
Managing Performance-Reliability Tradeoffs
in Multicore Processors

William J. Song, Saibal Mukhopadhyay, Senior Member, IEEE, and Sudhakar Yalamanchili, Fellow, IEEE

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332
wjhsong@gatech.edu, saibal@ece.gatech.edu, sudha@gatech.edu

Abstract— There is a fundamental tradeoff between processor
performance and lifetime reliability. High throughput operations
increase power and heat dissipations that have adverse impacts
on lifetime reliability. On the contrary, lifetime reliability fa-
vors low utilization to reduce stresses and avoid failures. A
key challenge of understanding this tradeoff is in connecting
application characteristics to device-level degradation behaviors.
Using a full-system microarchitecture and physics simulation, the
performance-reliability tradeoff in a multicore processor is ana-
lyzed by introducing a metric, throughput-lifetime product (TLP).
A finding reveals that reducing the variance of degradation
distribution on the multicore die leads to effectively enhancing
processor lifetime with minimal impact on performance. This
concept is referred to as dynamic reliability variance management
(DRVM). We discuss three possible microarchitectural techniques
that perform DRVM and improve the TLP; i) phase-aware
thread migration, ii) dynamic voltage scaling, and iii) turbo-mode
execution combined with DRVM. The simulation results with
selected PARSEC and SPLASH-2 benchmarks show that DRVM
techniques improve processor lifetime up to 15% or enhance the
throughput-lifetime tradeoff by 12% without adding extra design
margins or spare components on the multicore die.

I. INTRODUCTION

Highly compact integration of transistors in a chip raises
lifetime reliability concerns for future processors. Traditionally
processors have been designed with large design margins and
guard bands to guarantee the worst-case operations. How-
ever, in practice applications rarely operate at the limits,
and advance of microarchitectural management techniques
(e.g., thread scheduling, voltage and frequency scaling, etc.)
enabled the processor to adapt operations and avoid extreme
conditions. In physically constrained processors, adding large
design margins is a costly solution and prohibits the perfor-
mance growth. Therefore, microarchitectural approaches such
as dynamic reliability management (DRM) [3], [7], [11], [17]
have gained favor as cost-efficient methods to enhance the
lifetime reliability of processors.

In this paper, we present an approach to address these
challenges by bridging the gap between the physics of device
operations and application behaviors. In a multicore processor,
cores experience different levels of stresses depending on ap-
plication characteristics, power states, thermal behaviors, etc.
As a result, the processor produces uneven degradation across
cores, and the cores that experience stronger stresses become
subject to earlier failures. Processor-level lifetime and through-
put are eventually limited by these early failing components. In

addition, there exists a fundamental tradeoff between perfor-
mance and lifetime reliability. High performance means more
switching activities at microarchitectural units accompanied
by higher power and heat dissipations that accelerate device
degradation. On the other hand, enhancing lifetime reliability
is biased to lower utilization to reduce stresses and chance
of failures. Therefore, DRM is not merely about enhancing
lifetime but must balance the tradeoff between performance
and reliability. The challenges are i) characterizing how the
executions of parallel applications create device-level degra-
dation in a multicore processor, ii) understanding how device-
level degradation behaviors affect processor-level lifetime re-
liability and performance, iii) quantifying the reliability and
performance tradeoff, and iv) using these understandings to
develop techniques to manage the tradeoff between processor-
level lifetime reliability and performance.

The remainder of the paper is organized as follows. We first
review related efforts regarding microarchitectural approaches
to characterize and manage processor lifetime reliability.
Our experiment using a full-system simulation framework
is described including cycle-level microarchitecture timing
simulator interacting with various physical models. Lifetime
reliability characterization and observation are made using this
framework. We introduce a metric to evaluate the tradeoff
between processor performance and lifetime reliability. Fi-
nally, we present microarchitectural techniques to improve this
performance-reliability tradeoff and discuss the results.

