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1. The Need for Application Level Energy Modeling
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version for each input. The figure shows that Figure 1 Energy consumption behavior for BFS
depending on an input to the program, both the algorithm on GPUs

best implementation version and the energy

consumption profile vary significantly. For example, the SHOC1 implementation shows the
minimum energy consumption with the eu-2005 input, but it consumes 29 times more energy
than the best version with the italy input. Unfortunately, there is little understanding how these
application-level attributes affect energy consumption on a specific hardware platform. The
increasingly divergent computational and memory reference characteristics of emergent
applications, e.g., graph analytics, adaptive mesh refinement, etc., exacerbate this problem.

The challenge is in formulating application-level energy and performance models, which inform
energy and performance consequences of application implementations on different hardware
platforms. Lessons can be learned from application-level performance modeling efforts such as
SST [6] and Byfl [2][3], e.g., algorithm skeletons for abstracting communication behavior in SST
(particularly the macroscale components [7]) or estimates of memory demand from Byfl. We
argue that similar techniques are necessary for abstracting energy behavior. Specifically we see a
need for decoupling architecture dependent parameters (e.g., memory access behavior) from
hardware implementation characteristics to isolate application-dependent energy characteristics.
Towards this end we advocate a system approach built on the use of statistical techniques[1] for
constructing application level energy models and using these in conjunction with performance
models to inform application developers.

2. Constructing Extensible, Scalable Models

Figure 2 shows the proposed system. The system consists of 3 steps: application profiling,
architectural model construction, and energy model construction. First, an application is profiled
to generate architecture independent metrics by instrumenting the application using LLVM and
Byfl [2][3], e.g., intermediate instruction statistics. In the second step, we collect architecture
dependent application characteristics (e.g., #misses, #branch mispredictions) using PAPI[4] and
energy values using RAPL[5]. This is used to construct an architecture model (ISA translation



model and memory hierarchy model). Finally, an energy model is constructed using the statistical
modeling tool Eiger [1], which takes input from Byfl, architecture specifications (cache sizes,
DRAM frequencies etc.) and ISA information and produces energy values. By constructing the ISA
translation model and the memory hierarchy models, we can separate architecture dependent
metrics from the energy model. Note that PAPI and RAPL measurements are only used to
construct models and are not direct input metrics to the final energy model.

The final energy model produces energy consumption values for application developers by
displaying estimated energy consumption values for each function call (or even for source line).
At the same time, this energy model is exported for use in an SST macroscale component for
energy consumption simulation for different hardware implementations

3. Discussions
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Furthermore, the proposed energy model is Figure 2 Proposed modeling system

applied across a range of architecture types,
e.g., both CPUs and GPUs, targeting heterogeneous systems.

Maturity: Our preliminarily energy model evaluated with hardware performance counters shows
very good accuracy. We find the energy consumption is often dependent on relatively few
application metrics, implying hardware models can be constructed with reasonable error bounds.

Novelty: Despite having become nearly as important as performance profilers and performance
debugging tools, energy profiling tools are relatively rare. For example, to our knowledge there
are no tools that can identify program segments where most of the energy is spent.

Applicability: The proposed system is an integrated simulator and profiler providing feedback to
developers on the energy consequences and energy behavior of different algorithms, data
structures, application inputs or architecture parameters. Based on the model’s outcomes, both
application developers and hardware designers can choose optimal design points.

Effort: First pass versions of most of individual modeling components/frames in Figure 2 have
been implemented. The memory hierarchy model and extensions to other architecture platforms
and to multithreaded applications are the main remaining efforts.
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