impossible 
and thus necessitating the need for dynamic mechanisms to 
respond to the evolving workload. 

In response to these needs we introduce here Dynamic 
Power Steering whose goal is to maximize performance within 
a fixed power budget and thereby optimizing energy 
consumption. Dynamic Power Steering routes power to 
resources (processor-cores) that are assigned the most work 
and thus lie along the performance-critical path of the 
application. Such situations arise in most applications that 
exhibit load-imbalance and that often require complex load 
balancing that approximately equalizes work across the system 
resources but at the cost of increasingly complex load-
balancing operation and with extensive data movement. In 
order to keep the overall system within the prescribed power 
budget, power is diverted away from other resources in such a 
way as to not negatively impact overall performance. 

Of particular interest is the following open question: what 
application characteristics will enable Dynamic Power Steering 
approaches to be most successful? This work explores this 
question through the use of two representative workloads, 
namely those that contain a wavefront type processing, and a 
particle-in-cell that is used to simulate a charged field between 
two electrical plates. A third is used as a control case 
containing work that is a randomly distributed across the 
system. These represent many applications and are 
implemented in the form of a synthetic workload in which 
sequential and parallel workload characteristics can be 
explicitly controlled. The use of a synthetic workload addresses 
the “chicken and egg” problem that this feasibility study faces: 
we are exploring future system and application architectures, 
neither of which currently exists.  Dynamic Power Steering is a 
critical enabling technology for Exascale systems and must be 
developed concurrently with future applications and 
architectures. 
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The main contributions of this work are as follows: 

• We introduce Dynamic Power steering that is a system-
wide approach to optimize performance within a fixed 
power budget and thereby optimizes energy consumption 

• We explore Dynamic Power steering for a range of 
application workload characteristics on a medium sized, 
1K-processor-core system, that allows for the emulation 
of a constrained power-budget 

• We demonstrate that Dynamic Power Steering can 
improve performance and hence improve energy 
efficiency by up to 40%, by keeping the power budget 
near-constant for a wide-range of workload 
characteristics 

Our initial feasibility study of Dynamic Power Steering 
clearly illustrates that such an approach can be used to 
optimize power use across a system for load-imbalanced 
applications when there is a power constraint to the system 
operation. It utilizes a current system that is power constraint, 
but instead mimics a power-constraint by setting the default 
power-state (p-state) to be at a mid-point, and allowing the p-
state to vary up or down under control of Dynamic Power 
Steering depending on the availability of work. The approach 
is general and can be applied to future power-constrained 
systems.  

The rest of this paper is organized as follows.  Section 2 
details related work in the field of large-scale energy efficiency 
and dynamic energy optimization. Section 3 details the 
principles and approach of Dynamic Power Steering.  Section 4 
describes the three test-case workloads. The experimental setup 
including the software infrastructure and the parallel system 
utilized for our experiments is detailed in Section 5.  Section 6 
provides the results of our exploration and a discussion. 
Conclusions drawn from this work are given in Section 7. 

II. RELATED WORK 
Much of our work has been driven by the observation that 

future systems will be power constrained, that is not all 
resources will be active at any one time as insufficient power 
will be available. This has been noted at the processor socket 
level, and the term dark-silicon has been analyzed by several 
including work that points to how such power constraints may 
impact future architecture design [2]. Power constraints have 
also been considered in the context of job scheduling to make 
best use of an available power budget [3]. However, current 
systems do not have power constraints and so most current 
research is focused on improving energy efficiency using both 
application independent and application driven approaches. 

