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ABSTRACT
A promising recent development that can provide contin-
ued scaling of performance is the ability to stack multiple
DRAM layers on a multi-core processor die. This paper an-
alyzes the interaction between the interconnection network
and the memory hierarchy in such systems, and its impact
on system performance. We explore the design consider-
ations of a 3D system with DRAM-on-processor stacking
and note that full advantages of 3D can only be achieved
by configuring the memory with high number of channels.
This significantly increases memory level parallelism which
results in decreasing the traffic per DRAM bank, reducing
their queuing delays, but increasing it on the interconnection
network, making remote accesses expensive. To reduce the
latency and traffic on the network, we propose restructuring
the memory hierarchy to a memory-side cache organization
and also explore the effects of various address translations
and OS page allocation strategies. Our results indicate that
a carefully designed 3D memory system can already improve
performance by 25-35% without looking towards new sophis-
ticated techniques.

Categories and Subject Descriptors
B.3.1 [Hardware-Dynamic memory]: Computer systems
organization Multicore architectures

Keywords
3D memory system, Near data computing, Interconnection
network, Address mapping, HMC

1. INTRODUCTION
3D packaging has emerged as a vehicle for scaling sys-

tem densities and performance due to i) increased inter-tier
bandwidth, ii) reduced inter-tier latencies, and iii) ability
to integrate dies from different process technologies as a
means of customization and hence performance improve-
ment. Moving forward, continued scaling of Through Sil-
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icon Vias (TSVs) is increasing the inter-die bandwidth and
reducing inter-die latency. Large numbers of fine grained
TSVs across a 2D cross section can support a large num-
ber of memory channels. Hence, the memory bandwidth
can be increased significantly. e.g. a Micron die stacked
DRAM increases bandwidth up to 128GB/s as opposed to
21.34GB/s and 10.66GB/s of DDR4-2667 and DDR3-1333
respectively [17]. It is important to understand features of
architectural organizations that can make use of this tech-
nology capacity.

This paper addresses the problem of improving execution
performance in 3D chip multiprocessors with DRAM-on-
processor stacking. The specific problem of interest is the
role of the interconnection network in limiting the memory
bandwidth utilization. We seek to understand how best to
organize the memory hierarchy so as to maximize the band-
width and latency advantages of 3D technology. The work
addresses two key issues, that is, 1) the extreme parallelism
of a 3D memory system makes address translations a key de-
terminant of locality and parallelism, which can be used to
reshape the memory traffic maximizing performance, and 2)
reduced 3D DRAM delay leads to refactoring of the memory
latency path, which increases pressure on the interconnec-
tion network between the memory and the cache hierarchy
and requires architectural modifications that either reduce
the network latency and traffic or adapt to this re-factored
memory-latency path.

We first discuss the importance of increasing the num-
ber of memory channels in a 3D system and show that 2D
network latency becomes a more critical problem in such a
system. We then propose a memory-side cache organiza-
tion in which distributed L2 banks are placed next to the
DRAM channels which reduces the traffic in the network,
simultaneously distributing it to various memory channels.
With coordinated address space mappings across the caches
and DRAM channels, this organization increases TSV uti-
lization and eliminates unnecessary traffic on the network,
with net improvements in performance. We also evaluate
refinements of the address space mapping to distribute re-
quests across different DRAM channels. Our load distribu-
tion mechanisms significantly reduces queuing delays in the
MC queues, thus resulting in reduced round trip memory
latency and improved performance. Lastly, we explore the
impact of OS page allocation in keeping the network traffic
minimal. Our combined approach indicates that a carefully
designed 3D memory system can already improve perfor-
mance by 25-35% without the overhead of any sophisticated
technique.



This paper makes the following contributions.

1. Make a case for high number of narrow memory chan-
nels in order to improve performance of a 3D system.

2. Deconstruct a memory-access latency path into net-
work and DRAM latency and evaluate their relative
importance for 3D bandwidth utilization.

3. Observe and exploit the potential of various levels of
address translations in such a massively parallel sys-
tem.

4. Propose a memory-side cache organization that when
coupled with appropriate address translation mecha-
nisms significantly reduces the negative impact of 2D
intra-die network and improves utilization of the 3D
TSVs and consequently memory bandwidth and IPC.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a brief background for 2D vs. 3D systems,
describes it challenges and trends, and summarizes the ex-
periments performed. Section 3 determines the number of
channels used in the baseline system while section 4 analyzes
the impact of bandwidth and parallelism in the 3D system.
Section 5 proposes optimizations with various address trans-
lations mechanisms and memory system organizations. Fi-
nally, the last two sections describe the results and future
work, respectively.

2. BACKGROUND
One of the most pressing challenges in the chip industry,

the lack of pin bandwidth, can be resolved by die-stacking
technology which allows stacking two or more dies, even of
different technologies, to be stacked into a 3D package. In
this section, we will briefly describe the advantages and chal-
lenges of die stacking specially in the context of processor-
to-memory stacking.

