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Role of NoCs
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Overview

sImpact of Technology and Applications

= Transition to Memory Centric Compute: Inside the Package

s Transition to Memory Centric Compute: Inside the Stack

= Concluding Remarks
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How are Technology and Applications
Reshaping Systems?




Moore's Law and the End of Dennard Scaling
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*R. Dennard, et al., “Design of ion-implanted MOSFETs with very small physical dimensions,” IEEE Journal of Solid State Circuits, vol. SC-9,
no. 5, pp. 256-268, Oct. 1974.
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Power and Performance

ops .. ops
Perf 9P | - Pawer(W) x Efficiency| — P
) joule
W. J. Dally, Keynote I[ITC 2012
[ 4 * \

Power Supply (regulation) + Power Consumption + Cooling

|

\ Operator_cosf + Data_movement cost + Storage cost
v

Specialization = heterogeneity,
asymmetry, technology diversity
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Energy Cost of Data Management

Perf 9P | Power( )xEﬁ‘zczency P
) joule

W. J. Dally, Keynote I[ITC 2012
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|

Operator_cost + Data_movement_cost + \Storage_cosg

Y
v * Refresh
Three operands x 64 bits/operand * Access

F’

DataMovementEnergy = # bits x dist — mm x energy — bit — mm

*S. Borkar and A. Chien, “The Future of Microprocessors, CACM, May 2011

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY CASL



Interconnect Energy Taper: Electrical

Data Access Data Access Energy
Latency :
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Last Level Cache 256 bit bus transfer (short) 26
100sns . 256 bit bus transfer (1/2 die)
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8 8 8 8 DRAM read/write (512 bits)
HDD read/write

onm €105, boRs Courtesy Greg Astfalk, HP

= Relative costs of compute and memory accesses
= Time and energy costs have shifted to data movement
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Shift in the Balance Point

Balance plane for
performance and energy
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I. Paul, W. Huang, M. Arora, and S. Yalamanchili, “Harmonia: Balancing Compute and Memory Power in High
Performance GPUs,” IEEE/ACM International Symposium on Computer Architecture (ISCA), June 2015.
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Pin Bandwidth Challenges’

CPU Die CPU Die DRAM Die
Package Substrate Si Interposer
|PCB Package Substrate
L oRAM O O O O
Die | PCB '

sNumber of transistors/die continues to grow
s Number of pins growing at a slower rate than #transistors

sNumber of supply pins are crowding out data pins
= Reducing supply current/pin limits growth of #transistor/die

Data pin bandwidth is not growing as fast as number
of transistors on chip

'P. Stanley-Marbell, V. C. Cabezas, and R. P. Luijten, “ Pinned to the Wall — Impact of Packaging and Applications on the Memory and
Power Walls,” IEEE/ACM international symposium on Low-Power Electronics and Design (ISPLED), 2011
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Re-Emergence of Processing In (Near) Memory
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The Data Tsunami
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A Deluge of Data Shapes a New Era in Computing

By JOHN MARKOFF

MANAGING FOR SUCCESS

Published: December 14, 2009 TWITTER How Companies Are Managing The Data Tsunami
. . By KEVIN HARLIN, INVESTOR'S BUSINESS DALY
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He explained this paradigm as an evolving era in which an The real challenge is managing that data deluge. That's sparking

« A amocos SRR S massive investor interest in the cloud computing and data storage

space, as well as a slew of mergers and acquisitions.
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Training to Climb an Everest of Digital Data
By ASHILEE VANCE

That's 1.2, followed by 20 zeros. And
by 2020, that data deluge is expected
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MOUNTAIN VIEW, Calif, — It is a rare criticism of elite American university students that they do not th

big enough. But that is exactly the complaint from some of the largest technology companies and the i .
View Enarged Image staggering 21 zeros attached.

federal government.

At the heart of this criticism is data. Researchers and workers in fields as diverse as bio-technology, "If all we do is simply store and store and store that data, we're all going to go broke,” said
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Shift in Re-Use Patterns: Locality
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Shift to Finer Arithmetic Density
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Relational Computations Over Massive Unstructured Data Sets
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Where do the $$ and Energy Go?

B GPUPwr
B MemPwr
W RestOfCardPwr

» [Increasing percentage of costs

* [Increasing percentage of power

 Increasing percentage of
performance (latency-BW)

* Increasing memory intensive
applications

I. Paul, W. Huang, M. Arora, and S. Yalamanchili, “Harmonia: Balancing Compute and Memory Power in High
Performance GPUs,” IEEE/ACM International Symposium on Computer Architecture (ISCA), June 2015.
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The (Re)-Emergence of Near Data Processing

Where are the Networks?

* Hybrid Memory Cube (HMC)
_ *High Bandwidth Memory
Memory Tiers (HBM)

- Wide 1/0O
Logic Tier

Silicon Multicore
Interposer Chip

New BW Hierarchy
Compute Package and energy taper Capacity Tier Memory
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Transition to Memory Centric Compute:
Inside the Package
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Impact of Interposer: Processor-Memory Hierarchy
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MicroProcessors

s Attraction
= Smaller die (better yield), process customization, and larger L2
= Better thermal behaviors

m[ssues
= Increased die and substrate testing costs (increase in I/0s)

m Cost

V. Garg, D. Stogner, C. Ulmer, D. E. Schimmel, C. Dislis, S. Yalamanchili, and D. S. Wills, “Early Analysis of Cost/Performance Trade-Offs
in MCM Systems,” IEEE Transactions on Components, Packaging, and Manufacturing Technology—Part B, vol. 20, no. 3, August 1997.
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Impact of Interposer: SIMD Image Processor
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m Trading cost vs. chip size vs
number of I/0s

s \What is the most cost
effective partitioning?