Current work on improving energy efficiency includes the 
Adagio runtime system for slack prediction and provides 
energy optimization for applications including UMT2K and 
Paradis [4]. However, the approach assumes Bulk Synchronous 
Parallelism (BSP) in which the model of execution consists of 
multiple steps each containing a compute followed by 
communication that is often global. This does not provide the 
best energy efficiency for applications with complex and time-
dependent processing patterns including those in wavefront 
applications that have benefited from the Energy Template 

approach [5]. Approaches for the static analysis of power use 
by dividing applications into phases have also been used [6]. A 
framework that exploits barriers for energy efficiency has also 
been explored [7]. Green building blocks and methodologies 
for hybrid execution for providing energy efficiency in the 
runtime system was proposed in [8] and [9]. Several techniques 
that use Dynamic Voltage Scaling, including a just-in-time 
method [10], enable a processor-core to slow down if the 
assigned computation is lower than on others. Energy 
efficiency for one-sided communication runtime systems has 
also been proposed [11] that considered the use of DVFS and 
interrupt-driven execution. Methods for designing energy 
efficient collective communication primitives using MPI have 
been studied for a range of applications [12]. Recent work 
includes designing energy efficient runtimes for hybrid 
programming models [13], and graph algorithms [14]. 
However, these approaches are either reliant on power 
reduction [15] or more focused towards reduction in runtime, 
which will have an automatic effect on energy consumption. 

Our work is rather different from that on improving energy 
efficiency alone. It provides a higher-level view of power-
optimization across a system that has an overall power 
constraint. It trades the principle of load balancing for power 
balancing whilst also aimed at satisfying an overall system 
power budget.  

III. DYNAMIC POWER STEERING APPROACH 

A. Overview of Dynamic Power Steering 
Dynamic Power Steering addresses a key challenge 

envisioned with future extreme scale systems: restrictive power 
budgets will mean that not all system components may be fully 
utilized simultaneously. Combined with increased software 
complexities that will lead to adaptive and dynamic 
applications, whose behavior and resource requirements will 
evolve with simulation progression, will create the need for 
novel methodologies that will require the optimization of 
energy in order to extract maximum performance. Our 
Dynamic Power Steering approach addresses these challenges 
by routing power to components across a system where it 
provides the most benefit in response to changing demands 
imposed by the executing workload. 

Traditional techniques to optimize execution time typically 
involve dynamic load balancing, in which computation tasks or 
data are migrated from over-loaded processors to under-loaded 
ones in an attempt to dynamically smooth out variations in 
workload across a parallel system. Thus processors will step 
through the execution of an application at approximately the 
same rate. This often requires significant movement of data 
from one memory domain to another, a cost which increases 
with system scale. In addition, carefully constructed data 
distributions may be altered to the detriment of performance.  
In successful load balancing techniques, the cost (in terms of 
time) of both evaluating a load-balancing decision-making 
algorithm as well as data movement is less than the idle time 
lost to load imbalance and thus provides an overall reduction in 
runtime. However, the complexity for determining optimum 
(or even reasonable) balanced distributions, as well as 
determining which data to migrate, is increasingly complex for 
irregular data such as that used in many adaptive applications. 
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Given the tight power constraints of future Exascale 
systems, there will be more resources available than can be 
actively powered at any one time. Thus there is a clear need for 
active power management to ensure that maximum power 
thresholds are not exceeded.  

 

 
(a) Non-uniform distribution of particles across a domain 

 
(b) Uniform load-balancing of particles across processors (denoted by grid 

lines marking sub-domains) with uniform power distribution 

 
 

(c) power distribution for Dynamic Power Steering in which particles are left 
in-place across processors and power allocation is optimized  

 
Figure 1:  Example distribution of particles within a 2-D 

domain showing both load-balancing and Dynamic Power 
Steering (color indicates relative power allocation from 

low to high: blue to orange to red)  
 

Our Dynamic Power Steering approach optimizes the 
power consumption in two primary ways: 

1. Minimization of the power associated with data 
movement by eliminating the load-balancing of data 
between computation resources 

2. Determining how power can be assigned to those 
resources that have more work to perform. 

Dynamic Power Steering is most suited where the static 
calculation of an ideal power distribution is impossible such as 
to applications that are naturally load-imbalanced and whose 
load varies dynamically over time in an input-dependent 
manner. Further, applications whose performance is impacted 
by changes to the node or core p-state are most amenable to 
this approach; routing more power to over-loaded resources 
should have caused a significant improvement in performance. 

