

Implications of Memory-Centric Computing Architectures for Future NoCs

Sudhakar Yalamanchili

Computer Architecture and Systems Laboratory Center for Experimental Research in Computer Systems School of Electrical and Computer Engineering Georgia Institute of Technology

Sponsors:

Role of NoCs

Nvidia Tegra4

Qualcomm Snapdragon

www.themobileindian.com

IBM Power8

www.theregister.co.uk

The System Defines the NoC Requirements

Impact of Technology and Applications

Transition to Memory Centric Compute: Inside the Package

Transition to Memory Centric Compute: Inside the Stack

Concluding Remarks

How are Technology and Applications Reshaping Systems?

Moore's Law and the End of Dennard Scaling

<u>Goal</u>: Sustain Performance Scaling

 Performance scaled with number of transistors*

*R. Dennard, et al., "Design of ion-implanted MOSFETs with very small physical dimensions," *IEEE Journal of Solid State Circuits*, vol. SC-9, no. 5, pp. 256-268, Oct. 1974.

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Power and Performance

6

Energy Cost of Data Management

$$Perf\left(\frac{ops}{s}\right) = Power(W) \times Efficiency\left(\frac{ops}{joule}\right)$$

W. J. Dally, Keynote IITC 2012
Operator_cost + Data_movement_cost + Storage_cost
Three operands x 64 bits/operand
DataMovementEnergy = # bits × dist - mm × energy - bit - mm

*S. Borkar and A. Chien, "The Future of Microprocessors, CACM, May 2011

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Interconnect Energy Taper: Electrical

28nm CMOS, DDR3

Courtesy Greg Astfalk, HP

- Relative costs of compute and memory accesses
 - Time and energy costs have shifted to data movement

Shift in the Balance Point

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

CASL 9

Pin Bandwidth Challenges¹

- Number of transistors/die continues to grow
- Number of pins growing at a slower rate than #transistors
- Number of supply pins are crowding out data pins
 - Reducing supply current/pin limits growth of #transistor/die

Data pin bandwidth is not growing as fast as number of transistors on chip

¹P. Stanley-Marbell, V. C. Cabezas, and R. P. Luijten, "Pinned to the Wall – Impact of Packaging and Applications on the Memory and Power Walls," *IEEE/ACM international symposium on Low-Power Electronics and Design (ISPLED)*, 2011

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Re-Emergence of Processing In (Near) Memory

1990's

Kogge – Execube (4K DRAM + 100K gate parallel processor (www3.nd.edu)

Draper et.al, DIVA chip (isi.edu)

The Data Tsunami

HOME PAG	HOME PAGE TODAY'S PAPER VIDEO MOST POPULAR TIMES TOPICS Subscribe to The Times											
The New York Times Science												
WORLD	U.S.	N.Y. / REGIO	ON BU	SINESS	TECHN	NOLOGY	SCIENC	HEALTH	SPORTS	OPINION		
ENVIRONMENT SPACE & COSMOS												

BOOKS ON SCIENCE

A Deluge of Data Shapes a New Era in Computing

By JOHN MARKOFF Published: December 14, 2009

In a speech given just a few weeks before he was lost at sea off the California coast in January 2007, Jim Gray, a database software pioneer and a Microsoft researcher, sketched out an argument that computing was fundamentally transforming the practice of science.

HETREE OFLIFE

SUMMER

Dr. Gray called the shift a "fourth paradigm." The first three paradigms were experimental, theoretical and, more recently, computational science.

He explained this paradigm as an evolving era in which an

The New Hork Times

This copy is for your personal, noncommercial use only. You can order presentation-ready copies for distribution to your colesques, clients or customers here or use the "Reprinte" tool that appears next to any article. Visit www.rytreprints.com for samples and additional information. Order a reprint of this article now.

October 12, 2009

Training to Climb an Everest of Digital Data

By ASHLEE VANCE

MOUNTAIN VIEW, Calif. — It is a rare criticism of elite American university students that they do not th big enough. But that is exactly the complaint from some of the largest technology companies and the federal government.

At the heart of this criticism is data. Researchers and workers in fields as diverse as bio-technology, astronomy and computer science will soon find themselves overwhelmed with information. Better

MANAGEMENT

MANAGING FOR SUCCESS

How Companies Are Managing The Data Tsunami

By KEVIN HARLIN, INVESTOR'S BUSINESS DAILY Posted 02/25/2011 02:55 PM ET

It would have cost a company about \$1,7 million last year to buy the hardware and equipment necessary to store 1 petabyte of data -roughly enough to store the entire collection of the Library Of Congress several times over.

That's not very expensive, really, to store 1 quadrillion bytes - a numeral 1, with 15 zeros after it.

The real challenge is managing that data deluge. That's sparking massive investor interest in the cloud computing and data storage space, as well as a slew of mergers and acquisitions.

NAVI Navisite Inc RAX * Rackspace Hosting Inc (Added 10/06/2010) SVVS Savvis Inc

* Top-Rated Company

staggering 21 zeros attached.

View Enlarged Image

"If all we do is simply store and store and store that data, we're all going to go broke," said David Reinsel, an analyst with technology consulting firm IDC, which crunched those data

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Shift in Re-Use Patterns: Locality

Shift to Finer Arithmetic Density

Relational Computations Over Massive Unstructured Data Sets

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

CASL 14

Where do the \$\$ and Energy Go?

