
Architecture-Independent Modeling of Intra-Node Data
Movement

Eric Anger Sudhakar Yalamanchili
Georgia Institute of Technology

Atlanta, GA
{eanger,sudha}@gatech.edu

Scott Pakin Patrick McCormick
Los Alamos National Laboratory

Los Alamos, NM
{pakin,pat}@lanl.gov

ABSTRACT
A primary concern of future high performance systems is
the way data movement is managed; the sheer scale of data
to be processed directly affects the achievable performance
these systems can attain. However, the increasingly complex
but inherently symbiotic relationships between upcoming
scientific applications and high-performance architectures ne-
cessitate increasingly informative and flexible tools to ensure
performance goals are met.

In this work we develop a memory-hierarchy model that
quantifies a given application’s cache behavior. What makes
this work unique is that we instrument code at compile time,
gather architecture-independent data at run time using a
generic memory-hierarchy model, and delay selecting a par-
ticular cache hierarchy (levels, sizes, and associativities) to
a post-processing step, where cache performance can be de-
rived rapidly without having to re-run a slow cache simulator.
We show that this approach is capable of predicting cache
misses to within 13% of what is predicted by a traditional,
high-fidelity, but slow cache simulator.

1. INTRODUCTION
Reaching the performance goals of future exascale systems

will require increasing complexity in both the way appli-
cations are written as well as how hardware systems are
designed. Codesign of the software and hardware is heralded
as the key instigator of performance improvement, where
both sides provide feedback and guidance for tuning. How-
ever, this collaboration requires new tools to ensure that only
useful information gets communicated without bogging down
either side with unnecessary details. From the perspective of
application writers, rapidly changing or preproduction hard-
ware obfuscates understanding the way algorithmic decisions
map to execution artifacts. Conversely, the necessity of code-
sign burdens architects with understanding the requirements
these new applications put on the system. Both sides benefit
from robust tools that provide insight into the characteriza-
tion of the system but that abstract away implementation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

details. That is, application writers care about the effect
their application has on execution, rather than mechanism,
whereas architects require an understanding of the demands
applications put on hardware, not the domain science that
causes it.

Data movement throughout the system is a pervasive con-
cern of both the hardware and the software, directly affecting
the time and energy to solution. Forecasts project that data
access at all levels of the memory hierarchy will be the limit-
ing factor of performance [5]. While a major constraint on
reaching exascale goals, data movement is a complex issue to
address because of the interrelation of different design deci-
sions. One needs to examine a large space of possible memory
hierarchies to determine how different workloads will perform.
Existing tools are not designed for rapid exploration of such
large design spaces. Traditional cache modeling techniques
have significant execution overhead, as well as conflating plat-
form architecture artifacts with the application performance.
Instead, architecture-independent analysis of data movement
allows for greater insight into application characterization
while allowing rapid design space exploration of the hard-
ware. LLVM [26] is a modern compiler infrastructure with
strong industry involvement. It supports an exhaustive range
of programming languages and backends, through a unified
Intermediate Representation (IR). LLVM IR provides a suit-
able platform for architecture- and language-independent
application analysis.

This paper presents a methodology for architecture-neutral
modeling of data movement in a way that functions as an ab-
straction over machine and application specifics, aiding code-
sign by separating concerns of hardware architects and com-
putational scientists. We leverage Byfl [32], a performance-
analysis tool implemented as a LLVM pass, as the vehicle
for our data movement analysis. We describe the techniques
and motivations behind the model construction as well as its
performance. The rest of this paper is organized as follows.
Section 2 walks through related work in the field and how
it differs from this work. Section 3 describes the Byfl tool
and the mechanisms by which it leverages the LLVM IR.
Section 4 describes the motivation and design of our memory
model. Our experimental results and presented and discussed
in Section 5. Finally, we summarize our findings in Section 6.

2. RELATED WORK
Several different techniques have been proposed for adding

instrumentation to applications. Binary instrumentation
tools such as Pin [28] and DynInst [11] take compiled
programs and inject instrumentation before runtime. Ap-

proaches higher up the stack include source-to-source trans-
formation tools such as ROSE [35], which instrument ap-
plications statically during compilation. Work by Shao et
al. [39] explores architecture-independent modeling of ISAs
for application characterization, modifying a JIT compiler
to output instrumentation data. Our work differs from these
through its use of Byfl, a framework that sits between binary-
and source-level instrumentation, injecting instrumentation
code into the LLVM IR. This provides an abstraction of the
execution environment while retaining run-time information.

Techniques for predicting intra-node data movement
through the memory hierarchy have a long history. The
most common approach is to use detailed simulation to
quantify cache transactions [12, 19, 25]. Cache simulations
are slow because they consider minute details of the cache
structure, many of which may not even represent first-order
performance effects. Analytical models represent the other
end of the spectrum. These models are characterized by
higher-level intuition about how application constructs af-
fect performance, at the cost of lower accuracy [14, 21, 41].
Analytical models necessarily make assumptions about the
execution environment to abstract away system variations.
In the middle of the spectrum are stack models [3, 13, 29, 37,
40, 44], a level of abstraction informed by hardware and ap-
plication parameters but not tied to them. These models use
the concept of reuse distance [16] to describe access locality
and reuse. However, most prior work takes the perspective
of optimization, where memory hierarchies are modeled in
an attempt to increase performance. Our work, in contrast,
uses these techniques to focus on architecture-independent
application characterization, where the general performance
trends of an application can be represented across a wide
range of architecture designs, allowing for increased under-
standing and feedback to both application writers and hard-
ware designers. We propose building these models on top
of a modern compiler infrastructure to provide a means for
architecture-independent modeling of data movement, giving
both sides of codesign greater flexibility and feedback.

3. BYFL
The tool we use for exploring applications’ data-movement

properties is called Byfl [32].1 (The name stands for “bytes
and flops,” which is all that Byfl v0.1 measured.) Byfl’s
underlying philosophy is to provide architecture-independent
application characterization, which it does in the form of
“software performance counters”. These are analogous to the
hardware performance counters that one might access via
a library such as PAPI [10] but (1) do not require support
from the underlying hardware, (2) are not limited to scalar
counters; they may produce histograms or other aggregate
data, (3) produce the same values on all platforms, (4) can all
be active simultaneously (i.e., no need for multiplexing due to
limited counter numbers or conflicting counter types), (5) are
measured precisely, not sampled, which is important for fine-
grained measurements, and (6) are not self-perturbing. An
example of self-perturbation is counting retired instructions
with hardware performance counters. This requires retiring
additional instructions, which perturbs the measurement.
Byfl’s goal is to present performance information in a manner
that is meaningful to application developers.