For example, consider the example non-uniform 
distribution of particles across a 2-D domain in Figure 1. Using 
a classical load-balancing operation the assignment of particles 
to processors could result in the mapping as shown in Figure 
1(b) with a uniform power distribution (as indicated by 
uniform color). However, if a constant domain decomposition 
of the space is assumed, as shown in Figure 1(c), Dynamic 
Power Steering can be used to assignment more power (shown 
in red) to processors with more work (or particles), and less 
(shown in blue) to processors with little or no work. With 
Dynamic Power Steering, there is no load balancing, but the 
power will be assigned to processors in proportion to the 
amount of work (particles).  

Dynamic Power Steering results in a power-optimized system 
in which power is directed to the work being performed instead 
of to the data movement associated with load-balancing. This 
goes some way towards allowing applications to be tolerant of 
power constraints while still enabling the optimization of 
performance and thereby increasing energy efficiency. 

B. Power Assignment to Processor-cores 
Central to Dynamic Power Steering is the routing of power 

to processor-cores that are assigned more work. This can be 
achieved at a local-level by assigning each processor-core a 
suitable p-state that is in proportion to the amount of work 
whilst also satisfying the constraint of not exceeding a global-
power budget. Determining the correct p-state to use for each 
processor-core depends on several elements. The first is the 
notion of the global power budget, the system-wide quantity of 
power capable of being assigned to the system at any one 
point. Only the available power in the global power budget 
may be allocated across the system. By lowering the p-state of 
under-utilized cores, the savings in power draw may be 
reallocated to other processor-cores with more assigned work 
which improves the performance of those processor-cores that 
are in the performance critical-path. The processor-core with 
the highest work will always be the one limiting the 
performance of the application, due to all other cores waiting 
idle at a global synchronization. If enough power is freed by 
other ranks to allow this rank to move to a higher p-state, 
overall execution time will improve. 
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The heuristic shown below is used in this work to select the 
p-state for all processor-cores in an iteration of an application. 
The maximum amount of work is calculated over all 
processors Pi (step 3), and its associated time cost using a 
performance model or empirical measurements (step 4). The p-
state for all other processor-cores is calculated as being the 
slowest that does not impact the overall execution time (step 
5). If the global power is exceeded then the p-state of the 
highest loaded processor is reduced and the assignment 
heuristic is repeated from step 3.  

 

Power assignment heuristic used in this work 
 

Start 

1. PWRmax = maximum globally available power 

2. p-statemax = fastest p-state 

3. Nwork_max = max(Nwork_i)  i  { Pi } 

4. twork_max = Nwork_max . twork( p-statemax ) 

5.  i  {Pi | Pi <> Pwork_max} find the slowest p-state 
such that twork_i < twork_max 

6. PWRi = twork_i( p-statei ) 

7. PWRglobal = ( p-statei ) 

8. If PWRglobal > PWRmax then reduce p-statemax and repeat 3. 

9.  Assign p-state calculated to each processor-core 

End 
 

This algorithm optimizes the selection of p-states so that 
the most heavily loaded rank has the highest performance 
possible.  Since applications are typically synchronized per 
iteration, the slowest rank is the limiting factor in the overall 
performance of the application. Most processor-cores will enter 
a polling state when they reach a global synchronization. This 
strategy reduces the latency of collective operations, but 
drastically increases processor utilization and by extension 
power.  For this work, we also estimate how long each iteration 
will require and put any ranks that reach the barrier early to 
sleep, as below: 

   (1) 
 

In addition, every processor-core enters the lowest-power 
p-state before sleeping. This ensures that all ranks are 
consuming as little power as possible while they wait to 
proceed.  Lowering power consumption at collectives allows us 
to explore the maximum potential benefit of power steering. 