Off-chip

- GPUPwr
- MemPwr
- RestOfCardPwr
 - Increasing percentage of costs
 - Increasing percentage of power
 - Increasing percentage of performance (latency-BW)
 - Increasing memory intensive applications

I. Paul, W. Huang, M. Arora, and S. Yalamanchili, "Harmonia: Balancing Compute and Memory Power in High Performance GPUs," *IEEE/ACM International Symposium on Computer Architecture (ISCA)*, June 2015.

Off-chip

GDDR5

The (Re)-Emergence of Near Data Processing

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

Transition to Memory Centric Compute: Inside the Package

Impact of Interposer: Processor-Memory Hierarchy

- Smaller die (better yield), process customization, and larger L2
- Better thermal behaviors
- Issues
 - Increased die and substrate testing costs (increase in I/Os)
 - Cost

V. Garg, D. Stogner, C. Ulmer, D. E. Schimmel, C. Dislis, S. Yalamanchili, and D. S. Wills, "Early Analysis of Cost/Performance Trade-Offs in MCM Systems," IEEE Transactions on Components, Packaging, and Manufacturing Technology–Part B, vol. 20, no. 3, August 1997.

Impact of Interposer: SIMD Image Processor

4 PEs/die

64 PEs/die

Trading cost vs. chip size vs number of I/Os

What is the most cost effective partitioning?

V. Garg, D. Stogner, C. Ulmer, D. E. Schimmel, C. Dislis, S. Yalamanchili, and D. S. Wills, "Early Analysis of Cost/Performance Trade-Offs in MCM Systems," IEEE Transactions on Components, Packaging, and Manufacturing Technology–Part B, vol. 20, no. 3, August 1997.

- Smaller micro bumps \rightarrow increased #connections
- Shorter faster wires in the interposer
- Higher signal integrity \rightarrow Lower power
- Interposer cost?
- Example: Network on Interposer: Jerger, Kannan, Li, and Loh (MICRO 2014)
- Example: memory networks: G. Kim et. al. PACT 2013

Transition to Memory-Centric Compute: Inside The Stack

3D Multicore Architecture

HMC_{Gen1}: Technology Comparison

Generation 1 (4 + 1 memory configuration)

Technology	VDD	IDD	BW/GB/s	Power (W)	mW/GB/s	pj/ bit	real pJ/ bit
SDRAM PC133 1GB Module	3.3	1.50	1.06	4.96	4664.97	583.12	762
DDR-333 1GB Module	2.5	2.19	2.66	5.48	2057.06	257.13	245
DDRII-667 2GB Module	1.8	2.88	5.34	5.18	971.51	121.44	139
DDR3-1333 2GB Module	1.5	3.68	10.66	5.52	517.63	64.70	52
DDR4-2667 4GB Module	1.2	5.50	21.34	6.60	309.34	38.67	39
HMC, 4 DRAM w/ Logic	1.2	9.23	128.00	11.08	86.53	10.82	13.7

http://www.extremetech.com/computing/197720-beyond-ddr4-understand-the-differences-between-wide-io-hbm-and-hybrid-memory-cube

Source of Memory Bandwidth

- Mismatch between bus bandwidth and DRAM access latency
- Over the past two decades density has increased by 1000X and latency reduced by 56% [source:hynix]

• Solution: Have more, narrower channels and exploit parallelism

Parallelism in the Memory System

32, x86 cores, Hybrid Memory Cube (HMC) Model

- Move towards more narrower channels
- Increases data cycles improving efficiency and utilization

You can buy bandwidth but you cannot bribe God! -- Unknown

2D Bandwidth Still Matters!

CASL 25

Network Impact of Memory Parallelism

- Tiled 3D memory with 16 channels, similar to HMC
- Distributed directory based coherence with shared L2 banks
- DRAM latency vs. MC queuing

More channels \rightarrow less load per channel \rightarrow reduced queueing

Latency of Reads in DRAM

2D torus network on compute Tier

vips

Network component

stream

fluid

Impact of DRAM Latency vs. Network Latency

- Impact on all requests is low.
- Coherence requires a request to take multiple hops before being satisfied
- It's the network!

The Opportunity

Locality

2DBW

Refactoring the Memory Hierarchy

How is the Network Used?

Hop Count Per Kilo Instructions (HPKI)

Optimization: Memory Side Caching

- Refactor memory hierarchy to reduce hop count
- Modify address space mappings to retain/improve locality
- Maximize L2-DRAM BW
 - Remove serialization latency

Importance of Address Space Management: Locality

- Different mapping functions determine parallelism in memory and network traffic
- More parallelism \rightarrow better 3D bandwidth utilization but more load on the network

Emphasis on Co-Design

Global Address Space

- Refactor the memory hierarchy
- Co-design address space assignment across levels of the memory hierarchy
- Diversity of interconnect technologies

Cymric: A Near Data Processing Architecture

H. Kim, S. Mukhopadhyay, and S. Yalamanchili

Short Stack: Physical Structure

Why is Temperature A NoC Problem?

Thermal Challenges and Microfluidic Cooling

Courtesy Professor Muhannad Bakir (GT/ECE)

CASL

37

• Fluid flow through the microchannels carry heat out to an external heat exchanger (e.g., heat sink)

This research supported by the DARPA ICECOOL Program

3D FPGA: 3D Bandwidth – Performance Tradeoff

Physical Architecture of Micro-Fluidically Cooled 3D FPGA

- Tradeoff between cooling capacity and 3D bandwidth
- Co-Design Exploration
 - Routing quality plays a key role

Concluding Remarks

We are going to see a reshaping of the boundaries between compute and memory

System-level Co-design for memory-centric compute

Exploration of network technologies: wireless, capacitive coupling, optics, etc.

Expand the scope of traditional NoCs