II. RELATED WORKS

It is anticipated that significant reduction of failure rates will
be required to sustain lifetime reliability for future processors
[17]. Adding large design margins or extra components (e.g.,
structural duplication or redundancy [6], [18]) on the die
significantly increases development and manufacturing costs.
It is better for the processor to adapt to avoid harmful operating
conditions and resulting failures. Several researchers have
proposed such microarchitectural adaptation techniques. Lu et
al. [11], Coskun et al. [3], and Karl et al. [7] treated lifetime
reliability as a resource and presented methods to save lifetime
reliability during low performance or idle states and use it
during high performance operations. Mercati et al. [12] studied
regulating voltage and thermal histories to meet the reliability
target. Feng et al. [5] showed a workload scheduling method
for wear leveling based on degradation monitoring. Coskun



TABLE I. Microarchitecture-Physics Simulation Setup [15]

Models Description

Front-end Qsim (QEMU) functional emulation [8]
Benchmarks Multi-threaded PARSEC & SPLASH-2 [2]

Cores 32 out-of-order cores (timing model) with
128-entry ROB, 6-issue width, 80-entry LSQ

Caches 32KB coherent L1 & 32MB shared L2 [1]
On-Chip Network 6x6 torus network

Memory System 8 MCs, 1 channel, 2 ranks, 8 banks,
tRAS=30, tCAS=10, tRCD=10, tRP=10

Power Model Enhanced McPAT [9] to support DVFS and
leakage feedback, modeled at 16nm

Thermal Model 3D-ICE [16] configured to a 2D package

Reliability Model

Wear models in Table II adjusted to meet
5 years of processor-level MTTF at the
baseline conditions (defined at T=65oC,
V=0.8V).

Microarchitecture
& Physics
Interaction

KitFox framework [14] that orchestrates the
interactions between power, temperature, re-
liability, and other runtime conditions (e.g,
voltage, clock frequency) with a microarchi-
tecture timing model

et al. [4] presented several thread scheduling and execution
control techniques that led to lifetime reliability improvement.

The previous works commonly approached the lifetime reli-
ability problem via heuristic methods using thread scheduling,
power or thermal regulation, power gating, etc. These tech-
niques from experimental results give deductive explanations
about how they worked but do not provide fundamental reason-
ing why those techniques were needed to improve reliability.
With the presence of the gap between device physics and
application behaviors, DRM has to rely on devising plausible
heuristics that can be implemented in various ways.

III. EXPERIMENTAL METHODOLOGY

Our analysis is based on a full-system cycle-level simulation
framework comprised of an application functional emulator,
microarchitectural timing simulator, and coordinated interac-
tive physics modeling library, as illustrated in Figure 1-(a). We
present an overview of this framework and describe a method
of microarchitecture-level lifetime reliability modeling.

A. Full-System Cycle-Level Simulation Framework

The Manifold microarchitectural timing simulator [19] is
configured to model a 32-core homogeneous processor as
shown in Figure 1-(b). Cores with coherent cache hierarchy
[1] are connected via a 6x6 torus network. The Qsim (QEMU-
based) front-end emulator [8] boots a Linux kernel and exe-
cutes x86 parallel application binaries to drive the microarchi-
tecture cycle-level timing models. PARSEC and SPLASH-2
benchmarks [2] are used in the experiment. In each simulation,
a benchmark is fast-forwarded to the region of interest to skip
initialization phases, and then timing simulation is performed
until the benchmark finishes. Benchmarks are executed in
multi-threaded mode using all 32 cores of the processor. A
summary of the simulation setup is listed in Table I.

TABLE II. Failure Models and Parameters [15]

Failure Types Models & Description

hot carrier injection
(HCI) [20]

Electrons with sufficient kinetic energy
overcome the barrier to gate oxide and
cause degradation.
λHCI = α× Vds

n × e−Ea/kT

α= tech-dependent, n = 3, Ea = −0.1
k= Boltzmann’s const., T= temperature

electro-migration
(EM) [17]

Directional transports of electrons in
interconnect causes degradation.
λEM = α× Jn × e−Ea/kT

J= current density, n = 2, Ea = 0.9

negative bias
temperature instability

(NBTI) [20]

Gradual degradation causes threshold
voltage shift and timing errors.
λNBTI = α× Vgs

n × e−Ea/kT

n = 5, Ea = 0.4, Vdd= supply voltage

stress migration (SM)
[17]

Differences in the expansion rates of
metals cause mechanical stress.
λSM = α× (T0 − T )n × e−Ea/kT

T0 = 500, n = 2.5, Ea = 0.9

time-dependent
dielectric breakdown

(TDDB) [17]

Wearout of gate oxide leads to short
between gate and substrate.

λTDDB = α×Vgs
c(a+bT ) × e

x+y/T+zT
kT

a = 78, b = −0.081, c = 0.1,
x = −0.759, y = 66.8, z = 8.37e−4

(a) (b)
Figure 1. (a) Full-system cycle-level microarchitecture simula-
tion framework with coordinated interactive physics modeling
[14], [15]. (b) 32-core homogeneous processor floor-planning.