IV. WORKLOAD CASE STUDIES 
We consider two types of workload that represent the 

underlying processing characteristics of many large-scale 
applications: the processing of a wavefront whose position 
varies over time, and a particle-in-cell processing for a charged 
field between two electrical plates. In addition a third random 
assignment of work across the processors in a parallel system 
is used as a control case.  To explore the impact of Dynamic 
Power Steering, each of the workloads are kept as 

 
(a) Charged Field 

 
(b) Wavefront procssing 

 
(c) Random distribution 

Figure 2:  Maps of processor load levels for the three 
workloads on an 8x8 processor configuration (color 

indicates relative processor load from blue to orange to 
red) 

 

general as possible without reference to a particular 
application. Their processing characteristics are generated 
through a workload generator that allows for compute, load-
imbalance as well as temporal aspects to be easily changed. We 
assume that the processing flow in each step of the workload 
consists of: concurrent computation performed by each 
processor-core, followed by a global synchronization. This 
flow corresponds directly to most large-scale applications.  
Each processor-core determines its own work assignment 
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locally, which is then shared globally; p-state settings are 
determined based upon the local work in relation to the global 
work state to optimally assign power. p-states are then set 
according to each processor-cores assigned work, and the 
processing of the step begins. 

Work is assigned based on the three workload distributions, 
is shown in Figure 2 for an 8x8 processor configuration; two 
represent patterns typically manifest in HPC workloads, while 
the third captures a control case. The first HPC pattern 
represents the density of charged particles in two-dimensional 
space placed between two charged plates. Due to the electric 
field caused by the charged plates, particles move over time 
toward the plates. Given that the global spatial domain is 
equally decomposed across the available, the initial load of 
randomly distributed particles is well balanced. However, as 
the simulation progresses and particles migrate towards the 
charged plates, the load becomes imbalanced. In Figure 2(a), 
this load imbalance is indicated using color; the red shows 
processor cores with the highest concentration of particles.  
These processor-cores are the ones that would most benefit 
from an increase in performance afforded by an additional 
power allocation. 

Rather than perform the actual calculations of this 
workload, an analytic model is used. As time approaches 
infinity, points will follow a Gaussian distribution in distance 
from the closer of the two plates: 

 
 (2) 

 

Work assignment to each processor-core is determined by 
weighing a sample from each distribution that puts more 
weight on the even distribution earlier in time and on the 
Gaussian distribution later in time, as in Equation 3. 

  
 (3) 

 

The Weight value monotonically increases with each 
application iteration. 

The second type of workload replicates the propagation of a 
wavefront through a two-dimensional space (Figure 2(b)). The 
wavefront begins in the upper-left corner of the two-
dimensional global domain and expands with each subsequent 
iteration. As with the charge field, the space is partitioned 
along two dimensions with a single subdomain assigned to 
each available processor-core. The amount of work assigned to 
each core is inversely proportional to the distance of that core’s 
subdomain from the wavefront according to the Gaussian 
distribution curve defined in Equation 2. 

The final type of workload serves as a “control case” and 
assigns a random distribution of work across all processor-
cores (Figure 2(c)). Note that this is not a random uniform 
distribution of particles, but is instead a random distribution of 
load across processor-cores, meaning that some are assigned 
proportionally higher or lower values of work in a random 
fashion. 

The specific parameter space we explore is controlled by 
two parameters. The first is termed computational intensity and 
reflects the ratio of computation to memory access within the 
sequential computation. The computational intensity is uniform 
across all processor-cores. The computational intensity is able 
to reflect the characteristics of a multitude of applications; as 
the value is increased more work is performed in the core. 
Performance of a compute-bound application is more sensitive 
to changes in core p-state than an application that is memory 
bound. The second parameter is load-imbalance. The degree of 
load-imbalance across the system can be varied so as to again 
represent multiple applications. The lower the load-imbalance, 
the closer each processor-core’s assigned work is to a set 
maximum per-core load value. 

V. EXPERIMENTAL SETUP  
Since current systems are not power constrained we utilize 

an exiting system under an assumed power constraint. As we 
describe below, the power constraint is set to be the power use 
when setting all processor-cores’ p-states to the mid-point of 
the available p-states. This allows for some cores to be 
allocated more power (when more heavily loaded), and at the 
same time for some cores to be allocated less power (when less 
loaded) with the same overall power budget.  