1Byfl is freely available from https://github.com/
losalamos/Byfl.

Application
source code

GCC-based
compiler GCC IR DragonEgg

LLVM IRByfl
LLVM IR

(instrumented)

LLVM
linker

Native
executable

Figure 1: Byfl usage diagram

3.1 Architecture-independent performance
analysis

To further motivate why it can be valuable to tally opera-
tions in a architecture-independent manner, consider com-
paring two versions of a code, for example to verify that
an application and its associated mini-app [38] have similar
resource utilization. In this scenario it would be hard to
interpret measurements that indicate that code A performs
more operations of some type (e.g., loads or stores) than
code B on one architecture and indicate the reverse on a dif-
ferent architecture. Such measurements blur the algorithm’s
operation count with the idiosyncrasies of how that algorithm
got mapped, register-scheduled, and peephole-optimized for
a specific architecture.

While hardware performance counters serve an important
role in optimizing code for a particular platform, our argu-
ment is that Byfl’s software performance counters serve a
complementary role in enabling algorithms to be analyzed
and programs to be compared independently of instruction-
set architecture or performance-counter semantics, which
differ from platform to platform [18].

3.2 Implementation
Byfl instruments code at compile time but gathers data at

run time. There are two main advantages to this approach:

1. Unlike binary-instrumentation tools such as Pin [28]
and DynInst [11], Byfl has access to the compiler’s
view of the application, which retains more high-level
aspects of the code (e.g., data types) than are available
in the final machine code and omits architecture-specific
operations that are not fundamental aspects of the
algorithm (e.g., register spilling).

2. Unlike source-to-source transformation tools such as
ROSE [35], Byfl has access to information that is not
known at compile time (e.g., the number of iterations
through a while loop or any value read from a file).

Figure 1 presents an overview of the Byfl instrumentation
process. Byfl is implemented as an LLVM [26] compiler pass.
It inputs LLVM’s intermediate representation (IR) in LLVM
bitcode format, injects instrumentation (counter increments
and function calls), and outputs the instrumented LLVM
bitcode. Although the Byfl concept could certainly be applied
in the context of other IRs, such as GCC’s GIMPLE [30],
LLVM IR provides a convenient level of abstraction for the
types of code transformations that Byfl performs, and the
LLVM API makes it easy to apply these transformations.

https://github.com/losalamos/Byfl
https://github.com/losalamos/Byfl

Listing 1: Shape function

1 double apply shape (int n, float ∗v, float ∗vs)
2 {
3 double accum = 0.0;
4 int i;
5
6 for (i=0; i<n; i++) {
7 float x = fabsf(v[i]);
8 vs[i] = (1.0f − x)∗(x <= 1.0f);
9 }

10 for (i=0; i<n; i++)
11 accum += (double) vs[i];
12 return accum;
13 }

LLVM bitcode is essentially a high-level, canonical,
RISC [33] assembly language that provides an infinite num-
ber of registers, employs strict typing, and represents all
writes to registers in static single assignment (SSA) form [4,
36]. Byfl leverages these three features to count application
rather than hardware features, to distinguish operations by
data type if requested, and to easily identify valid locations
in which to insert instrumentation code. An added benefit
of instrumenting applications within a compiler is that the
instrumentation code can be run through the same code
optimizer as the application, which lowers the run-time cost
of instrumentation.

As a simple example of Byfl instrumentation, consider
tallying the number of floating-point operations performed
by the C code shown in Listing 1, a code snippet representing
the essence of the shape function used in the PlasmaApp
particle-in-cell code [34]. The code maps a function across
all elements of a vector (lines 6–9) using single precision
for speed, then reduces those values (lines 10–11) in double
precision to minimize error.

The LLVM bitcode in Listing 2 shows how Byfl tallies
floating-point operations. The bitcode represents the first
loop of Listing 1, lines 6–9. Floating-point operations (the
fsub, fcmp, and fmul in lines 8, 9, and 11) are colored in
fuchsia. Note that (a) the C fabsf() call was converted to a
call to the LLVM llvm.fabs.v4f32 intrinsic (line 6), which
is considered a function call, not a floating-point operation—
an arbitrary but at least a consistent decision—and (b) the
compiler autovectorized the code to use four-element float
vectors.

Byfl’s additions are highlighted in lines 16–18 and represent
loading the global bf_flop_count variable into a register, in-
crementing the register by 12 (3 floating-point instructions ×
a vector length of 4), and storing the new value back to
bf_flop_count. We note that this code represents the in-
strumentation after optimization. The Byfl pass originally
inserted {load, add 4, store} statements immediately after
each floating-point operation; LLVM’s optimizer automati-
cally coalesced these into a single {load, add 12, store} for
improved performance—another advantage of using LLVM
IR for this work.

For convenience, Byfl comes with a set of wrapper
scripts that simplify instrumentation. bf-gcc, bf-g++,
bf-gfortran, and bf-gccgo wrap, respectively, the GNU
C, C++, Fortran, and Go compilers. bf-mpicc, bf-

Listing 2: A Byfl-instrumented shape function

1 vector.body: ; preds = %vector.body,
%vector.body.preheader

2 %index = phi i64 [%index.next, %vector.body],
[0, %vector.body.preheader]

3 %8 = getelementptr inbounds float∗ %v, i64
%index

4 %9 = bitcast float∗ %8 to <4 x float>∗
5 %wide.load = load <4 x float>∗ %9, align 4,

!tbaa !41
6 %10 = tail call <4 x float> @llvm.fabs.v4f32(<4

x float> %wide.load)
7 %11 = getelementptr inbounds float∗ %vs,

i64 %index
8 %12 = fsub <4 x float> <float 1.000000e+00,

float 1.000000e+00, float 1.000000e+00,
float 1.000000e+00>, %10

9 %13 = fcmp ole <4 x float> %10, <float
1.000000e+00, float 1.000000e+00, float
1.000000e+00, float 1.000000e+00>

10 %14 = select <4 x i1> %13, <4 x float> <float
1.000000e+00, float 1.000000e+00, float
1.000000e+00, float 1.000000e+00>, <4 x
float> zeroinitializer

11 %15 = fmul <4 x float> %12, %14
12 %16 = bitcast float∗ %11 to <4 x float>∗
13 store <4 x float> %15, <4 x float>∗ %16, align

4, !tbaa !41
14 %index.next = add i64 %index, 4
15 %17 = icmp eq i64 %index.next, %n.vec
16 %gvar105 = load i64∗ @bf flop count, align 8
17 %new gvar126 = add i64 %gvar105, 12
18 store i64 %new gvar126, i64∗ @bf flop count,

align 8
19 %idx val153 = load i64∗ %idx ptr, align 8
20 %new val154 = add i64 %idx val153, 1
21 store i64 %new val154, i64∗ %idx ptr, align 8
22 %idx val157 = load i64∗ %garray, align 8
23 %new val158 = add i64 %idx val157, 1
24 store i64 %new val158, i64∗ %garray, align 8
25 br i1 %17, label %middle.block.loopexit, label

%vector.body, !llvm.loop !45

mpicxx, bf-mpif90, and bf-mpif77 wrap the similarly named
Open MPI [22] and MPICH [23] wrapper scripts to use the
preceding Byfl compiler scripts instead of the default C, C++,
and Fortran compilers. These wrapper scripts take care of
generating LLVM bitcode and running the Byfl compiler pass
on it, all behind the scenes. A user need only modify his
build process to replace the compiler and linker with the
appropriate Byfl wrapper script.