The KitFox framework [14] is used to coordinate the
interactions among multiple physical models including Mc-
PAT [9] and 3D-ICE [16]. In particular, McPAT is substan-
tially enhanced to support transient power modeling with
dynamic voltage and frequency scaling (DVFS) and leakage-
temperature feedback. 3D-ICE is configured to simulate a 2D
package with a conventional air cooling model. At the device
level, we use the wear models listed in Table II [15]. These
models are adjusted to meet 5 years of processor-level mean-
time-to-failure (MTTF) at the baseline condition (defined at
T=65oC and V=0.8V), and this is referred to as baseline time-
to-failure (TTF) in the experiment discussions.

In the full-system microarchitecture and physics simulation
framework, multiple physical models are simultaneously sim-
ulated with a microarchitectural timing simulator, as illustrated
in Figure 1-(a). Execution of application binaries through the



front-end functional emulator feeds microarchitectural timing
simulator with instructions to simulate. The microarchitecture
simulator collects access counters of functional components
and timing information that are used to estimate the power dis-
sipations of modeled components. Power results are mapped
onto the floor-plan blocks in Figure 1-(b), and the thermal
field is calculated at the package level. Changes in temperature
incur feedback interactions between temperature and leakage
power. Cumulative failure rates are calculated at the floor-
plan blocks with respect to time-varying operating conditions
(i.e., voltage and thermal states). The chain of these physical
interactions creates a loop and is repeated during the transient
simulation. Based on collected reliability profiles, dynamic
management controls are applied, such as thread migration,
DVFS, etc. This infrastructure and approach enable us to
explore how the executions of parallel applications create
device-level degradation variation across cores in the processor
and assess how this variation manifests itself as processor
lifetime reliability and performance.

B. Microarchitecture-Level Lifetime Reliability Modeling

With billions of transistors in a chip today and continuously
increasing device density at every technology node, processor-
level reliability modeling becomes a statistical analysis. Since
these failure mechanisms reflect long-term behaviors, they are
impractical to simulate across the processor at the cycle level.
Therefore, higher level abstractions are generally employed
in lifetime reliability studies such as using representative
thermal profiles (e.g., average temperature) to estimate life-
time reliability or Monte Carlo simulations that generate
random samples to mimic unknown microarchitectural be-
haviors. However, such an approach via high-level abstrac-
tion fundamentally prohibits connecting application behaviors
to device-level physics. In contrast, we utilize the detailed
modeling of interacting physical behaviors to calculate failure
rates and predict lifetime. Transient failure rates are calcu-
lated with respect to time-varying stress conditions including
voltage and thermal states that are induced by workload
dynamics and microarchitectural operations. We use common
exponential models to express the failure rate λ of different
failure mechanisms listed in Table II. Although Weibull or
lognormal distributions are known to better represent long-
term degradation behaviors (e.g., measured in years), they can
be simplified to a constant failure rate modeling in cycle-level
microarchitecture simulations that typically span over seconds
in real time as shown in Figure 2. Relative changes in failure
rate and its projection to lifetime are used in our experiment to
assess reliability criticality of different applications or dynamic
execution controls (e.g., turbo-mode executions).

λ =
∑
r∈R

prλr and
∑
r∈R

pr = 1 (1)

With R different failure models, the failure rate of a
component is expressed as Eq. (1) that is a weighted average
for all λr∈R. Since the relative criticality of different failure
mechanisms is not known, we assume these failures are

Figure 2. Effect of selecting reliability distribution functions
in cycle-level microarchitecture simulations.

equally likely at the baseline condition (defined at T=65oC
and V=0.8V in the experiment) [3], [6], [15], [17], [18].

λ(t=tn) =

n∑
i=1

{∑
r∈R

prλr,(t=ti−ti−1) ×
(ti − ti−1)

tn

}
(2)

In the microarchitecture and physics simulation, the failure
rate λr of each failure model changes over time with tem-
perature and voltage variations. Total failure rate at t = tn
with ti time steps (i = 1, 2, ..., n) is expressed as Eq. (2).
λTOTAL(t=tn) in this equation denotes the failure rate based
on the λ trends up to t = tn. TTF due to such trends
is calculated as TTF = 1/λ(t=tn), where the failure rate
reflects the operation history between (t0, tn]. We notice
from a preliminary study that using representative thermal
profiles (e.g., average temperature) may overestimate the TTF
especially for highly variant applications, since it neglects high
temperature phases that accelerate aging effects.