For this work we utilized the PAL cluster located at Pacific 
Northwest National Laboratory (PNNL). This system contains 
power instrumented Power Distribution Unit (PDU) rails with 
which power consumption can be measured on a per-outlet 
basis at a frequency of 0.3 Hz. The cluster contains 144 nodes 
in total, each comprised of two sockets of AMD Opteron 6272 
Interlagos processors with a maximum clock frequency of 2.1 
GHz. Each socket consists of a dual-chip module with each 
chip containing four AMD Bulldozer dual-core modules (i.e., 
eight cores in total per chip). Because each dual-core Bulldozer 
module contains only a single floating-point unit, our 
experiments utilize a total of 16 of the available 32 cores per 
node. Each 8-module chip contains 8x64KB instruction caches, 
as well as 16x16KB L1 data cache, a 4x2MB L2 data cache, 
and a 2x8MB L3 data cache. Each node has 64GB DDR3 
memory connected to the processors via a 3200MHz front-side 
bus. The Thermal Design Point (TDP) of each processor socket 
is 115W.  

PAL is housed in three racks, with each rack containing 48 
nodes physically organized as 12 quad-node units.  Each quad-
node contains two power supplies and is supplied by two 
outlets from the instrumented PDU rails. No direct power 
measurement of the InfiniBand switches was performed.  
Monitoring and storage of the power use of all nodes was 
enabled at the system’s normal operating frequency of 0.3 Hz. 
PAL’s installed O/S was Red Hat Enterprise Linux version 5.7 
distribution containing the Linux kernel version 2.6.32.  
Pathscale version 4.0.10 compilers were used, along with the 
OpenMPI version 1.5.4 MPI libraries. 

The characteristics of PAL are summarized in Table 1. 
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Table 1:  Summary of the PAL cluster 

Per-Socket Info  
Total Cores 16 
Cores Used 8 
Max. Frequency (GHz) 2.1 
Power Gating Available No 
DVFS Available Yes 
Idling Cores Available Yes 

Per-Node Info  
Total Sockets 2 
Memory (GB) 64 
Nodes/Rack 48 

Software Info  
Linux Kernel 2.6.32 
Compiler Pathscale v4.0.10 
MPI Library OpenMPI v1.5.4 

Network 4xQDR InfiniBand 
Power Info  

Socket TDP (W) 115 
Rack Idle Power (KW) 10.4 
Rack Active Power (KW) 14.2 
Measurement Rate (Hz) 0.3 

 

DVFS is available on PAL at available clock frequencies of 
2.1, 1.9, 1.7, 1.5, and 1.4 GHz. The frequency domain is a 
single dual-core Bulldozer module. A “baseline” power budget 
is assumed corresponding to all processor-cores set at a 1.7 
GHz. This baseline defines the power budget which may not be 
exceeded across and enables improved performance on some 
cores by increasing the clock frequency to 2.1 GHz at the 
expense of requiring other cores to be reduced to 1.4 GHz to 
compensate. 

In order to analyze the impact on power consumption 
caused by changing the processor-core p-state, we measured 
the active power on a per-core basis under load. This was 
executed for each p-state and Figure 3 shows the power 
consumption for a single core. Initial core idleness can be seen 
in the first 30s, followed by the sharp increase in power 
consumption corresponding to the execution of the benchmark. 
On benchmark completion, the power drops to the idle level. It 
can be clearly seen that higher frequencies correspond to 
higher power draws, and also to shorter runtimes. However, the 
impact on runtime is dependent on the sensitivity of the 
benchmark to clock frequency.  

Of particular note is that the power consumption groups 
into three bands consisting of the highest frequency (2.1 GHz), 
the middle three frequencies, and the lowest frequency (1.4 
GHz). For this reason we consider only three p-states: 2.1, 1.7, 
and 1.4 GHz in this work. From this, we derive the per-core p-
state power draw values given in Table 2. 