Once an executable is produced, the user runs it as normal.
During execution, each instrumented process outputs its
measurements to a file. For the user’s convenience, Byfl
includes some post-processing scripts to convert its output
into a form usable by KCachegrind’s [43] or HPCToolkit’s [2]
graphical user interface.

3.3 Sample output
Table 1 lists the information that Byfl can currently out-

Table 1: Counters and other measurements currently imple-
mented by Byfl

Counter Program Function BB

Bytes loaded 4 4 4
Bytes stored 4 4 4
Flops 4 4 4
Integer ops 4 4 4
Loads 4 4 4
Stores 4 4 4

Unique bytes loaded/stored 4 4
Conditional/indirect branches 4 4
Function-invocation counts
(even to non-Byfl-instrumented
callees)

4 4

Unconditional branches 4
Median and MAD reuse dis-
tance

4

Vector length/type/tally 4
Loads/stores by datatype and
size

4

Instruction-mix histogram 4
Memory-usage histogram 4

put. At compile time, a user specifies which subset of this
information should be maintained. (Naturally, the instru-
mented application runs faster if it does not need to keep
track of as much information.) As Table 1 indicates, Byfl can
work at the program, function (or, alternatively, function
call stack), and/or basic-block granularity. Instrumentation
can be enabled or disabled at the module or function level.
Developers can also insert Byfl “calipers” into their code to
explicitly enable and disable instrumentation at arbitrary
points and to bin measurements by program-defined tags.

Not shown in Table 1 but discussed and explained in a
prior publication [32] are two counters that are unique to
Byfl: op bits and flop bits. These provide an alternative view
of an application’s balance between computation and data
movement.

New features added to Byfl since our prior publication (and
shown in Table 1) include the function-invocation counts;
tallies of vector operations by length, type, and tally; tallies
of loads and stores by datatype and size; instruction-mix his-
togram; reuse-distance data; and memory-usage histogram.
From a data perspective, the noteworthy features in Table 1
are the reuse-distance data and the memory-usage histogram.
Both are ways of providing architecture-independent views
of data locality. Reuse distance [16], the median distance be-
tween repeated accesses to the same memory address, is slow
to calculate but provides a meaningful lower bound on the
amount of memory (or cache) needed to fit an application’s
working set. The work we describe in this paper is essentially
an enhancement of the reuse-distance concept. The memory-
usage histogram shows the minimum memory (or cache) size
needed to contain 5%, 10%, 15%, . . . 100% of an application’s
dynamic memory accesses. It is much faster to compute—it
is a simple per-address tally that is sorted on output—but
lacks temporal information. That is, it cannot distinguish, for
example, between access patterns {A,B,C,A,B,C,A,B,C}
and {A,A,A,B,B,B,C,C,C}. Again, this is rectified by
the work we present in the following section.

Table 2: Example of Byfl output

Value Metric

4,376,254 flops
97,813,342 integer ops
28,379,185 memory ops (23,671,118 loads + 4,708,067

stores)
22,099,736 branch ops (4,397,938 unconditional and direct +

12,792,872 conditional or indirect + 4,908,926
other)

189,271,197 bytes (166,772,045 loaded + 22,499,152 stored)
4,639,120 bytes stored by 150,716 calls to memset()

586,492 bytes loaded and stored by 40,330 calls to
memcpy() or memmove()

358,580 vector operations (FP & int)
2.0000 elements per vector

63.9999 bits per element

To make Byfl’s behavior more concrete, Table 2 lists some
information produced by a prototype of the HPCG bench-
mark [17] written in Legion [8]. When the implementation is
complete, a Byfl comparison of the Legion version of HPCG
to the original C++ version would be instructive to quantify
the memory-usage differences introduced by Legion’s data-
centric parallel-programming model. It is clear from Table 2,
however, that this code performs vastly fewer floating-point
operations than branch, memory, or integer instructions; it
requires substantial data traffic per floating-point operation
(43.25 bytes/flop), and it currently vectorizes poorly, with
only 0.35% of its flops and integer ops being vectorized.

4. THE STACK MODEL
Techniques for modeling caches have existed for over forty

years in the form of software-managed page caches [29]. Con-
servative solutions use cycle-level simulations of cache struc-
tures, representing all mechanistic processes involved in in-
creasingly complex microarchitectures [12]. Simulations are
typically slow because their high degree of fidelity requires
substantial processing. Rather than detailed representations
of the architecture, this work employs a stack model to ap-
proximate the performance of the memory hierarchy.

During instrumentation, Byfl injects calls to the stack
model, passing the address and size of each load and store
operation. The stack retains, for each moment in time, how
recently each unique address has been used. Caches typically
implement a Least Recently Used (LRU) replacement policy,
a common approximation of (non-implementable) optimal
replacement, in which the line that will not be accessed for
the greatest length of time is replaced [9]. The assumption
is that a piece of data has a higher likelihood of reuse the
more recently it was accessed. Our stack model transparently
represents this behavior: the less recently a line has been
used, the farther down the stack it resides. Consider the
trace processing shown in Figure 2; newly received addresses
are pushed onto the stack one at a time. The distance from
the top of the stack to the currently requested line is known
as its stack distance or reuse distance ∆t [16], where t is
the index in the address trace X = x1, x2, . . . , xM . If the
line has not yet been referenced (when it does not reside in
the stack), the reuse distance is defined as ∞. The reuse
distance gives us a measure of access locality.

Time t 0 1 2 3 4 5 6

Address Xt — a b c d b e

Stack

a b

a

c

b

a

d

c

b

a

b

d

c

a

e

b

d

c

Reuse
Distance ∆t

— ∞ ∞ ∞ ∞ 3 ∞

Slot C Distance Count F

1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

3 0 0 0 0 0 1 1

4 0 0 0 0 0 0 0

∞ 0 1 2 3 4 4 5

Figure 2: Sequence of requests to the stack model with four slots (C = 4).

