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ABSTRACT
Heterogeneous multicore processors have been suggested as
alternative microarchitectural designs to enhance performance
and energy efficiency. Using Amdahl’s Law, heterogeneous
models were primarily analyzed in performance and energy
efficiency aspects to demonstrate its advantage over conven-
tional homogeneous systems. In this paper, we further ex-
tend the study to understand the lifetime reliability conse-
quences of heterogeneous multicore processors, as reliabil-
ity becomes an increasingly important constraint. We present
the lifetime reliability models of multicore processors based
on Amdahl’s Law, including compact thermal estimation that
has strong correlation with device aging. Lifetime reliability
is analyzed by varying i) core utilization (Amdahl’s scaling
factor), ii) processor composition (number of big and small
cores), and iii) thread scheduling method. The study shows
that the heterogeneous processor may have a serious reliabil-
ity challenge. If the processor is comprised of only one big
core and many small cores, stresses can be biased to the big
core especially when workloads spend more time on sequen-
tial operations. Our study reveals that incorporating multiple
big cores can mitigate reliability bottleneck in big cores and
enhance processor lifetime, but adding too many big cores
will have an adverse impact on lifetime reliability as well as
performance.

1. INTRODUCTION
The paradigm of designing processors is shifting from sim-

ply improving performance to enhancing energy (or power)
efficiency, as it has become a critical barrier to microarchitec-
tural operations. Heterogeneous multicore processors have
been studied as alternative implementations to improve en-
ergy efficiency and performance. For instance, a processor
comprised of a complex core (i.e., out-of-order execution)
and many small cores (i.e., in-order execution) can enhance
these metrics by using the big core for faster sequential ex-
ecutions and many simple cores for energy-efficient parallel
operations. We refer to such microarchitectural asymmetry
as heterogeneous in this paper. Energy efficiency and perfor-
mance improvements of the heterogeneous processor over a
conventional homogeneous processor are governed by Am-
dahl’s Law [1], as widely studied in prior work [3, 4, 6, 11,
15, 18, 19, 23, 30, 34].

Extending prior work for the performance and energy mod-
eling of heterogeneous processors, this paper presents the life-
time reliability models of heterogeneous multicores and dis-
cusses the reliability implication of such heterogeneous de-

signs. Lifetime reliability behaviors of a heterogeneous pro-
cessor can also be characterized by using Amdahl’s Law. De-
pending on Amdahl’s scaling (or parallelization) factor f and
processor composition (e.g., number of big and small cores),
stresses can be biased to a particular type of core. For in-
stance, assume that the heterogeneous processor includes only
one complex core such as Figure 1.(a) and also utilizes the
complex core during parallel executions to maximize perfor-
mance increase via techniques such as bias scheduling [18] or
accelerating critical threads [15, 30]. The big core is the bus-
iest computing unit in that it is always turned on and has to
execute both serial and a part of parallel phases of a workload.
It is subject to extended stresses compared to other computing
units, and such biased stresses become worse when the appli-
cation spends more time on sequential operations. This is
generally not a critical issue in homogeneous multicore pro-
cessors, since any one of the cores can be selected to exe-
cute sequential operations. Load-balancing or wear-leveling
methods can be applied to the homogeneous cores to even
out degradation [7, 14, 26]. On the other hand, if sequen-
tial executions are substantially short, the chance of failure is
greater among many simple cores. When a small core fails,
the heterogeneous processor may tolerate the failure if grace-
ful degradation is allowed for a number of duplicated small
cores on the die [7, 14, 29]. However, the failure of the only
big core immediately leads to the failure of the entire proces-
sor since no other cores can replace the role of the failed big
core without serious performance degradation.

If the heterogeneous processor accommodates a few num-
ber of big cores such as Figure 1.(b), any one of them can be
selected to perform serial executions. Unused cores can be
power-gated to minimize degradation and save power. Con-
sequently, the failure rate of complex cores can be greatly
reduced by sharing loads. However, increasing the number of
big cores on the die reduces the small core count under the
same area constraint. It may decrease the peak performance
of parallel executions, especially for small-size processors
where relatively large portion of the area would be taken by
big cores. Alternatively, different scheduling methods can be
considered to mitigate the reliability problem of the hetero-
geneous processor. For instance, a complex core can be used
only to execute sequential operations and turned off during
parallel phases. This type of scheduling policy is particu-
larly advocated in power-constrained processors where not all
cores might be able to turn on because of power limitation [6,
34]. Such a scheduling method also limits the peak through-
put of parallel executions, but the power-gated big core ben-
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Figure 1: Multicore configurations: (a) heterogeneous processor with one big core (BC) and many small cores (SC), (b)
heterogeneous processor with multiple big cores and fewer small cores, (c) homogeneous processor of small cores, and (d)
homogeneous processor of big cores.
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Figure 2: Modeling flow of performance, energy efficiency,
thermal, and lifetime reliability characterization of heteroge-
neous multicore processors.

efits from alleviated stresses and improves overall reliability.
Therefore, the lifetime reliability of heterogeneous multicore
processors strongly depends on processor configuration (e.g.,
number of big and small cores) and utilization (e.g., schedul-
ing method), characterized by Amdahl’s Law. This paper pro-
poses and uses the approach shown in Figure 2 to evaluate the
lifetime reliability of multicore processors. As shown, this
paper makes the following contributions.

• Performance and energy efficiency models:
We extend heterogeneous multicore models in the work
of Hill and Marty [11] and Woo and Lee [34] to include
multiple complex cores and utilize power-gating (of un-
used cores) in performance and energy calculations.

• Thermal estimation for reliability modeling:
We present a compact thermal model to estimate the tem-
perature of hypothetical heterogeneous processors with
different processor compositions (i.e., number of big and
small cores) and execution phases (i.e., serial or parallel)
for accurate reliability modeling.

• Lifetime reliability models of heterogeneous processors:
Using the preceding models, this paper presents the life-
time reliability models of heterogeneous processors and
shows that multicore reliability is subject to Amdahl’s Law.

• Assessing the reliability of heterogeneous processors:
We show that the performance, energy efficiency, and life-
time reliability of heterogeneous processors are traded as
a function of processor size n, big core count b, and Am-
dahl’s scaling factor f .