Table 2:  Per-core power utilization for each p-state 

Frequency (GHz) Core Active Power (W) 
2.1 21.1 
1.7 18.0 
1.4 15.6 

 

 

 
Figure 3:  Measured power states for an AMD Interlagos 

core on the PAL system 

VI. RESULTS AND DISCUSSION 
We conducted a set of experiments using PAL and the three 

workload case studies as detailed in Section IV. For all 
application configurations, 576 processor-cores were utilized 
across 36 nodes of the PAL cluster. Results are presented 
relative to executing the workloads without Dynamic Power 
Steering thus enabling its impact to be assessed. Positive 
values indicate improvement over the baseline and thus the 
advantage of using Dynamic Power Steering. Below the results 
of our experiments are presented and a discussion of the more 
general observations is provided. 

Figure 4 indicates the improvement in runtime 
improvement when using Dynamic Power Steering for all three 
application configurations with varying degrees of load 
imbalance and compute intensity. For each graph, the x-axis 
denotes the level of computational intensity, on a scale from 
zero (entirely compute bound, executing in cache) to one 
(memory bound with very few arithmetic operations). The y-
axis denotes the load-balance across processor-cores in the 
parallel system, again with zero indicating a high degree of 
load-imbalance and one indicating a perfect load-balance 
across all processor-cores. 

In the case of the Charge Field synthetic workload, Figure 
4(a), a clear trend emerges.  First, when using Dynamic Power 
Steering and allowing each of the processor core’s p-state rto 
change results in a greater change in performance when the 
workload exhibits a higher level of computational intensity.  
This is due to the fact that, on PAL, changing processor core p-
state equates with altering clock frequency. Workloads that are 
bound by memory performance are sensitive to processor-core 
frequency, and thus less impacted by changes in p-state.  
Compute intensive workloads therefore benefit from increased 
clock frequency on those processor cores that are overloaded. 

Second, the performance improvement increases with 
increased load-imbalance, although the effect is more dramatic 
than for increased computational intensity. One reason for this 
is the coarse granularity of the available p-states on the PAL 
system. The workload has to exhibit a fairly high level of 
imbalance before lowering a processor core’s p-state does not 
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place it onto the performance critical path, thereby increasing 
overall runtime. 

We note that the performance improvement for the 
Wavefront workload is non-zero even in cases of load balance.  
This is due to the load not being perfectly distributed due to 
work being distributed according to a Gaussian distribution for 
a given distance from the wavefront; however, the Gaussian 
distribution always assigns more work along the wavefront 
itself so that a degree of load imbalance always exists.  Given a 
smooth load distribution, we feel that the performance 
improvement for a well-balanced load distribution would be 
negligible. 

Although the Random load distribution distributes load 
levels across processor cores randomly, ranging from under-
loaded to over-loaded load levels, there is still sufficient load 
imbalance across the system (in some configurations) to afford 
a performance improvement of over 25% (Figure 4(c)). An 
notable side-effect of the Dynamic Power Steering 
methodology is that, by eliminating the data movement 
typically associated with dynamic load balancing, data locality 
is preserved to the greatest extent possible. In the case of the 
Random load distribution example, this is especially relevant 
as data may be required to migrate a great distance away from 
its originating processor core to evenly distribute the load. 

The Dynamic Power Steering approach provides improved 
performance for workloads executing on a parallel system 
under power budget constraints. It is important to ensure that 
power allocation is within a global limitation. Figure 5 denotes 
the change in power when using Dynamic Power Steering 
relative to default execution. Because of the coarse granularity 
of processor-core p-states and the fact that Dynamic Power 
Steering aims to keep overall power consumption below a 
specified threshold, it is often the case that an execution of all 
three workloads actually consumes less power than a default 
execution. 