Listing 3: Loop exhibiting temporal locality

1 for(int i = 0; i < 10; ++i){
2 B[i] = A[i] + 8;
3 . . .
4 C[i] = 3 ∗ A[i];
5 }

The relationship between reuse distance and LRU cache
size is implicit; the minimum size a cache must be to capture
the reuse of a line is exactly ∆t. Modeling a cache with
C lines can be done with a stack model containing C slots.
Every time a new request comes in, the stack is walked down
from the top until either the line is found or the bottom is
reached. The stack distance is counted as F and if the line
was found it is removed from its old location. The line is
pushed to the top of the stack, popping the last element if
necessary to retain the total number of lines C. The sum of
finite distance counts in F represents the number of successful
accesses to the cache. The number of infinite reuse distances
represents the number of cold misses.

4.1 Locality and Line Size
Caches take advantage of two types of locality in data

accesses: temporal and spatial. Temporal locality is the
result of accessing recently requested addresses again in the
near future. Take for example the loop shown in Listing 3. In
this loop, the updates to B[i] read in the value of A[i]. Later
on, the value of A[i] is required to update C[i]. If the cache
were to evict A[i] after its first use, the second request will
incur the penalty of an access to memory. Instead, caches
have replacement policies like LRU that try to optimize for
this type of locality under the expectation that there is a
higher likelihood of a recently used line to be needed again
in the future.

Spatial locality comes from the observation that addresses
nearby recent requests have a high likelihood of use. Consider
the loop in Listing 4; all three arrays are walked through
in order, touching one element in each at a time. One may
assume that, after accessing an array’s value in one iteration,
the subsequent value in the array will be accessed next.

Listing 4: Loop exhibiting spatial locality.

1 for(int i = 0; i < size; ++i){
2 C[i] = A[i] ∗ B[i];
3 }

25 26 27 28 29 210 211 212
10−4

10−3

10−2

10−1

100

101

Line Size (Bytes)

M
is

s
R

a
te

32KB L1

256KB L2

2MB L3

Figure 3: The effect of line size on miss rate.

A näıve cache would pull in a single value at a time, and
have to make a request to memory for each access. A more
intelligent design would pull in multiple values at a time
so that subsequent requests would hit in the cache. This
smallest addressable unit in the memory hierarchy is called
a line or block. In the ideal case, every vector element would
be pulled into the cache at once, so that only a single cache
miss would occur. However, such long lines may bring in
unused data, taking up part of the limited cache space; the
appropriate size of a cache line is a design trade-off made
by hardware architects. Figure 3 shows how miss rates can
change as the line size changes. We ran the CoMD [20]
application through the cache model described below for
each line size, calculating the miss rates for each level of a

three-level hierarchy.

4.2 Infinite Stacks
The stack model of size C can estimate the number of

successful accesses to a cache with C lines. For a single
reference stream, as a corollary of the LRU replacement
nature of the stack model, the C most recently referenced
lines are by definition contained in the C + 1 most recently
referenced lines. This can be seen by construction: with
C = 1, the stack maintains the last line to be accessed.
Loading a different line would then be pushed to the top
of the stack, evicting the original line. If this stack were to
have size C = 2, the previous head of the stack would be
shifted down instead of evicted, reflecting the fact that it is
the second most recently accessed unique line. Due to the
relationship between reuse distance and critical cache size,
all accesses to a cache size C >= ∆t will capture the reuse.
Rather than pinning the stack at a fixed size C and dropping
all lines that have reuse distances ∆t > C, we grow the stack
by one whenever a new line is accessed. This allows, for all
accesses, the stack to maintain the full history of reuse. The
distance count F is a histogram of reuse distances across
theoretical stack sizes 0 < C <= N where N is the total
number of unique lines touched by the application. Keeping
a histogram provides architecture-independence: the total
cache size may be selected after execution. All hits to a
cache size C will be guaranteed to hit in all caches larger
than C, so the total hit count, HC , to a cache size C can be
calculated as

HC =

C∑
i=0

Fi (1)

Multilevel caches, another major architectural design
choice, are used to further increase the benefits of caching [6].
In these schemes more than a single cache is used; when a
request misses in the cache closest to the core, the access
is propagated down to the next largest cache, and so on
as necessary until it finds the line in question, which may
only reside in memory. Each level of cache in effect filters
out some number of requests, propagating only on a miss.
Modeling this effect requires the inclusion property of mul-
tilevel caches, where the entire contents of a smaller cache
are contained in a larger cache [6]. The infinite stack model
becomes an extension of this property: when a line misses in
cache Li, the request continues up to cache Li+1 if it exists,
or the main memory. Any request that is not in cache Li
will not by definition reside in caches {Lj : j < i} due to the
inclusion property. The number of hits Hi to a single level i
of the cache hierarchy with A total memory accesses is

Hi =

{
A−

∑Ci
k=0 FCi i = 1∑Ci

k=0 FCi −Hi−1 i > 1
(2)

4.3 Associativity Counters
So far the stack model assumes that all recently accessed

lines are guaranteed to reside in the cache. While true in
a perfect cache, hardware constraints limit the practicality
of this approach. Searching each slot within the cache for a
potential hit is a time- and resource-intensive process. To
combat this, modern caches utilize associativity to partition
the total cache space into smaller, more manageable pieces.
There are two main trade-offs at play: the desire to maximize
effective capacity and the need to ensure timely searches for

a line in the set. On one end of the spectrum is a fully
associative cache, in which every line can reside anywhere in
the cache. This maximizes potential cache space utilization,
as a line has the best chance at avoiding conflict. However,
the search function now has to check every line to see if it
matches—a potentially expensive function as the size of the
cache grows.

On the other end of the spectrum is the direct-mapped
cache, wherein the mapping function relates a line’s address
to a single location within the cache. The overhead of this
lookup is merely the cost of the hashing function, which is
typically implemented as a subset of the address bits, called
the index. However, it severely limits the effective space
within the cache; if two lines happen to share the same
mapping, they will compete over the same location instead
of spreading out to an unoccupied slot. The middle ground
is a set-associative cache, where lines may reside only in a
single set containing a limited number of possible locations
called ways. Here the cost of finding a line comprises the
hash function and a search limited to the total number of
ways. A conflict miss occurs when a cache access misses a
line that was evicted in a set-associative cache that would
not have occurred in a fully associative cache. Figure 5
illustrates the cost of associativity, viewed as a penalty on
top of a fully-associative cache, for each level of the memory
hierarchy on a run of the CoMD application. The application
was run through the cache model described below.