2.1 2D vs. 2.5D vs. 3D Stacked Memory
A typical integrated circuit (IC) with a ball grid array

(BGA) package consists of a single die placed on top of
a package substrate as shown in Fig 1 a). The connec-
tions between the die and the substrate, called bumps or
more recently micro-bumps, has a pitch around 30-50um
while the connections between the package substrate and
the printed circuit board (PCB), ball interconnect, is around
400-600um. Although the pitch of micro-bumps can be
reduced further, PCB designers are facing numerous chal-
lenges lowering the ball pitch down resulting in a very slow
increase in the pin count of modern chips. Furthermore,
these ball interconnects are connected to long wires in the
pcb with non-linear coupling and impedance mismatch ef-
fects that keep the speed of these wires low. The combined
problem has hindered the rapid increase of pin bandwidth,
mainly affecting off-chip memory bandwidth and power de-
livery mechanisms in modern chip multi-processors (CMPs).

A promising solution to this problem is to introduce an-
other silicon layer, a silicon interposer, between the package
substrate and the die, and have multiple dies placed together
on a single substrate as shown in Fig 1 b). The interconnec-
tions between the two dies will have a very small pitch and
much lesser distance, increasing both the number of connec-
tions and their speed. The speed and thus bandwidth is

further increased by the fact that the connection between
the two dies passes through a much faster silicon layer than
through the slow metallic wires of a PCB. Lesser distance
also means smaller wires with lower electrical loads and thus
smaller drivers to drive these wires, all of which decreases
the overall power dissipation. Another advantage of wires in
the faster silicon layer is their higher signal integrity, leading
to removal of sophisticated signal preserving techniques like
delay locked loops, on-die termination etc., again improv-
ing power efficiency. However, the area and thus cost of the
silicon interposer and the package substrate is high.

Another, even better solution to the problem is to stack
multiple dies together and make a true 3D package as shown
in Fig 1 c). Stacking is enabled by etching holes called
through-silicon vias (TSVs) in the bulk silicon portion of
the die [3] [31]. TSVs have the advantage that two dies of
completely different technologies can be stacked and later
bonded using various bonding processes [11]. 3D configu-
ration has several important advantages, such as, reduced
distance between the dies, low electrical load on the TSVs,
an increase in the number of interfaces between the dies, and
a reduction in overall chip area and thus cost. A hybrid of
the three technologies can also be used as shown in Figure 1
d). The hybrid configuration has only similar structures like
multiple DRAM dies stacked in a 3D configuration with a
lower probability of defects due to technology mismatch thus
achieving significantly higher yield.

Any organization of various components of a system can
be stacked. The most straight forward choice is to stack
multiple DRAM dies and place them next to a processor
die as a 2.5D structure [28] or put it directly on top of the
processor die as a ’true 3D structure’ [10]. In this work, we
will analyze the later case [9] of true 3D stacking, which will
simply be referred to here as a 3D system.

2.2 Challenges and Trends
3D processor memory systems have been gaining signif-

icant attention over the last decade but their rapid adop-
tion is slow mainly because of the following four challenges.
1) TSV packaging, 2) thermal management, 3) yield con-
cerns, and 4) DRAM capacity. However, recent advance-
ments in packaging [29], microfluidics [26], and silicon-on-
interposer [19] technologies indicate rapid progress towards
solving these challenges leading to the proposal of many in-
teresting new processor-memory architectures such as PIM [30],
PoM [18], and NDC [13]. Increasing the capacity of DRAM,
however, is still a problem specially with small number of
dies allowed to stack to meet the thermal constraints. In-
creasing the chip size is also not desirable due to lower yield
with bigger chips. This has led to the designers using stacked
DRAM as either a large last level cache (LLC) [14] or part
of a multi-level main memory [4]. Consequently, the focus
has been on the management of DRAM caches or the OS-
or hardware-based page swapping between the fast and the
slow memory. However, 4GB of stacked DRAM is coming
soon [25]. This opens the door to a wider range of manage-
ment strategies and goals.

In this paper, we focus on the impact of high bandwidth
and proximity of the memory on the performance of the
whole memory hierarchy, that is, the network, the cache,
and the main memory itself. We assume that programs fit
in the stacked DRAM and paging events being relatively
infrequent for the purposes of performance analysis.
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Figure 1: Various packaging options

2.3 Summarizing the Experiments and Moti-
vation Behind Them

A 3D system provides a large number of connections be-
tween the DRAM and the processor layer which can be used
to increase the DRAM bandwidth. However, the new chal-
lenge is to efficiently manage this bandwidth, that is, to
understand how to best utilize these connections to improve
performance and reduce power. To achieve this goal, this
paper evaluates and re-organizes the memory hierarchy in-
corporating state-of-the-art techniques in the 3D system.

First, we determine the number of memory channels in
a 3D system. We show that having large number of nar-
row channels is better as compared to a few wide channels.
We settled with 16 channels for our baseline system. The
baseline system consists of a distributed banked L2 cache
as the last-level shared memory with directory-based coher-
ence protocol in which each bank acts as a home directory
for part of the global address space. We analyze this sys-
tem consisting of a large number of channels and LLC banks
and point out the high parallelism available in the DRAM,
efficient management of which can regulate the power and
performance of the overall system. We identify that this
massive parallelism reduces the load on individual DRAM
banks and channels, decreasing their queuing delay, making
the memory-access latency small, and putting more pressure
on the interconnection network connecting these channels.
This results in the network latency becoming comparable to
that of DRAM latency, an observation that does not hold
true in conventional 2D systems. Furthermore, we iden-
tify that address translation mechanisms at various levels of
the memory hierarchy (LLC or DRAM) can severely impact
the management of this increased parallelism and used it
to regulate locality vs parallelism tradeoffs in the system.
We further show that a careful co-ordination between ad-
dressing schemes at various levels is beneficial to the overall
system performance. Lastly, we also touch upon the impor-
tance of traffic distribution to all the channels in order to
utilize maximum bandwidth without violating the conven-
tional principles of spatial locality and DRAM hit rate; and
use address translation schemes to provide this distribution.