IV. LIFETIME RELIABILITY CHARACTERIZATION

Using the microarchitecture and physics simulation, this
section presents a characterization of workload-induced degra-
dation patterns on the multicore die and discusses about how
these patterns affect processor lifetime reliability.

A. Characterizing Spatial Distribution of Degradation

Non-uniform degradation in a multicore processor leads to
variations in core-level lifetime. Processor TTF depends on
how many failed components would be tolerated until the
processor is regarded as inoperable. To determine the failure of
the processor, operability threshold [15] is defined as Eq. (3).
The processor is regarded as failed if there are smaller number
of operable cores than the operability threshold. Therefore,
processor TTF is determined by the operability threshold.

Operability Threshold =
Minimum # of operable cores

Total # of cores
(3)

Based on the experimental results of the full-system mi-
croarchitecture and physics simulation, core-level TTF distri-
bution on the multicore die is characterized. At the end of
simulation of each benchmark, mean (µ) and variance (σ2) are
calculated from the samples of core TTF in the 32-core pro-
cessor shown in Figure 1-(b). For an unidentified distribution,
we assumed a normal-like distribution and generated random



(a) (b)
Figure 3. Comparison between the simulated TTF and es-
timated TTF based on a normal distribution model for (a)
PARSEC and (b) SPLASH-2 benchmarks. TTF distributions
are normalized to the standard normal.

TABLE III. Reliability Characterization: Normal Distribution
Models of PARSEC and SPLASH-2 Benchmarks

Parsec N(µ, σ) Splash-2 N(µ, σ)

Blackscholes N(1.285, 0.097) Cholesky N(1.499, 0.112)

Canneal N(2.264, 0.019) FFT N(2.224, 0.019)

Fluidanimate N(1.398, 0.121) Ocean-nc N(2.309, 0.014)

Swaptions N(1.824, 0.060) Radiosity N(1.682, 0.098)

Vips N(2.056, 0.032) Radix N(2.178, 0.026)

samples with the same mean and variance calculated from the
simulation results. Figure 3 shows that the generated normal
distribution samples closely match the simulation results. This
reveals that core TTF distribution on the multicore die due
to parallel execution of applications can be characterized by
using a normal distribution model. Table III lists the reliability
characteristics of PARSEC and SPLASH-2 benchmarks based
on the normal distribution model; mean and standard deviation
are normalized to the baseline TTF, and µ = 1.0 means
the baseline TTF. This observation brings a new insight of
characterizing the lifetime reliability distribution in a multicore
processor. In the subsequent sections, we utilize this observa-
tion and use the mean (µ) and variance (σ2) of core TTF
distribution to analyze application-induced reliability behav-
iors in the multicore processor. Notably, mean and variance
are general characteristics of any random distributions, and
the proposed approach in this paper can be applied to other
distribution models [15].

B. Effect of Reliability Variance on Processor Lifetime

Based on the observation of normally distributed degrada-
tion on the multicore die, we analyze how the variance of
the distribution affects processor lifetime reliability. Figure 4-
(a) shows the TTF changes of two different cases; i) high
TTF average with high variance and ii) low TTF mean
with low variance. The first case represents the situation
that the processor has low average degradation with large
non-uniformity in degradation distribution on the multicore
core, whereas the second case is that the processor has more

(a) (b)
Figure 4. (a) In the practical region of lifetime, the distribution
with lower variance provides better reliability even with lower
mean [15]. (b) Reshaping the TTF distribution by reducing the
variance improves processor lifetime.

(a) (b)
Figure 5. (a) Inverse relation between performance and life-
time reliability. (b) throughput-lifetime product evaluation of
simulated benchmarks.

degradation on average but with relatively even degradation
pattern across cores. We assume that the most practical use
case is within 10% failing (or above 90% operability threshold)
[13], denoted by practical region of lifetime in the figure.
In this region, avoiding early failures effectively leads to
processor lifetime improvement. Thus, reducing the variance
of the degradation distribution is a key to enhancing processor
lifetime. This concept is referred to as dynamic reliability
variance management (DRVM) [15] and illustrated in Figure
4-(b). This is distinct from wear leveling that typically refers
to evening out activity in cores using various heuristics.

V. PERFORMANCE AND RELIABILITY TRADEOFF

There exists a fundamental tradeoff between performance
and lifetime reliability. High performance operations generate
more switching activities of microarchitecture components
accompanied by increased power and heat dissipations that
accelerate device degradation processes. On the other hand,
lifetime reliability favors lower utilization to reduce stresses
and resulting degradation. Therefore, DRM techniques cannot
simply work to improve lifetime but must balance the tradeoff
between performance and reliability.