We can näıvely model associativity by assigning each set
its own stack. When a new request is made the appropriate
stack is selected using the hash function, the reuse distance
is calculated for that stack, and the line is pushed to the
head position. However this technique depends on the num-
ber of sets being established a priori, tying the model to
a specific architectural choice. Instead, we model all levels
of associativity by leveraging the LRU composition of the
stack; a single, unified stack aggregates all the information
set-specific stacks contain, including the occurence of set
conflicts, since the ordering of references to each set’s stack
is maintained.

This mechanism [24, 29, 44] captures arbitrary associativity
with a set of reuse-distance counters per set size. The key is to
reinterpret reuse distance. So far it has been a calculation of
the number of unique addresses since a line was last accessed.
We can imagine this being the case for a fully associative
cache, where a new line is guaranteed a position if there is
one available, otherwise the least recently used line is evicted.
Associativity limits the number of lines that can separate a
line from its last access. Two addresses in different sets never
interact with each other, and therefore do not contribute to
each other’s reuse distance.

Modeling associativities requires a single counter per bit
in the index. Figure 4 illustrates how, when a new line is
requested, we walk down the stack until a matching line is
found. At the same time we tabulate the right match of the
two indices, defined as the number of matching index bits
starting from the right (the least significant bit), as shown
in red. A right match value of µ implies that a set must
contain a minimum of 2µ slots for the two lines to conflict.
The reuse distance for 2α sets, shown in Figure 4(b) is given
by

∆α
t =

k∑
i=α

µi (3)

Threadx

1 1 0 0

1 0 0 1

0 0 1 1

...

Thready

0 0 0 1

0 1 0 1

1 0 0 1

...

(a) Thread-private stacks.

µ

3

2

4

...

α ∆t

0 3
1 3
2 3
3 2
4 1

(b) Right match and rolling
reuse distance sum.

Address Last Thread

0 0 0 1

1 1 0 0

1 0 0 1

0 1 0 1

0 0 1 1

x
y

x
x
y

...
...

(c) Shared stack.

Figure 4: Example thread-private (a) and global (c) infinite stacks for two-thread system upon Thready receiving address 1001.
Figure 4(b) shows right match and associativity counts for this access to Thready. Since Threadx was the last to access that
address, this access would result in a remote cache access.

20 21 22 23 24 25 26 27 28

10−3

10−2

10−1

100

101

102

Associativity (ways)

F
ra

ct
io

n
o
f

m
is

se
s

d
u
e

to
se

t
co

n
fl
ic

ts
(%

)

L1

L2

L3

Figure 5: Overhead incurred by conflict misses from set
associativity.

Here k is the number of bits in the index. Intuitively, two
lines mapping to the same set with α set bits will also map to
the same set with α− 1 set bits. This rolling sum represents
the number of unique lines that reside in this set, defining
a minimum set size to ensure this reuse is captured by the
cache. Consider the extreme case when there is only one set,
α = 0 (the fully associative case). All lines reside in the same
set, degenerating to the total number lines from the top of
the stack and the same result as the original stack model.
Whenever a stack distance of ∆ is measured, the minimum
size the cache must be to capture that reuse is C = 2α ∗∆. If
the line is not found, the reuse distance for all associativities
is defined as ∞.

4.4 Multi-core Caches

The stack model described so far works only for unipro-
cessor computer architectures. Multiple cores residing in the
same memory hierarchy incur changes to data movement pat-
terns to ensure correctness and improve performance. This
section describes additions to the stack model to accurately
represent the effects of multi-core architectures.

A key concern is the way shared pieces of data are handled
by the cache system. Imagine a two-level memory hierarchy,
where the cores have their own L1 but share the L2 cache.
Any data that passes into the core must come through the
private cache that no other core can modify; all lines must
be passed on a global bus connecting the caches. Core i
may request a load of line r from the L2. The line gets
transfered through the cache and resides in the lowest level
cache private to i, C1,i. Core j may also request line r, at
which point the line will be copied to C1,j . This allows both
caches to keep a read-only copy of line r in their own private
caches. As soon as core i modifies the line, it must broadcast
an invalidation of r on the bus, saying that r is in a dirty
state and all other copies of that line are out of date. Cache
C1,j receives the message and marks line r as invalid. Should
core j attempt to load that line again, it would find the line
invalidated in C1,j and would need to push the request onto
the bus. At this point cache C1,i would provide a copy of r,
and both C1,i and C1,j would again have read-only copies.

Invalidations change access patterns in two ways. First,
access to a line may result in a miss even if the reuse distance
is smaller than the size of the cache if another core sends out
an invalidation before that line is reused. Second, requests
for a line may be serviced not from a higher level of the
hierarchy but from a sibling core’s cache at the same level if
that line has been modified. In both of these cases, the total
number of hits will differ from the number projected by the
stack model as described so far.

To represent coherence traffic, we augment the stack model
as shown in Figure 4. Each thread keeps its own stack to
capture all requests to private cache structures. In addition,

we maintain a single, global stack that captures requests
from all threads, interleaved in the order they are issued.
All lines in the stack remember which thread requested it.
Processing a request takes the following form:

1. Walk down the private stack, incrementing right-match
values as in the single-threaded case, until the line or
the bottom of the stack is found.

2. Record the private reuse distance ∆private
t for all asso-

ciativities in F private.

3. Move the line to the top of the private stack.

4. Walk down the shared stack, tabulating right match
values.

5. If the line is found and the tagged thread ID differs
from the current thread ID, record the reuse distance in
F shared. Add ∆private

t to a separate count F invalidated

to keep track of which hits would not occur in the case
of invalidations.

6. Move the line to the top of the shared stack, updating
the last thread access ID to this thread.

The total number of accesses that hit in n remote thread
L1 caches is calculated as

H1,remote =

n∗C1∑
j=0

F shared
j (4)

The total hits H1 across all threads must then include these
accesses:

H1 = H1,remote +

n∑
k=0

C1∑
j=0

(F private
k,j − F invalidated

k,j) (5)

Any hits in remote L1 caches are then subtracted from the
total hits to the L2 cache.

5. EXPERIMENTS
We illustrate the capabilities of our model using two exas-

cale mini-applications. Specifically, we show that our model
is capable of

• approximating the performance of traditional cache
simulators across cache sizes,

• capturing the effect of set associativity, and

• predicting multithreaded execution artifacts.

A single compute node was used for all the experiments,
as described in Table 3. While inter-node data movement is
of interest, it is beyond the scope of this work. We assign
only a single thread to each processor core, and model only
the data cache.

This work compares the output of the proposed stack model
with hardware performance counters taken from runs on real
hardware. These are model-specific registers implemented in
the processor to measure events that occur during execution.
The counters are measured with the Linux perf tool [1], as
shown in Table 4.