With these observations in mind, we reorganize the mem-
ory hierarchy into a banked memory-side cache organization
that reduces the network traffic latency. The re-organization
is made possible by the co-ordination of address mapping at
the LLC and the MC level. To reduce the network traffic
further, we implemented locality based OS page allocation
strategies that tries to keep the data close to the requesting
cores as much as possible and analyzes their impact on the
overall system performance.

3. DETERMINING THE NUMBER OF MEM-
ORY CHANNELS

A basic consideration in arranging a 3D memory system is
to determine the number of memory channels in the system,
e.g., if we assume 1024 data I/Os, should they be arranged
as one 1024-bit wide channel or sixteen 32-bit wide memory
channels distributed evenly across the die. Note that the
bandwidth of the overall system remains the same in both
the cases. The following two subsections briefly explain why
having multiple channels is a better choice for future mem-
ory systems.

3.1 Larger BL and Smaller Transaction Wastes
Memory Bandwidth - All Hits Case

The internal speed of DRAM technology is not scaling
fast enough, therefore keeping the fundamental latencies of
activate, precharge and CAS operations constant, around
13-18ns across various generations. Similarly, the row cycle
time still hovers, around 50-60ns. The DDR bus speeds,
however, maintained an upward trend from early 400MHz
DDR2, to 2133MHz, and even 3200MHz LPDDR4. Such
bus scaling has been maintained by over-fetching the data
internally, and then delivering it to the DDR bus in a burst
mode, which has increased the minimum burst length (BL)
parameter from two-to-four in early DRAMs, to eight-to-
sixteen in modern DDRs. Assuming fixed bus widths, larger
burst lengths result in higher minimum transaction size (e.g.,
the minimum transaction size of x32 LPDDR4 with burst
length of 16 is 64B). On the other hand, cache line sizes are
not increasing at a fast rate, and with the advent of on-chip
accelerators, the size of transactions being requested from
the memory is decreasing as well. As a result, part of the
fetched data will be wasted, e.g., for a 32-byte transaction
with the above mentioned LPDDR4 technology (min tx. size
of 64B), half of the memory bandwidth will be lost even with
all page hits. In such a case, reducing the bus width to x16
(min tx. size of 32B) will remove the bottleneck, allowing
the memory to have two separate channels that can operate
independently. It should also be noted that the problem will
worsen in the case of writes, in which masking the other half
of the bytes will require reading the data first. We would
also like to note here that this is not a very uncommon case
and streams with stride greater than 32 will face this issue.

3.2 Increased Frequency Reduces DRAM Ef-
ficiency - All Misses Case

As mentioned earlier, the DRAM bus frequency has been
increasing rapidly with modern DDRs. A problem with high
frequency is that a constant row cycle time (tras) of 50-



60ns translates into a larger number of cycles. However, the
number of cycles in which the bus is actually transferring
data (the data cycles) for a given transaction size remain
constant. Thus, in the case of consecutive page misses, in
which the next transaction can be sent after a minimum
of tras cycles, only a few of the bus cycles will be trans-
ferring data. For example, in the case of x1024 bus with
tras = 60ns@2133MHz, every subsequent miss transaction
can be sent only after 128 cycles, and the DRAM trans-
fer rate is 128B per data cycle. Even for a transaction size
of 128B, all cycles except the first cycle will be wasted. If
the burst length is greater than one, the DRAM will fetch
redundant data which will be discarded in the memory con-
troller (MC). Hence, the DRAM in the all page miss case
has a maximum efficiency of 1/128 < 1% with a parallelism
of only one. With an x32 bus (32 data cycles for 128B tx.)
and 32 parallel channels, the DRAM efficiency will jump
to 32/128=25% without wasting any data burst cycles, and
allows for a maximum parallelism of 32.

It should be noted that reducing the bus width increases
the latency in the bus (one data cycle vs. 32 data cycles),
which may decrease the system performance. However, the
time on the bus is a relatively small portion of the overall
DRAM latency, e.g., 32 bus cycles @2133MHz = 15ns of the
100 or more nano seconds taken by the memory in general.
The rest of the time is consumed by activate, precharge,
and CAS operations, along with the queuing delays. Hence,
increasing the cycles on the bus impacts the overall sys-
tem performance only by a small amount, even with a large
number of DRAM banks sharing the bus. Again, this case
can also occur frequently with interference among multiple
threads and processes. Not only that, all other cases, which
occur between these two extremes, will face similar concerns.
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Figure 2: 3D bandwidth utilization with various number of
channels

We performed simulations with four and sixteen channels
having bus width of 256 and 64 bits, respectively. We in-
creased the number of ranks by 4x in the 4-channel config-
uration to reduce the impact of the queuing delay. The rest
of the system is configured similar to the baseline model dis-
cussed in section 6.1. Fig 2 shows the 3D bandwidth utiliza-
tion of the two configurations. It can be seen that all bench-
marks improve their performance by increasing the number
of channels. Overall, reducing the number of channels de-
creases 3D bandwidth utilization on average by 12.5%.