Throughput and lifetime are inversely related as shown in
Figure 5-(a). Each square mark in the graph is plotted based on
the simulation results in Table III, and a trend line is shown. In
each simulation of a benchmark, instruction counts and exe-
cution time were measured, and average Giga instructions per



second (GIPS) was calculated to represent processor through-
put. The x-axis is processor lifetime calculated as (µ − 2σ),
where µ and σ are obtained from the simulation results (see
Table III). With the normal distribution model, (µ − 2σ)
corresponds to approximately 97% operability threshold such
that 32-core processor would tolerate one core failure. When
the processor has high throughput (e.g., execution of compute-
bound applications), there are more switching activities at
microarchitectural components, which increase power and heat
dissipations. Consequently, the executions of such workloads
have adverse impact on lifetime reliability. Reliability may
be naively improved by regulating processor operation and
power consumption, but it is traded with performance loss. To
evaluate this tradeoff, we introduce a new metric, throughput-
lifetime product (TLP), expressed as Eq. (4). In this equation,
gross throughput of the processor is represented with GIPS of
all cores, and lifetime is expressed by (µ− 2σ).

TLP = GIPS × (µ− 2σ) (4)

In Figure 5-(a) TLP shows a parabolic trend as a function
of lifetime. Due to inverse relation between performance
and lifetime reliability, high throughput operations decrease
lifetime and produce low TLP. At the other end of the curve,
low performance has longer lifetime, but it also exhibits
poor TLP. For example, execution of the Ocean benchmark
generates minimal stresses on the processor and results in
the greatest lifetime as shown in Table III. However, when
evaluated with TLP, it is the worst benchmark in that it
produces less throughput for the amount of degradation oc-
curred during the execution. The use of TLP provides us with
a quantified method to evaluate performance and reliability
tradeoff. We study microarchitectural approaches to manage
the performance-reliability tradeoff in the multicore processor.

VI. MICROARCHITECTURAL APPROACHES TO MANAGE
PERFORMANCE-RELIABILITY TRADEOFF

In this section, we present DRVM-based microarchitectural
techniques to improve the TLP. Presented DRVM techniques
are i) phase-aware thread migration (PATM), ii) dynamic
voltage scaling (DVS) for reliability variance management,
and iii) turbo-mode execution (TME) combined with DVS-
based reliability variance management. Although thread mi-
gration and DVS have appeared in various implementations
for lifetime reliability management [3], [4], [7], [11], [12],
[17], the contribution is that these techniques are grounded
in fundamental behaviors of degradation variation that lead
to manage the processor performance and lifetime reliability
tradeoff. The implementations of these techniques are first
described, and then the results are discussed.

A. Phase-Aware Thread Migration for DRVM

Thread migration is a dynamic thermal management (DTM)
technique that are used to spreads out thermal hotspots and
also suggested for DRM [4]. However, DRM fundamentally
differs from DTM in that management decisions based on
instantaneous properties such as instructions per second (IPC)

or temperature readings [3], [4] do not necessarily reflect “cu-
mulative” degradation behaviors. For similar reasons, relying
only on degradation monitoring causes inefficiency in reliabil-
ity management. For instance, if a thread of a hot core enters
a low performance (e.g., memory-bound) or idle state, it is
better to keep the thread in the same core rather than swapping
the threads with other cores that may have transitioned to high
power state and thus will exacerbate the problem when moved
to the hot core. Therefore, thread migration have to utilize both
instantaneous performance metrics and degradation monitoring
for efficient reliability management.

In phase-aware thread migration, the cumulative failure rates
of cores are measured at every monitoring interval, considering
time-varying thermal histories. We assume that degradation
monitoring is available on the die, such as using aging sensors.
The TTF of cores are predicted from the failure rates, and µ
and σ of the core TTF distribution are calculated. Since DRVM
is to reduce the degradation variance to enhance processor
lifetime, thread migration is triggered only when the variance
of core TTF exceeds a threshold set as σth = 0.05 in the
experiment. It also monitors the IPC of threads being executed
on different cores. Low IPC operations generate less switching
activities of microarchitectural components and thus decrease
power and heat dissipations. Such threads are relocated to
weak cores to reduce degradation. Thus, when the phase-
aware thread migration is invoked (σ > σth), it swaps threads
between the cores that have the lowest IPC and TTF. Similarly,
thread swapping is made between the cores that have the
highest IPC and TTF to avoid µ of the distribution being
biased to high TTF cores. Such “coordinated” thread swapping
is applied to the next set of cores if their expected TTF
deviate more than σth from the mean of the distribution. After
migrating the threads, these cores are protected from being
invoked for another thread migration to avoid threads being
continuously tossed around cores and also to allow the cores to
recover from deviated degradation status. A weakness of using
the thread migration technique for DRVM is that degradation
adjustment is not precisely controllable but strongly depends
on the behaviors of migrating threads.