CoMD [20] is a molecular dynamics proxy application in
which atoms exert forces upon one another, used to study the

Table 3: Experimental machine setup

Parameter Value

CPU model Intel i7-4770k
Cores 4
Clock speed 3.5 GHz
Line size 64 bytes
L1 cache 4x 32 KB 8-way
L2 cache 4x 256 KB 8-way
L3 cache Shared 8 MB 16-way
Memory 16 GB

Table 4: Hardware performance counters used to compare
against model estimates

Value Counter Name

Total Requests MEM LOAD UOPS RETIRED
L1 Misses L2 RQSTS:ALL DEMAND REFERENCES
L2 Misses LLC REFERENCES
L3 Misses LAST LEVEL CACHE MISSES

215 216 217 218 219 220 221 222

0

5

10

Cache Size (Bytes)

P
er

ce
n
t

D
iff

er
en

ce
fr

o
m

D
in

er
o
IV

CoMD

SNAP

Figure 6: Model precision compared to the DineroIV cache
simulator.

dynamical properties of liquids and solids used in the fields
of materials science, chemistry, and biology. It is a highly-
efficient code written in C, using MPI [31] for inter-node
communication and OpenMP [15] for intra-node parallelism.

SNAP [27] is proxy application representing the compu-
tation, memory load, and communication behavior of PAR-
TISN [7], a neutral particle transport application. It is
written in Fortran and parallelized using OpenMP.

Traditional cache simulation forms the backbone of existing
data movement analysis. We passed the IR-level address trace
collected with Byfl into the DineroIV [19] cache simulator to
compare with the absolute miss counts estimated by the stack
model. The LLVM IR maintains its own address space, which
is translated by the backend into actual memory addresses.
Due to artifacts such as register spilling, additional operations
may be introduced by this process, which is why a fair
comparison necessitates invoking DineroIV on an LLVM-IR-
level address trace. The purpose of our model is to project the
performance of the IR-level addresses as a characterization of
overall application data-movement behavior. Figure 6 shows
the relative difference in miss counts for single-threaded

0.5 1 1.5 2 2.5 3

·104

0

10

20

30

Problem Size

P
er

ce
n
t

E
rr

o
r

in
M

is
s

R
a
te L1

0.5 1 1.5 2 2.5 3

·104

10

20

30

Problem Size

P
er

ce
n
t

E
rr

o
r

in
M

is
s

R
a
te L2

0.5 1 1.5 2 2.5 3

·104

0

100

200

Problem Size

P
er

ce
n
t

E
rr

o
r

in
M

is
s

R
a
te L3

stack assoc coherence

Figure 7: Model accuracy compared with hardware perfor-
mance counters for each level of the cache hierarchy.

runs of both applications as a function of cache size. For
this experiment, only a single pass of the stack model is
made, achieving a precision of within 13% of DineroIV. This
demonstrates that the stack model is capable of performing
similarly to cache simulators when operating on the same
address trace, with the added benefit of being able to delay
selecting the depth of the cache hierarchy, the size of each
cache, and the associativity until after the “simulation” has
run.

To illustrate the accuracy of our stack model, we ran a
multithreaded version of the application for multiple prob-
lem sizes, collecting performance counter values, to measure
the actual miss rates exhibited by the node. We then ran
the same applications, compiled with Byfl, generating miss
rate estimates with the stack model for each level of the
cache hierarchy. We compare three different versions of the
model. The stack version only measures cache performance
for the simple stack model, assuming full associativity and
private cache space. The assoc model is augmented with the
arbitrary associativity counter, and the coherence model
includes both associativity counters and the effects of coher-
ence traffic. Figure 7 shows the error in miss rates of these

0.5 1 1.5 2 2.5 3

·104

0

50

100

150

Problem Size

P
er

ce
n
t

E
rr

o
r

in
M

is
s

R
a
te

2 MB

3 MB

4 MB

8 MB

Figure 8: Accuracy of stack model for L3 cache for varying
effective size.

models over the hardware performance counters for CoMD
is within 31% for the L1 cache and 33% for the L2 cache.
The L3 cache performs to within 49% of the counters for
larger problem sizes. We omit similar results for SNAP due
to space constraints.

Figure 7 illuminates an omission in the stack model. The
architecture shares the L3 cache among all threads on the
same core. The stack model näıvely subdivides the total
shared stack space among all the cores. This results in a sub-
optimal allocation of resources, for two reasons. First, there
is no guarantee that all threads will put equal demand on the
L3 cache. It is likely that the thread with the highest demand
for L3 cache resources will “win” the space from the other
threads, giving the appearance of more effective cache space.
Dynamic allocation policies in modern architectures follow
strict criteria for ensuring fairness and performance [42]. Fig-
ure 8 shows how the miss-rate accuracy of the last level cache
changes with the effective cache space per thread for runs of
CoMD. The effective size of the cache given to each thread
is not necessarily equal to an even allocation of the total
shared space. The second reason for suboptimal allocation
is that shared data in last level caches do not need to be
duplicated; private cache partitions may contain duplicate
data, as seen in Section 4.4. This also increases the effective
cache space per thread as there is no longer a need to keep
multiple copies of the same address.

6. CONCLUSIONS
This paper presented a technique for characterizing intra-

node data movement. Unlike traditional cache simulators,
which simulate a single cache configuration in great detail,
our approach gathers sufficient data during a single run of
an application to predict miss rates of any depth of caches
with any size and any associativity for each cache, all as
a fast postprocessing step. Our technique is implemented
as an LLVM compiler pass (as part of the Byfl analysis
framework) that instruments an application to output a
modicum of cache-access summary information—far smaller
than a complete address trace—at run time. This information
can then be used to predict cache rates for different cache
configurations without needing to run the application.

Based on a set of experiments we performed comparing

our stack model both to existing cache-simulation tools and
to measurements taken on hardware performance counters,
we conclude that we have developed an effective approach
to rapidly analyzing how an application’s memory-access
pattern maps onto a large number of cache configurations.
Instead of having to store a potentially large address trace to
feed into multiple runs of a cache simulator or having to run
an instrumented application repeatedly to simulate different
cache configurations, we have shown that similar miss rates
(within 13%) can be computed without large trace files and
without long-running simulations of each cache hierarchy of
interest. This work therefore has the potential to greatly
improve the way that applications and cache hierarchies are
designed and analyzed.

7. ACKNOWLEDGMENTS
The authors would like to thank Joshua Payne for his help

with the shape-function example (Listing 1).
This work was supported by the U.S. Department of En-

ergy’s National Nuclear Security Administration under con-
tract DE-AC52-06NA25396 with Los Alamos National Secu-
rity, LLC.

