Integrated, Application-Level, Performance-Energy Modeling for
Heterogeneous Architectures

2Hyesoon. Kim, 1E. Anger, 2P. Gera, 3Jeremiah J. Wilke, 4Patrick S McCormick, 1S. Yalamanchili

1School of ECE and 2School of CS, Georgia Institute of Technology, Email:hyesoon.kim@gatech.edu
’Sandia National Labs, Livermore, CA 94550, Email: jjwilke@sandia.gov
4Los Alamos Laboratory, Email: pat@lanl.gov

1. The Need for Application Level Energy Modeling

Energy consumption is heavily dependent on

hardware implementations and most energy 10 217 2

models are built on low-level hardware E o = HIPC
dependent metrics. However, energy E 8 LS
consumption is strongly affected by application ?E 7 .gggg%
characteristics such as choice of algorithms, data | & 3 Eg

structures, and program inputs. For example, EE g 4

Figure 1 shows the energy consumption of a BFS %ié 3

algorithm on NVIDIA GPUs for 3 different inputs. = g 2

The results show 4 different implementations of g é N l
BFS (HIPC, LS, SHOC1, SHOC2) and the energy is u-2005 italy rgg n_2.18_s0

normalized to the minimum energy consumption

version for each input. The figure shows that Figure 1 Energy consumption behavior for BFS
depending on an input to the program, both the algorithm on GPUs

best implementation version and the energy

consumption profile vary significantly. For example, the SHOC1 implementation shows the
minimum energy consumption with the eu-2005 input, but it consumes 29 times more energy
than the best version with the italy input. Unfortunately, there is little understanding how these
application-level attributes affect energy consumption on a specific hardware platform. The
increasingly divergent computational and memory reference characteristics of emergent
applications, e.g., graph analytics, adaptive mesh refinement, etc., exacerbate this problem.

The challenge is in formulating application-level energy and performance models, which inform
energy and performance consequences of application implementations on different hardware
platforms. Lessons can be learned from application-level performance modeling efforts such as
SST [6] and Byfl [2][3], e.g., algorithm skeletons for abstracting communication behavior in SST
(particularly the macroscale components [7]) or estimates of memory demand from Byfl. We
argue that similar techniques are necessary for abstracting energy behavior. Specifically we see a
need for decoupling architecture dependent parameters (e.g., memory access behavior) from
hardware implementation characteristics to isolate application-dependent energy characteristics.
Towards this end we advocate a system approach built on the use of statistical techniques[1] for
constructing application level energy models and using these in conjunction with performance
models to inform application developers.

2. Constructing Extensible, Scalable Models

Figure 2 shows the proposed system. The system consists of 3 steps: application profiling,
architectural model construction, and energy model construction. First, an application is profiled
to generate architecture independent metrics by instrumenting the application using LLVM and
Byfl [2][3], e.g., intermediate instruction statistics. In the second step, we collect architecture
dependent application characteristics (e.g., #misses, #branch mispredictions) using PAPI[4] and
energy values using RAPL[5]. This is used to construct an architecture model (ISA translation

model and memory hierarchy model). Finally, an energy model is constructed using the statistical
modeling tool Eiger [1], which takes input from Byfl, architecture specifications (cache sizes,
DRAM frequencies etc.) and ISA information and produces energy values. By constructing the ISA
translation model and the memory hierarchy models, we can separate architecture dependent
metrics from the energy model. Note that PAPI and RAPL measurements are only used to
construct models and are not direct input metrics to the final energy model.

The final energy model produces energy consumption values for application developers by
displaying estimated energy consumption values for each function call (or even for source line).
At the same time, this energy model is exported for use in an SST macroscale component for
energy consumption simulation for different hardware implementations

3. Discussions

Challenges addressed: We target two
goals. (a) Scalable energy model 4
construction: Future compute nodes may
compromise several hundred to several ,
thousand cores with large memory |[Polceton | achindependert et
footprints - traditional modeling and D
simulation techniques are impractical. Our
approach is to use statistical methods to ¥
develop energy models applicable across
different architectures and applications. (b) |, uuare prepstmmm ‘ Hardware Performance
Energy related metrics that are associated — [metrics Model SRS
with higher level program behaviors such

Application

Oracle hardware modeling

> ‘ Workload f Memory Access Regression Based
as algorithms, data structures, and program J Mi’m Characteraation) : "‘-’""'“‘aiw“‘m')
input characteristics. 2
Uniqueness: We provide an integrated | yogeiuesge S
model that yields an understanding of
application behaviors as well as [] []
implications for architecture design.
Furthermore, the proposed energy model is Figure 2 Proposed modeling system

applied across a range of architecture types,
e.g., both CPUs and GPUs, targeting heterogeneous systems.

Maturity: Our preliminarily energy model evaluated with hardware performance counters shows
very good accuracy. We find the energy consumption is often dependent on relatively few
application metrics, implying hardware models can be constructed with reasonable error bounds.

Novelty: Despite having become nearly as important as performance profilers and performance
debugging tools, energy profiling tools are relatively rare. For example, to our knowledge there
are no tools that can identify program segments where most of the energy is spent.

Applicability: The proposed system is an integrated simulator and profiler providing feedback to
developers on the energy consequences and energy behavior of different algorithms, data
structures, application inputs or architecture parameters. Based on the model’s outcomes, both
application developers and hardware designers can choose optimal design points.

Effort: First pass versions of most of individual modeling components/frames in Figure 2 have
been implemented. The memory hierarchy model and extensions to other architecture platforms
and to multithreaded applications are the main remaining efforts.

References

[1] Andrew Kerr, Eric Anger, Gilber Hendry, and Sudhakar Yalamanchili. “Eiger: A framework for
the automated synthesis of statistical performance models”, In High Performance Computing,
2012.

[2] Byfl, https://github.com/losalamos/Byfl

[3] Scott Pakin, Patrick McCormick, “Hardware-independent application characterization,” IISWC
2013

[4] Dongarra, J., London, K., Moore, S., Mucci, P., Terpstra, D. "Using PAPI for Hardware
Performance Monitoring on Linux Systems," Conference on Linux Clusters: The HPC Revolution,
Linux Clusters Institute, Urbana, Illinois, June 25-27, 2001.

[5] RAPL, https://01.org/blogs/tlcounts/2014/running-average-power-limit-%E2%80%93-rapl

[6] SST: Structural Simulation Toolkit, https://sst-simulator.org, Sandia National Laboratories

[7] SST Macroscale Components, http://sst.sandia.gov/about_sstmacro.html, Sandia National
Laboratories