This paper is organized as follows. First, we summarize
prior work regarding the performance and energy impacts of
heterogeneous processors. We revisit the heterogeneous mul-
ticore models from prior work and extend them to have var-
ious numbers of big and small cores on the die. The perfor-
mance and energy models are evaluated by varying Amdahl’s
scaling factor and total core count. We present our methodol-
ogy to model the lifetime reliability of multicore processors.
Finally, we evaluate the performance, energy efficiency, and
lifetime reliability of heterogeneous processors with more re-
alistic performance and power models extrapolated from de-
tailed microarchitectural simulations.

2. PRIOR WORK FOR HETEROGENEOUS
MULTICORE PROCESSOR ANALYSIS

Applications exhibit different performance and energy (and
power) behaviors depending on executing core types. Kumar
et al. [19] showed that matching application characteristics
to computing resources could enhance energy efficiency. Hill
and Marty [11] extended Amdahl’s Law to study the perfor-
mance impact of heterogeneous multicore processors com-
pared to conventional homogeneous processors. Following
the work of Hill and Marty, Woo and Lee [34] presented the
energy scaling models of multicore processors including a
heterogeneous design. Their models enabled the evaluation
of energy and power-related metrics such as performance per
Joule or Watt for various multicore compositions. Chung
et al. [4] explored hypothetical heterogeneous computing
models comprised of conventional high-performance cores,
minimally-sized baseline cores, and diverse unconventional
computing units such as FPGAs and GPGPUs. Their ana-
lytical models showed that these unconventional cores could
provide better energy efficiency than conventional CPUs for
highly parallel applications. As total power becomes a crit-
ical limitation, Morad et al. [23] presented theoretical per-
formance models of heterogeneous processors under a power
budget constraint. Esmaeilzadeh et al. [6] presented the pro-
jection of power-limited multicore systems with the view of
emerging dark silicon era.

Using heterogeneous computing units requires sophisticated
scheduling methods to maximize utilization and performance.
Since different types of computing units have distinct com-
puting capabilities, Koufaty et al. [18] suggested a method



for bias scheduling to handle performance imbalance between
heterogeneous cores. Suleman and Joao et al. [15, 30] studied
identifying critical threads in parallel executions and execut-
ing them on high-performance cores to speed up overall exe-
cution. Cao et al. [3] presented measurement-based analysis
to support virtual machine services and improve their perfor-
mance and energy efficiency in heterogeneous processors. In
our paper, we do not dive into the details of these scheduling
problems. Instead, we assume that these efforts would poten-
tially enable us to maximally utilize heterogeneous multicore
microarchitectures.

Heterogeneous processors have been largely studied in per-
formance and energy (or power) aspects, but their reliability
implications have been overlooked. Prior work focused on
characterizing and improving the lifetime reliability of homo-
geneous multicore processors. Proposed techniques encom-
pass wear-leveling [7, 14, 26], component redundancy [14,
27], and thermal and power management methods [5, 21, 22].
A greatly simplified theoretical model is found in the work of
Huang et al. [13]. The authors studied the lifetime reliability
of a heterogeneous processor comprised of a few cores, but
they did not include enough details of heterogeneous multi-
core designs and operations. Yu et al. [35] presented multi-
faceted analysis of homogeneous processors. Their study ex-
plored various multicore compositions in terms of core size
and count under an area constraint and evaluated their perfor-
mance, yield, and reliability. In this paper, we characterize
and study the lifetime reliability consequences of heteroge-
neous multicore processors based on Amdahl’s Law, extend-
ing prior work for performance and energy analysis.

3. REVISITING AMDAHL’S LAW FOR PER-
FORMANCE AND ENERGY SCALING OF
MULTICORE PROCESSORS

We adopt the performance and energy models from previ-
ous work [11, 34] and extend them to analyze the lifetime
reliability of heterogeneous processors. In this section, we
first review the performance and energy models of various
multicore configurations with updated assumptions.

3.1 Homogeneous Processor of Simple Cores
We assume that a baseline homogeneous processor is com-

prised of n number of simple (small) cores, following the
modeling methodology presented in the work of Hill and Marty
[11]. Figure 1.(c) illustrates the homogeneous multicore pro-
cessor composed of small cores. According to Amdahl’s Law,
maximum performance speed-up is given as Eq. (1). Perfor-
mance is improved by parallelizing the f fraction of com-
putations with n cores [11]. This is optimistic performance
estimation without thread parallelization or migration over-
head. We refer to the f fraction as Amdahl’s scaling factor or
parallelization fraction in this paper.

Perf hom:s =
1

(1− f )+
f
n

(1)

We bring energy models from the work of Woo and Lee
[34] but modify the assumption such that idle cores (e.g., un-
used n−1 number of cores during serial executions) are ide-
ally turned off and do not contribute to processor power dis-

sipation. We assume that the power consumption of a simple
core is normalized to 1. Processor power dissipation during
serial executions is equivalent to single-core power, and the
processor consumes n×1 amount of power when all cores are
active to execute parallel threads. With the normalization,
energy scaling based on Amdahl’s Law becomes Ehom:s = 1,
and power scales the same as the performance model in Eq.
(1), Whom:s = Perf hom:s.

3.2 Homogeneous Processor of Complex Cores
In a homogeneous processor composed of complex (big)

cores such as Figure 1.(d), it is assumed that each big core has
s times better performance and r times larger area than those
of a small core [4, 11, 34]. Pollack’s Rule [25] states that
performance and area are correlated as s ∝

√
r. Within the

same total area as the homogeneous processor of small cores,
there can be up to n/r number of big cores. The performance
speed-up of the homogeneous processor of complex cores is
calculated as Eq. (2). The improvement is achieved by accel-
erating serial executions (i.e., 1− f fragment of a workload)
by an s times faster big core and parallelizing the f fraction
of the load by n/r number of big cores.

Perf hom:b =
1

1− f
s

+
f
s
× r

n

(2)

Another parameter p is considered to represent the relative
power of a big core, which means that the big core consumes
p times more power than a small core. We adopt this power
expression from the work of Chung et al. [4], where power
and area (or performance) are correlated as p ∝ (

√
r)α and

α is set to 1.75. The energy dissipation of the processor is
expressed as Eq. (3). In this equation, it is also assumed that
unused cores are power-gated. During serial executions, the
processor consumes p amount of power that is equivalent to
single big-core power. It dissipates p×(n/r) amount of power
when all big cores are active for parallel executions.