3.3 Cost of a Channel
The previous analysis shows that increasing the number

of channels is extremely beneficial for performance reasons.
However, a problem with increasing the number of channels

is the reduction in DRAM density. Conventionally, DRAM
is considered a commodity device which maximizes its den-
sity to reduce cost. However, increasing the number of chan-
nels and banks (aka parallelism) reduces the size of internal
DRAM arrays and sub-arrays, increasing the area taken by
decoding, sensing and other peripheral logic attached to it.
All channels operate independently with all the peripheral
circuitry, including the memory controller schedulers, repli-
cated with each channel, increasing its cost. We fix our de-
sign with 16 channels, a number inspired by hybrid-memory
cube (HMC’s) internal DRAM structure [12].

3.4 Current Standards
In this section, we briefly point out how modern DRAM

standards are coping up with the above mentioned chal-
lenges. LPDDR4 [23] supports both very high speed and
a burst length of 16. However, it keeps the bus width small
(x16, x32) increasing the number of channels. DDR4 [21],
which again has very high speed, introduces the concept of
bank groups [1]. The idea is to keep the burst length of eight
(4 DRAM cycles) but does not allow another read/write op-
eration to the same bank group for eight DRAM cycles. The
other bank groups, on the other hand, can accept read/write
command after only four cycles, as is the case with con-
ventional DDRs. (This is achieved by having two separate
tCCD. tCCD L for same bank group and tCCD S for different
bank groups). The problem with this approach, however, is
that consecutive hits to the same bank group can only oper-
ate at 50% bus utilization. Wide I/O [20] has low speed and
thus very large bus width with only one-to-two channels sup-
ported. However, Wide I/O 2 [24] has increased the number
of channels to four-to-eight allowing the bus width to re-
duce (with larger prefetch) and increasing the frequency. At
this rate, it is very likely that Wide I/On will support even
more channels. HBM [22] again supports eight channels and
HMC’s internal structure already has 16 channels, with each
die partitioned into 16 sub-dies (one for each channel) simi-
lar to our baseline design.

4. ANALYZING THE BASELINE SYSTEM
The previous section suggests a large number of chan-

nels for a baseline 3D system increasing its parallelism. In
this section, we first briefly describe our baseline 3D model
and analyze its performance identifying the bottlenecks. We
show that because of high parallelism and reduced MC queu-
ing delays, the network latency becomes a bigger problem
in a 3D system. Later, we highlight the impact of address
mapping at various levels of the memory hierarchy that ef-
ficiently utilizes the parallelism available.

Figure 3: Full system model



4.1 The Baseline System - Overview
Our baseline system consists of a 3D processor-memory

architecture, in which multiple DRAM dies are stacked on
top of a processor die as shown in Figure 3. The processor
die consists of 4x4 tiles, each consisting of two cores + two
private L1 caches, a bank of globally shared L2 (divided into
16 banks, one per tile), a router connecting the tiles, and an
MC controlling the DRAM dies/layers above. Similar to the
HMC organization [12], each of the DRAM layers is divided
into 4x4 blocks. One block from each layer combines with
the respective block from each of the other layers, creating
a DRAM vault. Each vault acts as a multi-layered DRAM
with its own memory controller. Hence, there are 16 vaults
controlled by 16 MCs in a four-to-eight layered cube. Thus,
our baseline 3D system consists of 16 DRAM channels (each
vault act as a separate DRAM channel), each consisting of
four-to-eight ranks (each sub-layer in a vault can be treated
as a rank since all share a common bus), and two banks
(each sub-layer is divided into two banks that operates in
parallel as is the case with conventional DRAMs).

Next, we discuss the impact of such a system on the overall
memory-acces latency path. All simulations in this section
uses the baseline 3D system (unless otherwise stated), more
details of which can be found in section 6.1.

4.2 Reduced MC Queuing Delay
As discussed earlier, the fundamental RAS/CAS latencies

in conventional DRAMs remained roughly the same over the
years, since the time to charge and discharge the DRAM ca-
pacitors did not change significantly across technology gen-
erations, a trend that is persisting with 3D as well. Only, a
very small reduction in RAS/CAS latencies will be seen be-
cause of the sharing of some peripheral logic. On the other
hand, bandwidth and parallelism is increasing, which leads
to reduced memory traffic per channel, and thus reduced
queuing delays in the MC. Since the queuing delay is a ma-
jor component of the DRAM latency, the overall round-trip
time decreases. Figure 4 plots the latency of reads in DRAM
with a 4-channel 2D and a 16-channel 3D system with the
same number of cores and caches. Note that the RAS/CAS
latencies in both the systems are kept the same. On aver-
age, the DRAM latency of the 2D system is 2.1 times higher
than that of the 3D system. The main contributors of this
increase in latency is the increased memory interference in
the MCs (a result of higher memory traffic) and an increased
queuing delay.
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4.3 Comparable Network Latency
Due to reduced queuing delays, network latency in a 3D