8. REFERENCES
[1] perf: Linux profiling with performance counters.

https:

//perf.wiki.kernel.org/index.php/Main_Page.
[Online; accessed 8/29/2014].

[2] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel,
G. Marin, J. Mellor-Crummey, and N. R. Tallent.
HPCToolkit: Tools for performance analysis of
optimized parallel programs. Concurrency and
Computation: Practice and Experience, 22(6):685–701,
Apr. 25, 2010. DOI: 10.1002/cpe.1553.

[3] G. Almási, C. Caşcaval, and D. A. Padua. Calculating
stack distances efficiently. In Proceedings of the 2002
Workshop on Memory System Performance, MSP ’02,
pages 37–43, New York, NY, USA, 2002. ACM.
DOI: 10.1145/773146.773043.

[4] B. Alpern, M. N. Wegman, and F. K. Zadeck.
Detecting equality of variables in programs. In 15th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’88), pages 1–11, San
Diego, California, USA, Jan. 10–13 1988. ACM.
DOI: 10.1145/73560.73561.

[5] S. Ashby, P. Beckman, J. Chen, P. Colella, B. Collins,
D. Crawford, J. Dongarra, D. Kothe, R. Lusk,
P. Messina, T. Mezzacappa, P. Moin, M. Norman,
R. Rosner, V. Sarkar, A. Siegel, F. Streitz, A. White,
and M. Wright. The opportunities and challenges of
exascale computing—summary report of the advanced
scientific computing advisory committee (ASCAC)
subcommittee. US Department of Energy Office of
Science, Fall 2010.

[6] J.-L. Baer and W.-H. Wang. On the inclusion
properties for multi-level cache hierarchies. In
Computer Architecture, 1988. Conference Proceedings.
15th Annual International Symposium on, pages 73–80,
May 1988. DOI: 10.1109/ISCA.1988.5212.

[7] R. S. Baker. A block adaptive mesh refinement
algorithm for the neutral particle transport equation.

Nuclear Science and Engineering, 141(1):1–12, May 15,
2002.

[8] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken.
Legion: Expressing locality and independence with
logical regions. In 2012 International Conference for
High Performance Computing, Networking, Storage and
Analysis (SC’12), Salt Lake City, Utah, USA,
Nov. 10–16, 2012. DOI: 10.1109/SC.2012.71.

[9] L. A. Bélády. A study of replacement algorithms for a
virtual-storage computer. IBM Systems Journal,
5(2):78–101, 1966. DOI: 10.1147/sj.52.0078.

[10] S. Browne, J. Dongarra, N. Garner, G. Ho, and
P. Mucci. A portable programming interface for
performance evaluation on modern processors. The
International Journal of High Performance Computing
Applications, 14(3):189–204, 2000.
DOI: 10.1177/109434200001400303.

[11] B. Buck and J. K. Hollingsworth. An API for runtime
code patching. International Journal of High
Performance Computing Applications, 14(4):317–329,
2000. DOI: 10.1177/109434200001400404.

[12] D. Burger and T. M. Austin. The SimpleScalar tool set,
version 2.0. ACM SIGARCH Computer Architecture
News, 25(3):13–25, 1997.

[13] C. Caşcaval and D. A. Padua. Estimating cache misses
and locality using stack distances. In Proceedings of the
17th Annual International Conference on
Supercomputing, pages 150–159. ACM, 2003.

[14] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting
inter-thread cache contention on a chip multi-processor
architecture. In High-Performance Computer
Architecture, 2005. HPCA-11. 11th International
Symposium on, pages 340–351. IEEE, 2005.

[15] L. Dagum and R. Menon. OpenMP: An
industry-standard API for shared-memory
programming. IEEE Computational Science and
Engineering, 5(1):46–55. DOI: 10.1109/99.660313.

[16] C. Ding and Y. Zhong. Predicting whole-program
locality through reuse distance analysis. In ACM
SIGPLAN 2003 Conference on Programming language
Design and Implementation, pages 245–257, San Diego,
California, USA, June 9–11, 2003.
DOI: 10.1145/781131.781159.

[17] J. Dongarra and M. A. Heroux. Toward a new metric
for ranking high performance computing systems.
Sandia Report SAND2013-4744, Sandia National
Laboratories, Albuquerque, New Mexico, USA and
Livermore, California, USA, June 2013.

[18] J. Dongarra, K. London, S. Moore, P. Mucci,
D. Terpstra, H. You, and M. Zhou. Experiences and
lessons learned with a portable interface to hardware
performance counters. In International Parallel and
Distributed Processing Symposium, Nice, France,
Apr. 22–26, 2003. IEEE.
DOI: 10.1109/IPDPS.2003.1213517.

[19] J. Edler and M. D. Hill. Dinero IV trace-driven
uniprocessor cache simulator.
https://pages.cs.wisc.edu/~markhill/DineroIV/.
[Online; accessed 8/29/2014].

[20] ExMatEx. CoMD proxy application.
http://www.exmatex.org/comd.html. [Online;
accessed 8/29/2014].

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
http://dx.doi.org/10.1002/cpe.1553
http://dx.doi.org/10.1145/773146.773043
http://dx.doi.org/10.1145/73560.73561
http://dx.doi.org/10.1109/ISCA.1988.5212
http://dx.doi.org/10.1109/SC.2012.71
http://dx.doi.org/10.1147/sj.52.0078
http://dx.doi.org/10.1177/109434200001400303
http://dx.doi.org/10.1177/109434200001400404
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1145/781131.781159
http://dx.doi.org/10.1109/IPDPS.2003.1213517
https://pages.cs.wisc.edu/~markhill/DineroIV/
http://www.exmatex.org/comd.html

[21] S. Ghosh, M. Martonosi, and S. Malik. Cache miss
equations: a compiler framework for analyzing and
tuning memory behavior. ACM Transactions on
Programming Languages and Systems (TOPLAS),
21(4):703–746, 1999.

[22] R. L. Graham, G. M. Shipman, B. W. Barrett, R. H.
Castain, G. Bosilca, and A. Lumsdaine. Open MPI: A
high-performance, heterogeneous MPI. In Fifth
International Workshop on Algorithms, Models and
Tools for Parallel Computing on Heterogeneous
Networks (HeteroPar’06), pages 1–9, Barcelona, Spain,
Sept. 25–28, 2006. DOI: 10.1109/CLUSTR.2006.311904.

[23] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A
high-performance, portable implementation of the MPI
message passing interface standard. Parallel Computing,
22(6):789–828, 1996.
DOI: 10.1016/0167-8191(96)00024-5.