Ehom:b =
1− f

s
p+

f
s
× r

n
×n

r
p (3)

3.3 Heterogeneous Processor with Maximum
Scheduling

Departing from a simple heterogeneous model that has only
one big core and many small cores as studied in prior work
[4, 6, 11, 34], we generalize the heterogeneous configuration
to incorporate multiple big cores. When executing only one
application at a time, one complex core is sufficient to handle
the serial part of the application. However, in a general situ-
ation such as multiplexed applications and system operations
(e.g., virtual environment), there can be a need for including
multiple complex cores to handle concurrent serial executions
of multiple workloads. Therefore, it is a valid design for the
heterogeneous processor to include multiple big cores, and
we consider such a design in our analysis. We assume maxi-
mum scheduling for the heterogeneous processor such that it
can fully utilize computing units to maximize performance.

Perf het:ms =
1

1− f
s

+
f

b×s+(n−b×r)

(4)



Table 1: Comparison of Simple/Complex-Core Homogeneous Processor Pairs
IBM Blue Gene/Q IBM POWER7 Intel Atom Z520 Intel i7 960

Core execution type In-order Out-of-order In-order Out-of-order
Technology node 45nm 45nm 45nm 45nm
Estimated die area 360mm2 567mm2 26mm2 263mm2

Number of cores 18 8 1 4
Cores-to-die area ratio 34% 32% 37% 37%

Table 2: Area Scaling Compared to Previous Generation Technologies
IBM POWER7+ Intel i7 2700K Intel i7 3770K

Core execution type Out-of-order Out-of-order Out-of-order
Technology node 32nm 32nm 22nm

Core area scaling from prev. gen. 0.68× 0.66× 0.66×
Number of cores 8 4 4

Cores-to-die area ratio 37% 37% 37%

We assume that the heterogeneous processor is comprised
of b number of big cores, and the rest of the area is pop-
ulated with n− b×r small cores. The total area is equiva-
lent to those of homogeneous processors. A selected com-
plex core is used to execute sequential operations, and par-
allel executions make use of all cores in the processor. The
performance speed-up of the heterogeneous processor with
multiple big cores and maximum scheduling is expressed as
Eq. (4). Single-thread executions (1− f part of a workload)
are accelerated by a complex core that has s times greater per-
formance than a simple core. The f fraction of the workload
is parallelized by both big cores (b×s speed-up) and small
cores (n−b×r speed-up).

Ehet:ms =
1− f

s
p+

b×p+(n−b×r)
b×s+(n−b×r)

f (5)

During sequential executions, the processor consumes p
amount of power that is equivalent to single big-core power.
Other unused cores are assumed to be ideally turned off and
do not consume power. In parallel phases, total power is the
sum of b×p by big cores and (n− b×r)×1 by small cores,
where the power dissipation of a small core is normalized to
1 and a big core has p times larger power. Collectively, the
total energy of the heterogeneous processor with multiple big
cores and maximum scheduling is calculated as Eq. (5).

3.4 Heterogeneous Processor with Dynamic
Scheduling

Another possible case of utilizing the heterogeneous pro-
cessor is separating the use of distinct core types. For in-
stance, complex cores are only used to execute serial threads,
and parallel operations are run only on simple cores. This
type of dynamic scheduling is advocated especially in power-
constrained processors, where big cores may not be able to
run simultaneously with a group of small cores because of
power limitation [6, 34]. Running parallel threads only on
simple cores also solves scheduling issues caused by perfor-
mance imbalance between different core types. The perfor-
mance speed-up of the heterogeneous processor with multi-
ple big cores and dynamic scheduling is calculated as Eq. (6).
The sequential part (1− f ) is accelerated by a big core that is
s times faster than a small core, and the f fraction is paral-

lelized by n−b×r number of small cores.

Perf het:ds =
1

1− f
s

+
f

n−b×r

(6)

The total energy of the heterogeneous processor with dy-
namic scheduling is expressed as Eq. (7). The processor se-
lects a big core to perform single-thread executions and con-
sumes power p. Other cores are assumed to be power-gated
or used by other applications, where the power dissipation of
those cores attribute to other applications. In parallel phases,
threads run only on small cores and consume n−b×r amount
of power.

Ehet:ds =
1− f

s
p+

n−b×r
n−b×r

f (7)

3.5 Composed Processor of Simple Cores
Hill and Marty presented a homogeneous processor model

comprised of n small cores, where a set of cores are dynami-
cally combined and help each other to speed up serial execu-
tions such as thread-level speculation or helper threads [11,
24]. It is assumed that these helper threads run on separate
cores, and a set of r small cores have the same performance
as one complex core denoted by s. Instead, the group of small
cores consumes r amount of power that can be greater than
the power of a big core p. The performance speed-up of the
composed processor is expressed as Eq. (8), and the total
energy is calculated as Eq. (9).

Perf com =
1

1− f
s

+
f
n

(8)

The composed processor accelerates serial executions (1−
f ) by s times, and the f part is parallelized by n small cores.
This processor represents an ideal case in that it can acceler-
ate both serial and parallelizable parts of workloads. Since r
number of cores are grouped to yield s times greater perfor-
mance, the processor dissipates r×1 amount of power during
serial executions and n×1 in parallel phases.

Ecom =
1− f

s
r+

f
n

n (9)
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(c) f = 0.95, b = 4

Figure 3: Maximum performance speed-up of multicore processors with parallelization factor f = 0.95, and varying total area
(n in unit of small cores) and number of big cores (b) in the heterogeneous processors.
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Figure 4: Maximum performance speed-up of multicore processors with n = 64 and parallelization fraction scaled between
f = 0.8 and 0.999. The number of big cores (b) in the heterogeneous processor is varied in the sub-plots.