B. Dynamic Voltage Scaling for DRVM

DVS exploits the voltage impact on reliability to adjust
the degradation levels of cores for DRVM. DVS techniques
were widely studied for power and thermal controls as well
as reliability management [4], [7], [11], [12]. However, voltage
scaling for DRVM differs from previous works in that it
attempts to reshape the core TTF distribution by reducing
variance (σ2) but does not control the mean (µ) such that
the impact on application performance is minimized.

The difficulty is in determining the degree of voltage scaling
required to adjust the degradation by a desirable amount, since
failure rates are the functions of both voltage and thermal
stresses and they have different impacts on different failure
models. To simplify the problem, we created a voltage scaling
table with predicted TTF changes at the baseline condition,
shown in Table IV. The cumulative failure rates of cores



TABLE IV. Voltage Scaling for DRVM

µcore − µ Voltage µcore − µ Voltage

-0.10 0.774V +0.10 0.828V
-0.15 0.762V +0.15 0.843V
-0.20 0.750V +0.20 0.860V
-0.30 0.729V +0.30 0.894V

are measured at every sampling interval, and µ and σ of
core TTF distribution are calculated. Distance to the mean
of TTF distribution is measured for each core, expressed
as (µcore − µ) in the voltage scaling table. Then, necessary
voltage adjustment is applied. Voltage scaling in general has
better controllability for DRVM than thread migration, but it
may have a negative impact on performance due to frequency
changes accompanied by voltage scaling.

C. Turbo-Mode Execution with DRVM

When a core is boosted such as turbo-mode execution, the
failure rate gradually rises due to increased voltage and thermal
stresses. However, if the turbo mode is applied for a relatively
short duration compared to overall execution time, the changes
in failure rate can be kept small while improving performance.
We combine the turbo-mode execution with DRVM using volt-
age scaling to achieve performance improvement with minor
impact on or even improved processor lifetime reliability.

In Eq. (4), turbo-mode execution attempts to increase the
throughput term (i.e., GIPS) but instead sacrifices µ due
to accelerated degradation caused by increased voltage and
thermal stresses. In our preliminary study, we find that turbo-
mode execution also amplifies σ, which exacerbates the re-
liability problem by increasing non-uniformity in degradation
distribution. We learn that the reliability penalty is greater than
performance benefit when turbo-mode execution is engaged.
Therefore, turbo-mode execution can only be effective if
it returns a good performance improvement, or otherwise
decrease in lifetime reliability (i.e., µ − 2σ) due to acceler-
ated degradation dominates the throughput increase and thus
diminishes the TLP. Contentions for shared resources prohibit
turbo-mode execution from increasing throughput [10]. In the
2-level cache hierarchy of the 32-core processor model in the
experiment, we use L1 cache miss rate and IPC to decide if the
turbo-mode execution can be triggered. When the turbo-mode
execution is not employed, this technique performs DRVM
via voltage scaling as the base operation to mitigate reliability
penalty due to turbo-mode execution.

D. DRVM and TLP Evaluation

Since the key to DRVM is to reduce the degradation vari-
ance to enhance processor lifetime, we select four benchmarks
that have large non-uniformity in their core TTF distributions
(i.e., σ � σth = 0.05) from the application characterization
results in Table III; Blackscholes, Fluidanimate, Cholesky, and
Radiosity. The presented DRVM techniques are applied to
these benchmarks, and the results are discussed. Although
we observe that the DRVM also works for other benchmarks,
there are marginal improvements since these applications have

(a) (b)
Figure 6. Changes of (a) mean µ and (b) standard deviation σ
of core TTF distribution by applying DRVM with phase-aware
thread migration (PATM), dynamic voltage scaling (DVS), and
turbo-mode execution (TME).

(a) (b)
Figure 7. (a) Lifetime and (b) throughput improvement by
DRVM techniques.

relatively even degradation across cores. In addition, these
benchmarks do not have much performance increase when
the turbo-mode is applied due to memory-bound behaviors.
Therefore, in this section we discuss the results of DRVM with
selected benchmarks and evaluate their performance impact.