[24] M. D. Hill and A. J. Smith. Evaluating associativity in
CPU caches. Computers, IEEE Transactions on,
38(12):1612–1630, 1989.

[25] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob. Cmp
$im: A pin-based on-the-fly multi-core cache simulator.
In Proceedings of the Fourth Annual Workshop on
Modeling, Benchmarking and Simulation (MoBS),
co-located with ISCA, pages 28–36, 2008.

[26] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis transformation.
In 2nd IEEE/ACM International Symposium on Code
Generation and Optimization (CGO 2004), pages
75–86, San José, California, USA, Mar. 20–24, 2004.
DOI: 10.1109/CGO.2004.1281665.

[27] Los Alamos National Lab. SNAP proxy application.
https://github.com/losalamos/SNAP. [Online;
accessed 8/29/2014].

[28] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: Building customized program analysis tools with
dynamic instrumentation. In ACM SIGPLAN 2005
Conference on Programming Language Design and
Implementation (PLDI ’05), Chicago, Illinois, USA,
June 11–15, 2005. DOI: 10.1145/1065010.1065034.

[29] R. Mattson, J. Gecsei, D. Slutz, and I. Traiger.
Evaluation techniques for storage hierarchies. IBM
Systems Journal, 9(2):78–117, 1970.
DOI: 10.1147/sj.92.0078.

[30] J. Merrill. GENERIC and GIMPLE: A new tree
representation for entire functions. In GCC Developers
Summit, Ottowa, Ontario, Canada, May 25–27, 2003.
URL: http://ols.fedoraproject.org/GCC/
Reprints-2003/GCC2003-Proceedings.pdf.

[31] Message Passing Interface Forum. MPI: A
Message-Passing Interface Standard, Version 3.0,
Sept. 21, 2012. URL: http://www.mpi-forum.org/
docs/mpi-3.0/mpi30-report.pdf.

[32] S. Pakin and P. McCormick. Hardware-independent
application characterization. In 2013 IEEE
International Symposium on Workload Characterization
(IISWC 2013), pages 111–112, Portland, Oregon, USA,
Sept. 22–24, 2013. IEEE Computer Society. Extended
abstract. DOI: 10.1109/IISWC.2013.6704676.

[33] D. A. Patterson and D. R. Ditzel. The case for the
reduced instruction set computer. SIGARCH Computer

Architecture News, 8(6):25–33, Oct. 1980.
DOI: 10.1145/641914.641917.

[34] J. Payne, D. Knoll, A. McPherson, W. Taitano,
L. Chacón, G. Chen, and S. Pakin. Computational
co-design of a multiscale plasma application: A process
and initial results. In 28th IEEE International Parallel
and Distributed Processing Symposium (IPDPS 2014),
pages 1093–1102, Phoenix, Arizona, USA, May 19–23,
2014. IEEE. DOI: 10.1109/IPDPS.2014.114.

[35] D. Quinlan. ROSE: Compiler support for
object-oriented frameworks. Parallel Processing Letters,
10(2–3 (June & September)):215–226, 2000.
DOI: 10.1142/S0129626400000214.

[36] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global
value numbers and redundant computations. In 15th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’88), pages 12–27.
ACM, Jan. 10–13 1988. DOI: 10.1145/73560.73562.

[37] D. L. Schuff, M. Kulkarni, and V. S. Pai. Accelerating
multicore reuse distance analysis with sampling and
parallelization. In Proceedings of the 19th International
Conference on Parallel Architectures and Compilation
Techniques (PACT 2010), pages 53–64. ACM, 2010.

[38] J. Shalf, D. Quinlan, and C. Janssen. Rethinking
hardware-software codesign for exascale systems. IEEE
Computer, 44(11):22–30, Nov. 2011.
DOI: 10.1109/MC.2011.300.

[39] Y. S. Shao and D. Brooks. ISA-independent workload
characterization and its implications for specialized
architectures. In 2013 IEEE International Symposium
on Performance Analysis of Systems and Software
(ISPASS), pages 245–255, Austin, Texas, USA,
Apr. 21–23, 2013. IEEE.
DOI: 10.1109/ISPASS.2013.6557175.

[40] X. Shi, F. Su, J.-K. Peir, Y. Xia, and Z. Yang.
Modeling and stack simulation of CMP cache capacity
and accessibility. Parallel and Distributed Systems,
IEEE Transactions on, 20(12):1752–1763, 2009.

[41] G. E. Suh, S. Devadas, and L. Rudolph. Analytical
cache models with applications to cache partitioning. In
Proceedings of the 15th international conference on
Supercomputing, pages 1–12. ACM, 2001.

[42] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic
partitioning of shared cache memory. The Journal of
Supercomputing, 28(1):7–26, 2004.

[43] J. Weidendorfer. Sequential performance analysis with
Callgrind and KCachegrind. In M. Resch, R. Keller,
V. Himmler, B. Krammer, and A. Schulz, editors, Tools
for High Performance Computing: Proceedings of the
2nd International Workshop on Parallel Tools for High
Performance Computing, pages 93–113, Stuttgart,
Germany, July 2008. Springer.
DOI: 10.1007/978-3-540-68564-7 7.

[44] Y. Wu and R. Muntz. Stack evaluation of arbitrary
set-associative multiprocessor caches. IEEE
Transactions on Parallel and Distributed Systems,
6(9):930–942, 1995.

http://dx.doi.org/10.1109/CLUSTR.2006.311904
http://dx.doi.org/10.1016/0167-8191(96)00024-5
http://dx.doi.org/10.1109/CGO.2004.1281665
https://github.com/losalamos/SNAP
http://dx.doi.org/10.1145/1065010.1065034
http://dx.doi.org/10.1147/sj.92.0078
http://ols.fedoraproject.org/GCC/Reprints-2003/GCC2003-Proceedings.pdf
http://ols.fedoraproject.org/GCC/Reprints-2003/GCC2003-Proceedings.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://dx.doi.org/10.1109/IISWC.2013.6704676
http://dx.doi.org/10.1145/641914.641917
http://dx.doi.org/10.1109/IPDPS.2014.114
http://dx.doi.org/10.1142/S0129626400000214
http://dx.doi.org/10.1145/73560.73562
http://dx.doi.org/10.1109/MC.2011.300
http://dx.doi.org/10.1109/ISPASS.2013.6557175
http://dx.doi.org/10.1007/978-3-540-68564-7_7

	Introduction
	Related Work
	Byfl
	Architecture-independent performance analysis
	Implementation
	Sample output

	The Stack Model
	Locality and Line Size
	Infinite Stacks
	Associativity Counters
	Multi-core Caches

	Experiments
	Conclusions
	Acknowledgments
	References