4. EVALUATING PERFORMANCE AND EN-
ERGY EFFICIENCY SCALING OF MUL-
TICORE MODELS

In this section, we evaluate the multicore performance and
energy models presented in the previous section to correlate
their impact with lifetime reliability (discussed later in the
paper). An out-of-order core in general has 2-4× larger area
than a comparable in-order design. Table 1 summarizes the
area of simple and complex-core pairs from IBM and Intel
processors, estimated from available references and die shots
[4, 10, 16, 31, 37]. The area ratio between big and small cores
is estimated around 2.5-4.4× for these processors. Based
on these examples, we choose an integer number r = 3 as
the area ratio to compose hypothetical heterogeneous proces-
sors. Pollack’s Rule [25] states that performance and area are
correlated as s ∝

√
r. We adopt the power expression from

Chung’s model [4], where power is expressed as W ∝
√

rα

and α = 1.75. These parameters are applied to Eq. (1)-(9)
for the performance and energy efficiency evaluation of mul-
ticore processors. Table 1 shows that the proportion of core
area on the die is relatively consistent, ranging between 30-
40% of the die. Processors at successive technology nodes
in Table 2 also have similar cores-to-die area ratio. No dis-
cernible correlation is found among these cases between the
area ratio and core types, number of cores, or other uncore
configurations (e.g., cache sizes, on-chip network). Hence, in
our analysis we focus on the core scaling factors and simplify
other conditions.

Table 2 shows that core size scales by 0.66-0.68× every
technology node. With continued scaling, it is predicted that
there can be around a hundred simple cores within a die area
similar to Intel i7 at 8nm technology node, or about twice

more on a much larger IBM POWER7 die. In our analysis,
we scale the number of small cores between n = 16 and 256
as shown in Figure 3. This figure plots the maximum perfor-
mance speed-up of multicore processors with varying n and
fixed f = 0.95. The big core count of the heterogeneous mod-
els differs in each sub-plot. When n� 64, we observe that
overall speed-up is limited by sequential throughput as par-
allel executions become substantially short (when maximum
performance increase is assumed with increasing n). Hence,
the homogeneous processor composed of simple cores suf-
fers from low performance. Little performance difference is
made in the heterogeneous processors by varying the number
of complex cores when n is large. On the other hand, the cases
with n� 64 are more dominated by parallel performance be-
cause of narrow parallelization width; relatively longer time
is spent on parallel executions. The heterogeneous processor
of small n with dynamic scheduling and multiple big cores
such as in Figure 3.(c) shows limited performance increase
since this processor utilizes only simple cores for paralleliza-
tion. Based on these observations, we choose an intermediate
size of n = 64 as an exemplary case to study in this paper.

Figure 4 shows the performance speed-up of various multi-
core configurations with n = 64, and Amdahl’s scaling factor
is changed between f = 0.8 and 0.999. The number of com-
plex cores in the heterogeneous designs is varied by b = 1, 2,
and 4 in the sub-plots. The composed processor as an ideal
design provides the most performance speed-up, and the het-
erogeneous processors also produce similar performance in-
creases. For moderately parallelizable workloads (e.g., f =
0.8), the homogeneous processor of big cores shows simi-
lar performance speed-up as the heterogeneous or composed
processor since good amount of time is spent on perform-
ing single-thread executions. As parallelization fraction f in-
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(c) n = 64, b = 4

Figure 5: Relative energy efficiency (performance per Joule) of multicore processors for n = 64 with scaling factor between
f = 0.8 and 0.999 and different number of big cores (b) in the heterogeneous processors.

creases, the overall performance speed-up is dominated by
parallel executions. If the number of big cores is increased in
the heterogeneous processors (e.g., b = 1 to 4), peak parallel
throughput decreases particularly when f → 1.0. However,
increasing big core count has a minor impact if f is small.
From the comparison of Figure 3.(a) and (c), big core count
shows greater impact for small n (� 64) since complex cores
occupy relatively large area in small-size processors. The op-
posite happens for large n. Thus, the effect of increasing the
number of big cores is more addressed for large f → 1.0 or
small n.

When comparing the subplot (a) and (b) of Figure 3 and 4,
there are subtle differences in performance for the heteroge-
neous processors by increasing the number of big cores from
b = 1 to 2. However, increasing the big core count in hetero-
geneous processors makes a large difference in lifetime reli-
ability, and this will be discussed later in the paper. Further
increasing the number of complex cores such as b = 4 penal-
izes the heterogeneous processors especially when handling
highly parallel workloads (e.g., f = 0.999).

Energy efficiency can be calculated by using Eq. (1)-(9).
Following the methodology presented in the work of Woo and
Lee [34], we use performance per Joule (Perf./J) to represent
energy efficiency. Figure 5 plots the relative energy efficiency
of multicore processors under the same conditions as Figure
4. In overall, the results show similar trends as those in Fig-
ure 4. The composed processor provides the most increase in
energy efficiency as f → 1.0. The heterogeneous processors
produce similar or even better energy efficiency when paral-
lelization fraction f is small since we assume that a group
of dynamically combined small cores would dissipate more
power than a single complex core despite the same perfor-
mance (refer to Section 3.5). Increasing the number of big
cores in the heterogeneous processors reduces peak parallel
throughput especially when f → 1.0. As a result, the hetero-
geneous processors achieve less improvement in energy effi-
ciency when b = 4 and f = 0.999 as shown in Figure 5.(c),
compared to the composed processor.

5. COMPACT THERMAL ESTIMATION
Reliability characteristics strongly depend on temperature.

Therefore, assuming a constant core temperature and failure
rate is not a useful approach, and we elaborate on estimating
the thermal states of multicore processors for accurate relia-
bility modeling.

Using the first-order ordinary differential equation (ODE)

[9, 36], temperature is modeled as Eq. (10). x is the tem-
perature vector of n equal-sized blocks (e.g., small cores as
floorplans) at time i (i = 0 is an initial state), and A matrix
shows heat spreading process. Matrix B includes conversion
factors from power input u to temperature x, where an entry
of the matrix B jk denotes the conversion rate of power dis-
sipation at location j to thermal increase at location k. The
vector w is an effect due to ambient temperature.

x(i) = Aix(0)+(A− I)−1(Ai− I)Bu+w (10)

In this analysis, we estimate thermal effects based on a
steady-state model since lifetime reliability is governed by
long-term behaviors. Steady-state temperature is denoted by
the vector x when i→∞ as shown in Eq. (11). x′ means x(∞),
and Ai→ 0 in Eq. (10) for i→ ∞.

x′ = (A− I)−1Bu+w (11)

Assume that vector x′ is the temperature vector of the ho-
mogeneous processor of small cores with 100% parallel ex-
ecutions, where all cores are active and each small core has
the normalized power of 1 (refer to Section 3.1). We use this
thermal state vector x′ as a baseline state and analyze how
different processor compositions (e.g., heterogeneous) or ex-
ecution phases (e.g., single-thread executions) create thermal
differences to the baseline. The purpose of compact thermal
modeling is to estimate temperature difference to the baseline
state rather than calculating absolute magnitude of tempera-
ture. By substituting a portion of the small-core die with com-
plex cores, it creates changes to the power distribution that is
expressed as ∆u. Power and thermal changes are also created
within a processor depending on execution modes (e.g., serial
or parallel phases). In any scenarios, changes in power dis-
tribution (∆u) result in the temperature difference of ∆x′ as
shown in Eq. (12). (A− I)−1B is substituted with a matrix C
in the equation.