Both phase-aware thread migration and voltage scaling
for DRVM attempt to reshape the core TTF distribution by
reducing the variance (σ2) but does not control the mean (µ).
Figure 6 shows the changes in mean and standard deviation
of the curves by applying DRVM techniques, compared to
uncontrolled executions. Thread migration or voltage scaling
has minor changes to the mean but greatly reduces the standard
deviation, which leads to the improvement of processor life-
time reliability, as shown in Figure 7-(a). For instance, voltage
scaling applied to the Fluidanimate benchmark decreases the
mean of core TTF distribution by 2% (normalized to baseline
TTF), but 62% reduction in standard deviation compensates
for the shift of the mean, resulting in 13% improvement in
lifetime. The results show that voltage scaling produces greater
lifetime improvement than thread migration. The effectiveness
of thread migration is limited by the behaviors of migrated
threads. The PATM works for applications with distinct power
states across threads, but it does not perform well with
those with similar power dissipations across cores, such as
Blackscholes. Migrating the threads of Blackscholes does not
effectively re-distribute thermal stresses and therefore shows
no lifetime improvement over uncontrolled execution. Collec-



Figure 8. Improvement of throughput-lifetime product by
DRVM techniques.

tively, both phase-aware thread migration and voltage scaling
for DRVM improve the performance and reliability tradeoff,
by enhancing processor lifetime but with little effect on the
throughput. Therefore, Figure 8 shows that TLP improvements
by these two techniques have similar trends as the changes in
lifetime shown in Figure 7-(a).

Turbo-mode execution combined with DRVM via voltage
scaling attempts to increase performance by sacrificing the
mean, where decrease in lifetime reliability is mitigated by
DRVM. As plotted in Figure 6-(a), turbo-mode execution
significantly decreases the mean of core TTF distribution,
which indicates accelerated degradation. Since DRVM with
voltage scaling has little impact on the mean, the changes
are primarily caused by the turbo-mode execution. Instead,
DRVM reduces the variance of core TTF distribution, as
shown in Figure 6-(b). As a result, turbo-mode execution with
DRVM does not reduce reliability, but rather it may improve
lifetime depending on workload characteristics. Compute-
bound workloads such as Blackscholes operate longer in turbo
mode since they can benefit from accelerated execution. Those
benchmarks therefore experience more degradation and reduce
processor lifetime that is traded with throughput improvement.
Consequently, turbo-mode execution with DRVM improves
the performance and reliability tradeoff, measured by the TLP.
Importantly, we find that the reliability penalty of turbo-mode
execution is greater than the throughput benefit. Therefore, the
TLP improvement of this operation is less than that of voltage
scaling-based DRVM without turbo-mode executions.

VII. CONCLUSION

Microarchitectural approaches such as dynamic reliability
management have gained favor as cost-efficient methods to
enhance processor lifetime reliability. However, without un-
derstanding the basic physics between device-level operations
and application behaviors, dynamic reliability management
has to rely only on heuristic approaches. In this paper, we
have characterized how the parallel executions of applications
created degradation distribution on the multicore die and
affected processor lifetime reliability. A finding revealed that
reducing the variance of degradation distribution effectively
led to processor lifetime improvement with minimal impact on
performance. Most importantly, we claim that dynamic relia-
bility management cannot simply work to improve lifetime but
must balance the tradeoff between processor performance and

reliability. We foresee that reliability will be an important de-
terminant of microarchitectural operations in future processors
in conjunction with performance or energy efficiency metrics.

ACKNOWLEDGEMENT

This research was supported by the Semiconductor Research
Corporation (SRC) under task #2318.001, IBM/SRC Graduate
Fellowship, and Sandia National Laboratories.

REFERENCES

[1] J. Beu, M. Rosier, and T. Conte, “Manager-Client Pairing: A frame-
work for implementing coherence hierarchies,” IEEE/ACM Int. Symp.
Microarchit., Dec. 2011.

[2] C. Bienia, S. Kumar, and K. Li, “PARSEC vs SPLASH-2: Quantitative
comparison of two multithreaded benchmark suites on processors,” IEEE
Int’l Symp. Workload Charact., Sep. 2008.

[3] A. Coskun, T. Rosing, K. Mihic, G. Micheli, and Y. Leblebici, “Analysis
and optimization of MPSoC reliability,” J. Low Power Elect., Jan. 2006.