system becomes comparable to that of DRAM latency. This

behavior is shown in Figure 5, which plots the latency dis-
tribution of DRAM bound read requests for various PAR-
SEC applications. Note that in the figure, L1 − L2 and
L2−DRAM correspond to the latency in the network, and
DRAM-only corresponds to the latency in the DRAM. The
impact of DRAM latency on the overall system is further
reduced by the fact that the ratio of the memory traffic that
reaches the DRAM is generally around a quarter to one third
of the total number of requests that travel the network (e.g.,
25% for vips). The remaining misses are satisfied by remote
caches and related coherency traffic, which only travel in the
intra-die links.
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To further explore this point, we use a parametric model
in which various DRAM timing parameters are normalized
relative to the CAS latency. The model is used to illustrate
the behavior of DRAM bound reads as a function of CAS la-
tency as shown in Figure 6 (left). The impact on the global
IPC is illustrated in Figure 7. From the two figures, it can be
concluded that although increasing the latency of DRAM ac-
cesses (CAS) increases the overall latency of DRAM-bound
read requests, the average latency of all L1 misses (Fig 6
right), and hence the IPC, does not decrease at the same
rate. On the other hand, the latency of the 2D network af-
fects all requests (memory bound and coherence included),
and therefore contributes more towards the overall latency
penalty.
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4.4 Impact of Address Translations
Our baseline system has multiple L2 banks distributed

across the tiles with directory-based coherence protocol. In
such a system, part of the address space is assigned to each
L2 bank, and the corresponding bank is treated as a home
directory for the assigned addresses [7] [15]. Similarly, in
systems with multiple DRAM channels, the address space is
distributed among the channels, or in this case, among the
DRAM vaults (Figure 8). The address translation mecha-
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nisms that determine the home L2 bank and the correspond-
ing DRAM vault for a given physical address (Figure 9) dic-
tate the amount of parallelism and the number of hops in
the network. For DRAMs, the interleaving granularity of
address mapping functions determines whether the memory
traffic is distributed among all memory channels at a par-
ticular instant of time (low-order interleaving), or localized
to one channel (high-order interleaving); see Figure 9. For
L2 banks, the address assignment policy is governed by the
principle of locality, such as the commonly used first touch
policy that keeps the data local as much as possible. The de-
sign goals at both levels, however, are conflicting, and thus
the interaction of these address translations brings interest-
ing behaviors that has not been discussed in the past, which
becomes even more important in the case of 3D systems
where we have more channels and more L2 banks.

Figure 8: Global address space distribution in cache banks
and DRAM channels/banks

The most straight forward translation known as high order
interleaving (HOI) maps large blocks of continuous physical
addresses to same L2 bank or DRAM vault. On the other
hand, Low order interleaving (LOI) distributes cache line
size blocks to different banks while page interleaving PgI
distributes the address space at the granularity of OS or
DRAM page sized blocks. Since all interleavings can hap-
pen at both the L2 bank and the MC level, we need to
distinguish between whether one is applied at the L2 bank
or the MC level. We termed the address translation mech-
anism at the L2 bank level as CAM (cache address map-
ping), and the address translations at the MC level as GAM
(global address mapping), respectively. Address translations
within a DRAM that decides a particular rank and bank are
called LAM (local address mapping); see Figure 8. Hassan
and Yalamanchili [6] provides more details of various address
mapping functions.

4.4.1 CAM and GAM under Multi-level Cache Hier-
archy

Figure 9: Various address space mappings with CAM, GAM,
and LAM

Figure 10: Messages generated to fetch from a) a remote
cache and b) the DRAM

In a system with private L1 caches, and a distributed
banked L2 cache, an L1 cache miss travels through multi-
ple hops in the form of various data- and coherence-related
messages in order to get serviced. The important messages
among them are indicated in Figure 10. When an L1 encoun-
ters a miss, the home L2 bank is consulted for the updated
copy (shown in Figure 10 (msg. 1, fig. a)), which can be
local or remote based on the address. If the L2 bank ex-
periences a miss, it sends the message to either another L1
that holds the updated copy (msg. 2, fig. a), or to the cor-
responding MC (msg. 2, fig. b). The MC generally sends
the reply back via the L2 (msg. 2/4, fig. b), while the L1
either returns the copy directly to the requesting L1 (msg.
3, fig. a), or sends it to the home L2 first, which in turn
sends it back to the L1 (msg. 3b/4b, fig. a). We use the
former case of L1-L1 traffic, in which the L2 also requires
an acknowledgment to update its state machine (not shown
in the figure). The same thing also happens with other re-
quests like invalidations etc., that do not transfer data, but
update the cache state machines.

The above discussion indicates that each L1 miss results
into multiple messages that travel along the network in both
horizontal and vertical directions. The hop count of these
messages can be reduced by careful co-ordination of CAM
and GAM schemes. The result is a modification in the or-
ganization of the memory hierarchy explained in the next
section.

5. AN IMPROVED 3D MEMORY SYSTEM
This section builds on the analysis done in the previous

section and proposes a re-organization of the memory system
that reduces the network traffic, made possible by a careful
co-ordination of CAM and GAM. We further describe the
importance of traffic distribution among different memory
channels that maximizes parallelism while trying to keep
it to the local banks or MCs to reduce the traffic in the
network.

5.1 Same Address Mapping and Memory Side
Cache

In this section, we propose the use of the same mapping
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function for both CAM and GAM, which is possible only in
the case of 3D systems that has comparable number of L2
banks and memory channels. We show the usefulness of the
policy by noting the fact that the use of same function for
CAM and GAM keeps the L2-to-MC traffic local, that is,
only in the vertical direction. The L1 requests have to al-
ready travel horizontally in the 2D network (by 2D network
we mean links in the horizontal direction) in order to reach
the corresponding L2 bank.