∆x′ = (A− I)−1B∆u = C∆u (12)

The entries of matrix C are steady-state power-to-thermal
conversion factors between any two locations on the die. For
instance, thermal change at block j is expressed as ∆x′j that is
the sum of two terms in Eq. (13). The first term in this equa-
tion, C j j∆u j, means temperature change due to the power dif-
ference (with respect to the baseline) at the same location.
The second term, ∑Ck j∆uk, is the thermal contribution to lo-



Table 3: Validation of Compact Thermal Estimation
Max difference (◦C) to HotSpot model

Processor type Sequential Parallel
BC SC BC SC

Homogeneous:
small cores N/A -0.41 N/A Baseline

Homogeneous:
big cores +0.63 N/A +0.45 N/A

Heterogeneous:
max. sch. +0.63 Unused -0.19 -0.01

Heterogeneous:
dyn. sch. +0.63 Unused Unused -0.58

Composed:
small cores N/A -0.32 N/A Same as

baseline

cation j as a result of power changes at other locations k 6= j.

∆x′j = C j j∆u j +
n

∑
k 6= j

Ck j∆uk (13)

The matrix C depends not only on the thermal properties
of package but also floorplanning of multicore die. For a hy-
pothetical heterogeneous processor without known floorplan-
ning (or many possible combinations of floorplanning), we
attempt to estimate thermal behaviors by using a scalar model
as in Eq. (14). In this equation, the thermal change of block j
is primarily induced by power difference at the same location
(∆u j) multiplied by conversion factor C j j. Thermal impact
by other blocks to location j is estimated by calculating the
average of power change ∆ū multiplied by scaling factor C̄k j.
These scaling factors can be obtained from thermal models
(e.g., HotSpot [12]) by varying power input at location j and
measuring thermal changes at location j for C j j and k 6= j for
C̄k j (average for all k).

∆x′j = C j j∆u j + C̄k j∆ū (14)

When block j belongs to a big core, we use ∆ūb in Eq. (15)
and ∆ūs for a small core in Eq. (16) to represent ∆ū of Eq.
(14). Using these equations, it becomes possible to estimate
thermal differences between heterogeneous and baseline ho-
mogeneous processors, as well as thermal changes between
execution phases within a processor.

∆ūb =
(b−1)r

n− r
δ (pb−1)+

n−b×r
n− r

δ (ps−1) (15)

∆ūs =
b× r
n−1

δ (pb−1)+
n−1−b×r

n−1
δ (ps−1) (16)

In Eq. (15), ∆ūb means the power contribution of all other
cores (at location k 6= j) to the temperature of a big core that
spans over location j. These other cores include b−1 number
of big cores and n−b×r small cores. In the first term of Eq.
(15), (b− 1)r/(n− r) is the area fraction of big cores over
total core area except one big core at location j. When b = 1,
it means that there are no other big cores that affect the tem-
perature of the only big core in the heterogeneous processor.
In the area of other big cores expressed as (b−1)r, it has the
power density difference of pb−1 compared to that of a small
core. pb is the relative power of a big core, which is pb = p/r
when the core is active or pb = 0 when power-gated. δ is
the power density of a small core (in W/cm2) of the baseline

Table 4: Failure Models [17, 33]
Failure types Description and models

Hot carrier
injection

(HCI)

Particles that gain sufficient kinetic en-
ergy overcome the barrier to gate oxide
and cause degradation.

MTTFHCI = AHCI I−n
sub e

Ea HCI
kT (17)

AHCI = technology-dependent constant
Isub = substrate current
n = acceleration factor
T = absolute temperature
Ea HCI = activation energy
k = Boltzmann’s constant

Negative bias
temperature
instability

(NBTI)

PMOS devices under negative gate volt-
age at elevated temperature cause thresh-
old voltage shift and timing errors.

MTTFNBTI = ANBTI V−r
gs e

Ea NBTI
kT (18)

ANBTI = process-related constant
Vgs = gate voltage
r = voltage acceleration factor
Ea NBTI = activation energy

state. In the second term of ∆ūb, (n−b×r)/(n−r) is the area
fraction of small cores over the total core area. ps is the nor-
malized power of a small core that is ps = 1 at active state
or ps = 0 when turned off. Similarly, ∆ūs in Eq. (16) is the
power contribution of all other cores to the temperature of a
small core at location j.

Table 3 shows the accuracy of our compact thermal esti-
mation compared to a HotSpot steady-state model [12] af-
ter calibration. We created homogeneous and heterogeneous
floorplans under the area constraint of n = 64. In the het-
erogeneous processor, a complex core is placed at the center,
similar to Figure 1.(a). The multicore processors in HotSpot
simulations show as large as 20◦C temperature variations be-
tween execution phases or core types. Hence, disregarding
thermal effects will lead to significant inaccuracy in lifetime
reliability modeling. In overall, our thermal estimation yields
less than 1◦C difference to a detailed model, and it enables us
to simplify theoretical analysis for modeling the lifetime re-
liability of heterogeneous processors. The estimated temper-
atures are applied to Eq. (17) and (18) to calculate resulting
mean-time-to-failure (MTTF).

6. EXTENDING AMDAHL’S LAW FOR LIFE-
TIME RELIABILITY SCALING OF MUL-
TICORE PROCESSORS

The lifetime reliability of multicore processors is subject
to Amdahl’s scaling factor f , processor composition with b
and n (e.g., number of big and small cores), and scheduling
method (e.g., maximum or dynamic scheduling). This sec-
tion presents the lifetime reliability models of multicore pro-
cessors as functions of aforementioned parameters.