[4] A. Coskun, R. Strong, D. Tullsen, and T. Strong, “Evaluating the
impact of job scheduling and power management on processor lifetime
reliability for chip multiprocessors,” Int. Conf. Meas. Model. Comput.
Syst., Jun. 2009.

[5] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Maestro: Orchestrating
lifetime reliability in chip multiprocessors,” Conf. High Perform. Em-
bedded Archit. Compil., Jan. 2010.

[6] L. Huang and Q. Xu, “Characterizing the lifetime reliability of manycore
processors with core-level redundancy,” Int. Conf. Comput.-Aided Des.,
Nov. 2010.

[7] E. Karl, D. Blaauw, D. Sylvester, and T. Mudge, “Reliability model-
ing and management in dynamic microprocessor-based systems,” Des.
Autom. Conf., Jul. 2006.

[8] C. Kersey, A. Rodrigues, and S. Yalamanchili, “A universal parallel
frontend for execution driven microarchitecture simulation,” Workshop
Rapid Simul. Perform. Eval., Jan. 2012.

[9] S. Li, J. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi, “Mc-
PAT: Integrated power, area, timing modeling framework for multicore
architectures,” IEEE/ACM Int. Symp. Microarchit., Dec. 2009.

[10] D. Lo and C. Kozyrakis, “Dynamic management of TurboMode in
modern multi-core chips,” IEEE Int. Symp. High Perform. Comput.
Archit., Feb. 2014.

[11] Z. Lu, J. Lach, M. Stan, and K. Skadron, “Improved thermal manage-
ment with reliability banking,” IEEE Micro, Dec. 2005.

[12] P. Mercati, A. Bartolini, F. Paterna, T. Rosing, and L. Benini, “Workload
and user experience-aware dynamic reliability management in multicore
processors,” Des. Autom. Conf., Jun. 2013.

[13] V. Morozov, K. Kumaran, V. Vishwanath, J. Meng, and M. Papka,
“Early experience on the BlueGene/Q supercomputing system,” IEEE
Int. Parallel Distrib. Process. Symp., May 2013.

[14] W. Song, S. Mukhopadhyay, and S. Yalamanchili, “Energy Introspector:
Parallel, composable framework for integrated power-reliability-thermal
modeling for multicore architectures,” IEEE Int’l Symp. Perform. Anal.
Syst. Softw., Mar. 2014.

[15] W. Song, S. Mukhopadhyay, and S. Yalamanchili, “Architectural Reli-
ability: Lifetime reliability characterization and management of many-
core processors,” Comput. Archit. Lett., Jul. 2014.

[16] A. Sridhar, A. Vincenzi, M. Ruggiero, T. Brunschwiler, and D. Atienza,
“3D-ICE: Fast compact transient thermal modeling for 3D ICs with
inter-tier liquid cooling,” Int. Conf. Comput.-Aided Des., Nov. 2010.

[17] J. Srinivasan, S. Adve, P. Bose, and J. Rivers, “Lifetime Reliability:
Toward an architectural solution,” IEEE Micro, May 2005.

[18] J. Srinivasan, S. Adve, P. Bose, and J. Rivers, “Exploiting structural
duplication for lifetime reliability enhancement,” Int. Symp. Comput.
Archit., Jun. 2005.

[19] J. Wang, J. Beu, R. Bheda, T. Conte, Z. Dong, C. Kersey, M. Rasquinha,
G. Riley, W. Song, H. Xiao, P. Xu, and S. Yalamanchili, “Manifold: A
parallel simulation framework for multicore systems,” IEEE Int’l Symp.
Perf. Anal. Syst. Softw., Mar. 2014.

[20] M. White and J. Bernstein, “Microelectronics Reliability: Physics-of-
failure based modeling and lifetime evaluation,” JPL Publication 08-5
2/08, NASA Jet Propulsion Laboratory, 2008.


	Introduction
	Related Works
	Experimental Methodology
	Full-System Cycle-Level Simulation Framework
	Microarchitecture-Level Lifetime Reliability Modeling

	Lifetime Reliability Characterization
	Characterizing Spatial Distribution of Degradation
	Effect of Reliability Variance on Processor Lifetime

	Performance and Reliability Tradeoff
	Microarchitectural Approaches to Manage Performance-Reliability Tradeoff
	Phase-Aware Thread Migration for DRVM
	Dynamic Voltage Scaling for DRVM
	Turbo-Mode Execution with DRVM
	DRVM and TLP Evaluation

	Conclusion
	References