The proposed scheme is described in Figure 11. Figure 11
a) represents a 3D system which consists of different func-
tions for CAM and GAM. An L1 miss first travels to its home
L2 bank, which is located on a remote tile to determine the
current state of the cache line. If the line is not present in
the L2 or any of the remote L1s, it forwards the request to
the MC, which again is located in a remote DRAM vault, in-
curring an additional latency in the network for the L2-MC
traffic that could have been avoided by using the same func-
tion for both CAM and GAM. Figure 11 b) represents the
scenario, in which the L2-MC traffic remains local. Further-
more, since there is no remote traffic between the L2 bank
and the MC, providing a direct connection between them (as
shown in Figure 11 c)) will remove the serialization latency
of an L2 miss destined to the corresponding MC through
the router (i.e., a miss has to be converted back and forth
from/to flits while traveling through the router, and a direct
link will remove this breakdown). It also reduces the load
on the corresponding router and the NIs. As shown in Fig-
ure 5, this latency is 20-25% of the overall memory latency
of the DRAM bound reads, and will be removed altogether.

a)

Figure 12: Memory-side cache organization a) w/o b) with
L1-L2 links

The result is a memory organization, shown in Figure 12,
in which the L2 is placed closed to the memory rather than
the L1, making it similar to the memory-side cache organi-
zation. However, the cache is now banked into smaller units
with no direct paths among these banks. Two configura-

tions of the organization can be explored, one in which the
link between the L1 and the local L2 cache bank is main-
tained (Figure 12 b)), and the other in which it is removed
(Figure 12 a)). Although, removing the link will reduce per-
formance by increasing the latency of requests destined to
the local L2 bank, the reduction is not significant. On the
other hand, the organization with no L1-L2 link is highly at-
tractive, as it is extremely modular and scalable, with each
component being designed separately in its own die.

5.2 DRAM Traffic Distribution - Neighbor Map-
ping
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Figure 13: Distribution of pages to neighboring nodes in
neighbor mapping scheme

Memory-side cache organization can potentially lead to
congestion at a particular DRAM at a particular instant
in time, as can be seen with the result of fluidanimate in
Figure 15. For such cases, it may be better to distribute
the traffic into different MCs, thus not using same map-
ping function. To explore this point, we defined an address
space mapping that distributes pages mapped to an L2 bank
or DRAM vault to neighboring banks or vaults. The idea
here is to reduce congestion at one MC or L2 bank and in-
crease memory level parallelism by spreading references in a
local area that does not increase average hop count signifi-
cantly. The goal is to better balance parallelism in memory
references while keeping DRAM row buffer locality intact.
We will refer to this as neighbor-page mapping or simply
neighbor mapping. Figure 13 shows how neighbor map-
ping is performed. Each value in the figure represents the
number of pages out of 16 consecutive pages of a particular
bank or vault that are mapped to the neighboring banks or
vaults. We are not giving details of which particular page
is mapped to which immediate neighbor but it is decided
based on four bits of the address and is consistent across all
banks or vaults, making it a one-to-one function.

5.3 Keeping Data Local
From earlier discussions, it is clear that traffic on the net-

work is a major component of the memory latency path.
However, our baseline model distributes the traffic evenly
across all the distributed L2 banks and MCs. In this section,
we leverage the virtual-to-physical page allocation strategies



in order to maximize keeping the data to the local MC and
the corresponding L2 bank. This reduces remote L1-L2 ac-
cesses, making a large number of them local, and resulting
in an overall decrease in the average number of hops. Since,
page allocation happens at the OS level, it is completely
orthogonal to CAM and GAM. The challenge lies in the
placement of the shared data which is accessed by multiple
tiles simultaneously and at different program phases.

5.3.1 First-Touch Policy
A commonly used scheme that tackles this issue is the

first touch policy, where pages are mapped to the banks or
MCs whose corresponding cores access it for the first time.
This will make all subsequent accesses of the data by that
core local; making private only data to remain almost always
local. Subsequent accesses for the shared data that happens
at the other cores access it as a remote memory.

5.3.2 Sharing vs. Replication
We have not explored data replication in multiple L2 banks.

Our address space is distributed among all the L2 banks .
This can potentially lead to higher remote L2 accesses. Data
replication could have been used to reduce these accesses
However, we would like to point out that data replication at
multiple L2 banks would have complicated the support for
the memory-side cache organization, that is, although the
data would have been replicated in the L2 banks, it would
be in a single location in DRAM, resulting in remote L2-MC
accesses. This would again increase the network traffic and
its latency. The choice boils down to reducing remote L1-L2
traffic with a decreased L2 capacity (due to data replication)
vs removing the remote L2-MC traffic completely with an
increased cache capacity. We plan to extend the simulations
to find the best tradeoff in future.

6. RESULTS OF THE IMPROVED MEMORY
SYSTEM

This section compares the results of the improved memory
system organization with that of the baseline system.