6.1 Failure Phenomena and Models
Gradual device degradation leads to the failure of proces-

sor components. Hot Carrier Injection (HCI) and Negative



Bias Temperature Instability (NBTI) are known to be critical
failure mechanisms as device technology continues to scale.
These failures are primarily caused by charges trapped in gate
oxide, which result in threshold voltage shift and timing er-
rors [17, 28]. We adopt HCI and NBTI models from the work
of Kim et al. [17] and White and Bernstein [33]. Table 4
summarizes the failure models used in our study.

6.2 Modeling of Lifetime Reliability
In our analysis, we use an exponential distribution to sim-

plify the models [27, 28, 33]. The failure rate of exponential
distribution is expressed as λ = 1/MTTF. The total failure
rate is calculated as the sum of failure rates (SOFR) of wear
mechanisms; λ = λHCI +λNBTI . We assume that failure rate is
proportional to area when stress conditions are identical, and
thus the failure rate of a big core (λb) is r times greater than
that of a small core (λs); λb = r×λs. Reliability characteris-
tics strongly depend on temperature as shown in Eq. (17) and
(18). The thermal state of a processor differs by core compo-
sition (e.g., homogeneous or heterogeneous), execution mode
(e.g., serial or parallel), and scheduling method (e.g., maxi-
mum or dynamic scheduling in the heterogeneous processor).
In this section, we present how the energy models in Section 3
are translated to the thermal states and eventually failure rates
of heterogeneous cores across different execution phases.

6.3 Homogeneous Processor of Simple Cores
We use the reliability state (i.e., failure rates) of a homoge-

neous processor of simple cores with 100% parallel execution
as a baseline in our analysis. It is assumed that each simple
core has the normalized power of 1 and failure rate of λs. The
total failure rate of the processor is calculated as Eq. (19),
and MTTF is expressed as 1/λhom:s. Any small cores on the
die can be selected to execute the serial part 1− f of a work-
load. The long-term reliability impact of the core executing
sequential operations is divided by the number of cores n. It
is assumed that unused cores are power-gated and have no
increase of failure rates in the mean time. λs:seq is the fail-
ure rate of a small core in serial phases at lower operating
temperature. Eq. (14) enables us to estimate the temper-
ature difference of the active core executing a serial thread
with respect to the baseline. The estimated thermal differ-
ence (x′j −∆x′j) is applied to Eq. (17) and (18) to calculate
the changes in failure rates and resulting MTTF. During par-
allel executions, the performance improvement ( f/n) is offset
by correspondingly larger total failure rate (n×λs:par) accord-
ing to the SOFR. λs:par is the baseline failure rate normalized
to 1 in our analysis.

λhom:s = (1− f )
λs:seq

n
+

f
n
×n×λs:par (19)

6.4 Homogeneous Processor of Complex Cores
In a homogeneous processor consisting of complex cores

under the same area as the one of simple cores, there can be
n/r number of big cores. Applying b = n/r to Eq. (15), ∆ūb
becomes δ (pb−1). When p/r < 1, it results in lower power
density than a simple core and hence reduces the failure rate
per unit area because of lower operating temperature. The
failure rate of a big core is calculated as λb = ∑λ j for all
j belonging to the big core area. For each λ j, thermal dif-
ference to the baseline is estimated by using Eq. (14). The

total failure rate of the homogeneous processor with complex
cores is calculated as in Eq. (20).

λhom:b =
1− f

s
× r

n
×λb:seq +

f
s×n/r

×n
r
×λb:par (20)

In this equation, the serial part (1− f ) can be executed by
any big cores. λb:seq is the failure rate of a big core during
sequential phases. Since any complex core on the die can
be chosen to handle serial operations, long-term reliability
impact is divided by the number of cores (n/r). The perfor-
mance increase of parallel executions (s×n/r) is offset by the
sum of failure rates of n/r big cores.

6.5 Heterogeneous Processor with Maximum
Scheduling

Complex cores in a heterogeneous processor with maxi-
mum scheduling are the busiest computing units. One of the
complex cores has to execute the serial part of an applica-
tion, and they also participate in executing parallel threads to
maximize performance. With b number of big cores in the
heterogeneous processor, the total failure rate is calculated as
in Eq. (21).

λhet:ms =
1− f

s
×

λb:seq

b
+

f
b×s+(n−b×r)

×{
b×λb:par +(n−b×r)λs:par

} (21)

Any one of the complex cores in the heterogeneous pro-
cessor can execute the serial part 1− f of a workload. The
long-term reliability impact of the big core (λb:seq) in sequen-
tial phases is reduced b fold. During parallel executions, the
total failure rate is calculated as b×λb:par +(n− b×r)λs:par,
where the failure rate of each core type is multiplied by the
core count of corresponding type. When a processor failure
happens, the probability that the fault is caused by big cores is
calculated as the failure rate of big cores over the total failure
rate (λhet:ms) as shown in Eq. (22). The reliability of big cores
becomes more critical for small b or f since more stresses are
put on them.

Probb =

1− f
s
×

λb:seq

b
+

f×b×λb:par

b×s+(n−b×r)
λhet:ms

(22)

6.6 Heterogeneous Processor with Dynamic
Scheduling

In a heterogeneous processor with dynamic scheduling, dis-
tinct types of cores are used to handle different phases of
applications. By turning off unused cores, this scheduling
policy benefits from improved reliability that is traded with
performance degradation. The total failure rate of the proces-
sor is expressed as Eq. (23). The first term in this equation
reflects the reliability impact of big cores during sequential
operations, and the second term is the failure rate of small
cores in parallel phases.

λhet:ds =
1− f

s
×

λb:seq

b
+

f
n−b×r

(n−b×r)λs:par (23)

The probability that a processor failure is caused by big
cores is calculated as Eq. (24) that is the failure rate of big
cores over the total failure rate (λhet:ds). Since any one of
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(c) n = 64, b = 4

Figure 6: Relative lifetime (MTTF) of various multicore models for n = 64 with parallelization fraction scaled between f = 0.8
and 0.999, and varying number of big cores (b) in the heterogeneous processors.
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Figure 7: Relative reliability criticality of big cores in the heterogeneous multicores for n = 64 with parallelization factor
between f = 0.8 and 0.999. The number of big cores (b) is varied in the sub-plots.

big cores can be used to execute serial threads, the reliability
criticality is significantly reduced by increasing b.