In some cases, however, the power budget is exceeded by 
less than 5%. The reason is that the models used to predict 
execution time and power consumption for workload execution 
under different processor p-states have a small margin of error. 
This results in an overall prediction within power constraints, 
but measurements resulting in slightly higher power 
consumption. As the focus of this research is in assessing the 
viability of the Dynamic Power Steering approach, we do not 
see this as a limitation in the methodology. Future work will be 
in developing accurate power modeling approaches that can be 
integrated with the Dynamic Power Steering methodology. 

Improved performance combined with nearly equivalent 
power consumption will result in improved energy efficiency, 
and that is indeed what is shown in Figure 6. For all three 
workload types, energy efficiency is improved; in the case of 
the Wavefront workload, energy efficiency is improved by 
nearly 45%, for the charged field by 27%, and for the random 
load by up to 20%. The greatest improvement in general 
corresponds to the cases of greatest compute intensity and 
load-imbalance.  

 

 
(a) Charge Field performance improvement 

 
(b) Wavefront performance improvement 

 
(c) Random Load performance improvement 

Figure 4:  Relative runtime improvement for all three 
workload types when using Dynamic Power Steering 
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Figure 5:  Relative power improvement for all three 
workloads when using Dynamic Power Steering 

 

 
(a) Charge Field energy improvement 

 
(b) Wavefront energy improvement 

 
(c) Random Load energy improvement 

Figure 6:  Relative energy improvement for all three 
workloads when using Dynamic Power Steering 

 

 
(a) Charge Field power improvement 

 
(b) Wavefront power improvement 

 
(c) Random Load power improvement 
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Figure 7:  Average performance, power, and energy 

consumption results for all workloads 
 

A summary of the average improvement in performance, in 
power consumption, and in energy efficiency for all three 
workloads is shown in Figure 7. This is taken over all 
computational intensity and load-balance cases shown in 
Figures 4-6. Clearly, performance is improved in all cases.  
Combined with slight improvements in power consumption, 
this results in slightly greater improvements in overall energy 
efficiency. The Wavefront workload exhibits greater 
improvements because as a slight degree of load imbalance 
persists in all cases allowing for improved performance as 
discussed earlier. 

VII. CONCLUSIONS 
In this work, we have explored the feasibility of Dynamic 

Power Steering, a method by which performance and energy 
efficiency of load-imbalanced applications may be optimized 
on power-constrained large-scale systems. In contrast with 
traditionally dynamic load balancing, data migration is 
eliminated, conserving the power expenditure associated with 
data movement. Instead, power is dynamically routed to 
processing resources with the greatest load allowing them to 
execute at a higher rate of performance. To compensate, power 
is routed away from under-loaded resources, thereby 
minimizing idle-time. 

To assess its feasibility, we use three workloads that 
represent many large-scale applications and allow us to “dial 
in” the characteristics of a wide range of workloads.  We 
simulate a power-constrained system by restricting the global 
power budget across a state-of-the-art cluster; by specifying the 
nominal p-state to be that of each processor core executing at 
1.7 GHz, the middle p-state available.  This allows each 
processor core room to improve performance by increasing the 
power allocating to the core, requiring other cores in the 
system to reduce their power consumption by utilizing a p-state 
of lower performance and power. 

In this work, we have focused on two application 
characteristics that are the most significant:  computational 
intensity and degree of load imbalance. Our results indicate 
that significant performance gains are possible in the cases in 
which the application is significantly load-imbalanced and 
compute intensive. Large degrees of load imbalance provide 
the most opportunity for power routing, as there are under-

loaded processors able to “donate” power to over-loaded cores 
in a power constrained system. Compute intensity, in turn, 
determines the impact increases in p-state will have on core 
performance; processors that are bound by compute 
performance, as opposed to memory performance, are more 
likely to exhibit a change in performance when core frequency 
is altered.  Across the three workloads, we demonstrate an 
average performance improvement of greater than 11%, 
resulting in an average improvement in energy efficiency of 
13%. 

In future systems with more available p-states and a finer 
degree of control in power routing, we expect the Dynamic 
Power Steering approach to offer greater improvements. 
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