6.1 Simulation Environment
We have used the Manifold multicore simulation infras-

tructure [27] as our simulation environment. Our system
simulator is organized as follows. The front-end is a multi-
core emulator called Qsim [8] that boots a Linux kernel
and executes multi-threaded applications from SPLASH and
PARSEC benchmark suites, generating x86 based instruc-
tion stream for each thread. These instructions are fed into
a multi-core processor timing model. We ran 32 core simu-
lations with 1 thread per core. The cores are fast forwarded
until all of them start running. As explained earlier, two
cores are concentrated in one tile. Loads and stores are
sent to the two-level cache hierarchy. We used the mcp [2]
model for cache simulations that uses multicore MESI pro-
tocol for coherence, as explained in 4.4.1. Iris [27] is used as
the network timing model that models a two-stage pipeline
router architecture with flit level flow control, as explained
in [5]. Each router connects to two network Interfaces (NIs),
one each on the cache and the MC side. The NI converts
flits to/from cache level requests in its separate injection and
ejection queues. The memory model is constructed using the
open source DRAMSim2 memory simulator [16]. 16 vaults

correspond to 16 instances of DRAMSim2. A single DRAM
vault consists of 4 ranks, (equivalent to DRAM layers), and
2 banks per layer of 32MB each. Thus the total DRAM
capacity of the system is 4GB (each vault = 256MB, each
sub-layer per vault = 64MB). TSV latency across different
layers is kept constant, which is equivalent to the DRAM
bus speed. Configuration parameters for various system ele-
ments are shown in Table 1. DRAM timing parameters used
are given in Table 2.

Components Various Parameters & Values
Processor Out-of-order, 6 stage pipeline, 2GHz,

2-wide issue/commit, 64-entry ROB, LSQ
L1 cache per core 32 sets, 4-way, 64B lines, 8 MSHRs,

(8KB) LRU replacement, 2-cyc hit, 5-cyc lookup
L2 cache per tile 256 sets, 16-way, 64B lines, 32 MSHRs,

(256KB) LRU replacement, 10-cyc hit, 20-cyc lookup
Network 4x4 torus, request reply, flit-size - 128 bits

Pkt-size - 3 flits w/o data, 6 filts with data,
baseline x-y routing (2VCs per virtual net.)

Router 6-port, 5 flits IB, 4VCs/port
round robin SA, FCFS VCA

Memory controller rank and bank round robin, close page,
Addr-map - chan:row:col:bank:rank

DRAM config. 64M/die/MC, 1-channel, 4-rank, 2-banks,
per vault 8KB row, and 64 bit bus @ 1333MHz

Table 1: System configuration

Parameter Value - cycles (ns)
tCLK : Clock cycle time 1 (1.5 ns)
tRP : Row precharge time 9 (13.5 ns)
tRCD: RAS to CAS delay 9 (13.5 ns)

tRC : Row cycle time 33 (49.5 ns)
tRAS : Row active time 24 (36 ns)

tCAS : Column access latency 9 (13.5 ns)
tWR: Write recovery time 9 (13.5 ns)

tWTR: Write to read latency 1 (1.5 ns)
tRRD: Row to row active delay 4 (6 ns)
tCCD: Column to column delay 4 (6 ns)
tRTP : Read to precharge delay 5 (7.5 ns)

tRFC : Refresh period 60 (90 ns)
BL: Burst length 8

Refresh Count 8192

Table 2: DRAM timing parameters [24]

The processor, the cache, and the network execute at
2GHz and the MC (DRAMSim2) executes at 1GHz. We
track the Global Instructions Per Cycle (IPC) - the total
number of instructions executed across all threads divided
by the total number of cycles, which in these experiments is
set to be 100M (∼1200-2500 million instructions).

6.2 Address Mapping - Results
Figure 14 a) shows the Global IPC values for PARSEC

applications with various address mapping functions. In the
last three cases, both the shared L2 banks and the DRAM
vaults use the same address mapping, which are either high-
order interleaving (HOI), low-order interleaving (LOI), or
page interleaving (PgI). The first two bars correspond to
the use of a different mapping functions for both CAM and
GAM.

We can see that the configurations that have different
CAM and GAM do not perform well. The average increase
of Both-PgI from CAM-LOI/GAM-PgI and CAM-PgI/GAM-
HOI is 6% and 14%, respectively. This can be explained
with Table 14 b), which illustrates latency values for dif-
ferent components in vips for all the 5 mapping functions.
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Latencies CAM-PgI CAM-LOI Both- Both- Both-
(cycles) GAM-HOI GAM-PgI HOI LOI PgI

Avg. Hops 11.65 11.94 10.61 10.70 10.68
All Req. 188.25 153.31 215.50 155.39 147.04
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DRAM

L2-DRAM 262.03 138.38 238.04 153.14 135.79
(Round Trip)
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(b) Latency distribution of vips

Figure 14: Various address mapping schemes

The average number of hops, (Row 1 of Table 14 b), have
increased significantly in the first 2 cases. This in turn in-
creases the overall network traffic, and hence reduces perfor-
mance. Among the three cases with same address mapping
for the L2 banks and the DRAM vaults, PgI performs the
best. Table 14 b) illustrates the loss in performance for HOI
and LOI, which is 14% and 8%, respectively, in compari-
son with Both-PgI. HOI will direct most of its requests in a
particular time frame to a particular L2 cache and DRAM
vault. This will put that DRAM under high load, result-
ing in an increased queuing delay, or DRAM latency (last
row in the table). Furthermore, it creates network hot spots
around that particular node, causing an increase in average
latency in the network. LOI destroys any locality present in
the memory reference stream, thus increasing latency within
the DRAM. It also disperses the traffic across the network,
putting higher load on it that results in an increase in the
network latency. PgI, which balances locality, average hops
and the DRAM load distribution, performs the best. This
means that not only should we provide same mapping to
both the L2 banks and the MCs, but also try to distribute
the traffic among various DRAM channels, without increas-
ing the average number of hops per request. All subsequent
results use PgI for both GAM and CAM, unless otherwise
stated.
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Figure 15: Latency distribution of mem-side cache organi-
zation