Probb =

1− f
s
×

λb:seq

b
λhet:ds

(24)

6.7 Composed Processor of Simple Cores
Composed processor is technically a homogeneous proces-

sor comprised of simple cores. The only difference to the con-
ventional homogeneous model is that multiple small cores are
grouped to speed up the sequential operations. The total fail-
ure rate of the processor is shown in Eq. (25). Although this
processor utilizes multiple cores in the serial phase of 1− f ,
the reliability impact is minor because any r number of small
cores among n can be chosen. For parallel executions, the
failure rate is calculated in the same way as the homogeneous
processor of simple cores.

λcom =
1− f

s
×

r×λs:seq

n
+

f
n
×n×λs:par (25)

7. EVALUATING LIFETIME RELIABILITY
SCALING OF MULTICORE MODELS

In this section, we evaluate the lifetime reliability mod-
els of multicore processors presented in the previous section.
Figure 6 shows the relative MTTF of multicore models (n =
64) with Amdahl’s scaling factor varied between f = 0.8 and
0.999. The number of big cores in the heterogeneous pro-
cessors is changed by b = 1, 2, and 4 in the sub-plots. The
baseline MTTF (= 1.0) is when the homogeneous proces-
sor of small cores is operating at 100% parallel executions.
The MTTF curves of the homogeneous processor with sim-
ple cores are located above the MTTF = 1.0 line because of

the serial part 1− f that exercises only one simple core. Ac-
tivating one core also produces better thermal behaviors, so
the failure rate of a core in serial phases is lower than that
during parallel executions. More importantly, any cores in
the homogeneous processor can be selected to perform serial
operations (i.e., load sharing effect in the long term), so the
serial phases are insignificant from the reliability perspective.
The similar phenomena happen in the composed processor.
For the same operating conditions, the homogeneous proces-
sor of big cores exhibits worse reliability since it spends rela-
tively longer time on parallel phases that turn on all cores.

When the heterogeneous processor includes only one com-
plex core, MTTF decreases with smaller f (i.e., more serial
operations) as shown in Figure 6.(a) as opposed to the relia-
bility behaviors of homogeneous processors. The reason can
be explained with Figure 7.(a) that plots the failure rate ra-
tio between a big and small core per unit area. Since the only
complex core in the heterogeneous processor has to handle all
the sequential executions, increasing serial fraction of 1− f
puts more stresses on the complex core. The problem is espe-
cially worse with the maximum scheduling in that the big core
has to execute both serial and a part of parallel operations. In
particular, the big core in the heterogeneous processor with
maximum scheduling at f = 0.8 is 6.3×r times more likely
to fail than a small core; for r = 3, it has about 19× greater
failure rate. Although a big core takes only a small portion
of the total area when n = 64, uneven failure rate distribution
between core types limits the overall lifetime of the heteroge-
neous processor.

If the heterogeneous processor includes multiple big cores,
the reliability criticality of big cores is significantly reduced
because of load sharing effect as shown in Figure 7.(b). For
instance, the heterogeneous processor with maximum schedul-



Table 5: Simulation Setup
Configurations Description

Core type Complex core Simple core
Issue width 6 1
ROB size 128 entries N/A

L1 cache size per core 32KB, 4-way assoc.
L2 cache size per core 256KB, 8-way assoc.

Clock frequency 2.0GHz
Memory bandwidth 25GB/s

ing shows 13% improvement in lifetime and 17% for dynamic
scheduling at f = 0.8 by adding one more complex core, by
comparing Figure 6.(a) and (b). However, further increasing
the number of big cores, b = 4 for example, rather dimin-
ishes the lifetime of heterogeneous processor with maximum
scheduling for highly parallel workloads (e.g., f = 0.999) as
shown in Figure 6.(c). Increasing the big core count decreases
peak parallel throughput, and it causes the processor to oper-
ate longer time in parallel phases. As the stresses shift from
the big cores to simple cores by increasing b, including many
big cores has a negative impact on reliability. The reliability
of heterogeneous processor with dynamic scheduling contin-
ues to benefit from increasing the number of complex cores,
but the similar effect happens when large number of complex
cores are incorporated. Consequently, including a few num-
ber of big cores helps improve processor lifetime, but adding
large number of big cores has an adverse impact on reliability.

8. APPLICATION TO LIFETIME RELIABIL-
ITY, PERFORMANCE, AND ENERGY EF-
FICIENCY TRADEOFFS

In this section, we apply the performance, energy, and reli-
ability models presented in the previous sections to the simu-
lation results of real benchmarks. We used Manifold microar-
chitecture simulator [32] to collect performance counters of
PARSEC and SPLASH-2 benchmarks [2] and McPAT [20]
to estimate the power of exemplary complex and simple core
models. The simulation outputs are extrapolated to construct
hypothetical multicores, and the results are discussed. Table
5 summarizes the simulation setup used in the experiment.

8.1 Realistic Performance and Energy Models
We consider a more realistic performance model adopted

from the work of Esmaeilzadeh et al. [6, 8] instead of max-
imum performance speed-up assumed in Section 3. Eq. (26)
shows that the performance scaling of a multicore proces-
sor is bounded by core throughput or memory bandwidth. In
this equation, N is throughput-equivalent core count in unit of
small cores, and CPIactive is instruction latency during active
periods. η represents core utilization factor to keep the core
pipeline busy without stalls. BWmem is maximum memory
bandwidth, and γmem is the rate of memory instructions with
cache miss rates ∏m that require off-chip memory access of
data width dmem.

Perf = min
(

N
f req

CPIactive
η ,

BWmem

γmem×∏m×dmem

)
(26)

Figure 8.(a) plots the estimated performance speed-up of
individual benchmarks when assuming that Amdahl’s scaling
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Figure 8: Benchmark characterization: (a) performance
speed-up with increasing number of cores when assuming
100% parallel executions and (b) actual parallelization frac-
tion f of individual benchmarks obtained from microarchi-
tectural simulations.

factor is f = 1.0 (i.e., perfectly parallelizable); performance
speed-up is normalized to the throughput of each benchmark
at n = 1. Figure 8.(b) shows actual Amdahl’s scaling factor
f of individual benchmarks. From the results in Figure 8,
benchmarks can be categorized into the following classes:

• Class I: Blackscholes and Fluidanimate are highly scal-
able (i.e., good performance speed-up with increasing num-
ber of cores) but poorly parallelizable applications (i.e.,
relatively small parallelization fraction f ).