6.3 Effect of Mem-Side Caching
Figure 15 plots the latency distribution of DRAM bound

reads with various memory organizations. The first bar,
(Both-PgI), represents the case, where both CAM and GAM
have been assigned the same mapping functions. The 2nd
and 3rd bar, (L1-L2 and no L1-L2) represents our memory-
side cache organization, with and without the L1-L2 link,
respectively. It can be seen that the organizations with a di-
rect L2-MC connection almost removes the L2-MC latency,

(It is equal to two cycles, one cycle both ways). Thus, even
with higher load on individual DRAM vaults, the overall
latency is reduced by 11.7%. fluidanimate is an exception,
in which the increase in DRAM latency is high enough to
surpass the advantages of reduced L2-MC latency. Further-
more, it should be noted that removing the L1-L2 link does
not significantly increase the latency of DRAM bound reads
except dedup. We use the configuration without the L1-L2
link and call it as memory-side cache organization.
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Figure 16: 3D bandwidth utilization normalized to baseline

Figure 16 presents the memory bandwidth utilization, (band-
width across the DRAM channels), of various schemes nor-
malized to the baseline CAM-LOI/GAM-PgI case. It can be
observed that in both cases (that is, applying same mapping
for CAM and GAM and the memory-side cache organiza-
tion) average 3D bandwidth utilization has increased. The
increase of Mem-Cache and Both-PgI from baseline is 16.4%
and 3.1%, respectively. Small decrease in the case of Both-
PgI with fluidanimate can be attributed to the increased
DRAM latency (Figure 15), which results in the reduction
of its 3D bandwidth utilization.

6.4 Neighbor Mapping - Results
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neighbor mapping



black bodytrack cholesky facesim fluid ocean-c ocean-nc radiosity radix raytrace stream swaptions vips
0

10

20

30

40

50

G
lo
ba
l I
PC

Round Robin First Touch

Figure 18: Global IPC with and w/o first touch policy

Figure 17 shows the latency distribution of reads destined
to DRAM for neighbor mapping vs the case in which no
neighbor mapping is used. The first bar represents the case
without any neighbor mapping for both CAM and GAM.
The second bar represents the case where neighbor map-
ping is used for both CAM and GAM. The 3rd bar repre-
sents the cases when neighbor mapping is performed only for
GAM. All these cases performed neighbor mapping without
the memory-side cache organization. The last bar added
neighbor mapping for both CAM and GAM on top of the
Mem-Cache organization.

In all neighbor mapping cases, the queuing latency within
the DRAM is reduced. This indicates a good distribution of
traffic into neighboring DRAM vaults that reduces load on
one specific DRAM. However, the network latency (latency
between L1-L2 and L2-MC) has increased significantly for
the MC-only neighbor mapping case. This indicates high
load on the router that first sends request to L2 and then
immediately sends them to neighboring MCs making them a
hot spot which resulted in large increase in latency. Finally,
the case with neighbor mapping on top of Mem-Cache orga-
nization further reduces the latency with no L2-MC traffic.
The IPC increase (not shown) averaged across all applica-
tions with neighbor mapping on top of Mem-Cache organi-
zation from the case with same CAM and GAM mapping
is 11.3%, while the increase from Mem-Cache only without
any neighbor mapping is 3.5%. Recall that this is in addi-
tion to the cases that do not have same CAM and GAM.
We conclude that if the distribution of load among different
vaults is required, it is better to provide this distribution at
the L2 bank level and keep CAM and GAM the same, thus
removing any L2-MC traffic in the horizontal direction.

6.5 First Touch Policy - Results
Fig 18 presents the global IPC of various benchmarks with

and without the first-touch policy. The round-robin policy
sequentially assigns pages, which with pgI means one page
for each MC in a round-robin manner. It can be seen that
first-touch improves IPC for most of the benchmarks. The
average improvement over all the benchmarks is 9.6%. This
improvement is attributed to the decrease in the average
number of hops traveled per response, which is reduced by
5.8% (not shown).

7. CONCLUDING REMARKS AND FUTURE
WORK

This paper addressed the problem of TSV bandwidth uti-
lization of a 3D stacked processor memory system. First, we

showed why increasing the number of channels to utilize the
high bandwidth is a desirable choice for 3D systems. Then,
we explored the impact of network latency and DRAM ac-
cess time on a 3D system. We pointed out the fact that
the 2D network latency is a bigger problem in these sys-
tems specially with higher number of DRAM channels. We
proposed a new memory subsystem organization that places
L2 cache banks next to DRAM with an interconnection net-
work between only the L1 and the L2. We further explored
distribution of traffic across different L2 banks and DRAM
channels and showed that keeping the L2-MC traffic local
using co-ordinated address translation mechanisms improve
performance significantly.

In this paper, we only looked towards reducing network
and DRAM latency by memory reorganization and traffic
distribution. We have not considered changing topology or
improving various policies at different stages of the memory
hierarchy to suite the need of reduced DRAM access time.
This will be explored as a key next step to this work.
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