• Class II: Ocean-nc and Streamcluter benchmarks are less
scalable (i.e., saturating performance with increasing num-
ber of cores) but highly parallelizable (i.e., f ≈ 1.0).

• Class III: Swaptions benchmark shows great multicore scal-
ability and is also highly parallelizable.

• Class IV: Raytrace benchmark represents poorly scaled
and highly serial applications.

• Class V: Other benchmarks show intermediate features.

From the simulation results, area ratio between exemplary
complex and small cores was estimated around r = 3.2. On
average, we obtained performance ratio between two core
types around s = 0.96×

√
r compared to Pollack’s Rule [25]

and power ratio as p = 0.94×
√

rα with respect to Chung’s
model [4]. When calculating energy efficiency, we adjusted
the dynamic power of cores with the utilization factor η in
Eq. (26). Leakage power was repeatedly calculated based on
the compact thermal estimation until they converge.

8.2 Application to the performance, energy ef-
ficiency, and lifetime reliability models

Figure 9.(a) shows the performance of various multicore
processors with different applications. Processor size is fixed
at n= 64, and two big cores (b= 2) are included in the hetero-
geneous designs. Amdahl’s scaling factor f is variant across
benchmarks. For each benchmark, the results of multicore
processors are normalized to that of the composed proces-
sor option. In most cases, the heterogeneous and composed
processors (1.0 line in the graph) outperform homogeneous
implementations, producing higher throughput for both se-
quential and parallel executions except for the Class III ap-
plications. The Class III workloads are highly scalable and
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Figure 9: (a) Normalized performance, (b) energy efficiency, and (c) lifetime reliability of multicore processors for n = 64,
b = 2, and f = varying. The result of each benchmark is normalized to the composed processor option.

parallelizable, so they favor the homogeneous processor of
small cores. Incorporating more big cores in the heteroge-
neous processors reduces peak parallel throughput and thus
diminishes overall performance, compared to the composed
processor made of simple cores. In contrast, the performance
of the Class IV workloads is dominated by sequential exe-
cutions. The Class III and IV show exactly opposite perfor-
mance behaviors with the homogeneous processors. For the
Class I type of applications (i.e., highly scalable but less par-
allelized), overall performance speed-up is more governed by
single-thread executions. The homogeneous processor com-
prised of small cores in this case shows inferior performance
to other multicore configurations. The Class II benchmarks
have large Amdahl’s scaling factor ( f ≈ 1.0) but low mul-
ticore scalability. The homogeneous processor of big cores
shows 13-17% lower performance than other multicore pro-
cessors, but the difference is limited because the applications
do not scale well with large number of cores.

The energy efficiency of multicore processors with differ-
ent classes of benchmarks is shown in Figure 9.(b). The
heterogeneous and composed processors have superior en-
ergy efficiency to the homogeneous configurations except for
the Class III applications. The heterogeneous processor with
maximum scheduling in overall shows 2-8% lower energy
efficiency than the composed processor. The difference is
caused by big cores that exhibit lower efficiency. The dy-
namic scheduling shows higher energy efficiency than the
maximum scheduling. It particularly performs well with the
Class II workloads (i.e., saturating performance with increas-
ing number of cores) since turning off complex cores dur-
ing parallel executions has a minor impact on performance
when n = 64. The homogeneous processor of complex cores
shows especially low energy efficiency, but it can be better
than the other homogeneous option if workloads consist of
large fragment of serial executions such as the Class I and IV.
In sum, the heterogeneous processors produce similar perfor-
mance speed-up and energy efficiency across different classes
of applications to the composed processor that represents an
ideal implementation.

Figure 9.(c) shows the normalized lifetime reliability of
various multicore options. The homogeneous processor made
of complex cores exhibits inferior lifetime reliability to other
multicores since it spends relatively longer time on executing
parallel threads that require activating all cores in the pro-
cessor. Notably, the heterogeneous processors have a serious
reliability drawback when workloads are dominated by serial

operations (i.e., Class I and IV). For these type of applica-
tions, stresses are excessively biased to the big cores. When
the heterogeneous processor with maximum scheduling in-
cludes only one complex core instead of two, there is about
10% decrease in processor lifetime for the Class I bench-
marks. The decrease becomes greater if applications are more
bounded by serial executions. Thus, the simulation results
demonstrate that the lifetime reliability of heterogeneous pro-
cessors can be limited by complex cores.

9. CONCLUSION
Microarchitectural heterogeneity has drawn attentions to

enhance performance and energy efficiency. In this paper,
we presented theoretical models to understand the lifetime
reliability of heterogeneous multicores based on Amdahl’s
Law, extending prior work for performance and energy mod-
els. Importantly, the performance, energy efficiency, and life-
time reliability of heterogeneous processors are correlated as
a function of processor size (n in unit of small cores), big
core count (b), and Amdahl’s scaling factor ( f ). The follow-
ing summarizes key insights obtained from the analysis:

• When b/n ratio is small (e.g., one complex core and many
small cores), this puts biased stresses on complex cores
and thus is unfavorable for lifetime reliability especially
when f � 1.0.

• Increasing processor size n (but fixed b) or decreasing
Amdahl’s scaling factor f shifts stresses from small cores
to big cores in heterogeneous processors and causes the
biased stress problem.

• When n is sufficiently large, adding a few big cores to a
heterogeneous processor increases b/n, but the change is
limited and therefore has a minor impact on performance
and energy efficiency. In this case, increased b signifi-
cantly reduces the reliability criticality of big cores and
improves processor lifetime.

• However, further increasing the b/n ratio (i.e., more area
dedicated to big cores) reduces peak parallel throughput,
and extended execution time diminishes energy efficiency
as well as reliability especially when f → 1.0.

• For highly parallelizable workloads ( f ≈ 1.0), minimiz-
ing b/n ratio (e.g., only one complex core in the heteroge-
neous processor) becomes a preferable option.
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