V. Garg, D. Stogner, C. Ulmer, D. E. Schimmel, C. Dislis, S. Yalamanchili, and D. S. Wills, “Early Analysis of Cost/Performance Trade-Offs
in MCM Systems,” IEEE Transactions on Components, Packaging, and Manufacturing Technology—Part B, vol. 20, no. 3, August 1997.
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The Opportunity: Network in Package

TSV
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EESEEEER : H
EEEEEBEES Glass interposer || TPV RDL (]
EEEEBEEER o
G = ‘0000

4 PEs/die 16 PEs/die 64 PEs/die . Al vl sdlisshe B A4
PCB JJ Thermal Vias

« Smaller micro bumps - increased #connections
« Shorter faster wires in the interposer

* Higher signal integrity > Lower power
* Interposer cost?

« Example: Network on Interposer: Jerger, Kannan, Li, and
Loh (MICRO 2014)

« Example: memory networks: G. Kim et. al. PACT 2013



Transition to Memory-Centric
Compute: Inside The Stack

CASL 21



3D Multicore Architecture

TSV
([T  Memory [[] Encapsulate
Fﬁ Memory ﬁ:\
Fﬁ Memory ﬁ:\
Test pads Fﬁ Memory ! GPU |
Glass interposer TFTPVﬁ RDL ﬁ
@)
= 0000
______ | Thermal adhesive | W W G __N 4
: PCB ” ” ” JJ JJ Thermal Vias i
HMC...: Technology Comparison
Generation 1 ( 4 + 1 memory configuration)
Technology VDD IDD BW GB/ s Power (W) mW/ GB/ s pj/ bit real pJ bit
SDRAM PC133 1GB Module 3.3 1.50 1.06 4.96 4664.97 | 583.12 762
DDR-333 1GB Module 2.5 2.19 2.66 5.48 2057.06 | 257.13 245
DDRII-667 2GB Module 1.8 2.88 5.34 5.18 971.51 121.44 139
DDR3-1333 2GB Module 1.5 3.68 10.66 5.52 517.63 64.70 52
DDR4-2667 4GB Module 1.2 5.50 21.34 6.60 309.34 38.67 39

http.//www.extremetech.com/computing/197720-beyond-ddr4-understand-the-differences-between-wide-io-hbm-and-hybrid-memory-cube
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Source of Memory Bandwidth

 Mismatch between bus bandwidth and DRAM access
latency

« Over the past two decades density has increased by
1000X and latency reduced by 56% [source:hynix]

— = L@ - Solution: Have more, narrower
GDDR5 ! b= . . .
= channels and exploit parallelism
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Parallelism in the Memory System

c T T T

Ke) Avg Decrease of 12.55%
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o) Bl 16-Channels [EE 4-Channels

Mo —— S 4 local ",
canneal dedup ferret fluid stream vips ””w otictarnel | oo | o

‘s

4 channels with 256 bit bus vs. 16 32, x86 cores, Hybrid Memory Cube (HMC) Model
channels with 64 bit bus

s Move towards more narrower channels
m Increases data cycles improving efficiency and utilization

You can buy bandwidth but you cannot bribe God!
-- Unknown
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2D Bandwidth Still Matters!




Network Impact of Memory Parallelism

* Tiled 3D memory with 16
channels, similar to HMC
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~ Multiple
~ DRAM Banks

« Distributed directory based
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 DRAM latency vs. MC queuing u|u
N Co @l
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S 300 . I
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Impact of DRAM Latency vs. Network Latency

Normalized increase in CAS latency

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

n A
S 300] — B K4S 2L o— * * * |
_LE) 550 _DRAM Bound Rds =6 [ 12 ok —m ]
?200— All Requests §15— r-------F---8-__ g
£ 150t §10 ® Y 0 o 8
- 2D Network ©
o 100 L dominates s[|@© cannneal =< ferret % stream )
g 50 | B B dedup ¢ fluid vips
3: 0ferret fluid  vips ferret fluid  vips 0 4Il I6 fl3 1I0 1I2 1I4 16
CAS Latency(DRAM Cycles)
32 cores, 16 memory channels
 Impact on all requests is low.
<€ > >
 Coherence requires a L1 Miss  Coherence
. Traffic Traffic
request to take multiple hops @l l
before being satisfied ONN OlN
>
* It's the network! "~ _|M
& &




The Opportunity
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Refactoring the Memory
Hierarchy




How is the Network Used?
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Optimization: Memory Side Caching

M HEEEER M EEENE M M HEEER M EEENE M M HEEEN M E R AN M
L2-MC — — — N )
| o : L2 L2 —
"~ _III-'L-E "1\ TR s LI-L2 g]
. WL |_L1-L2 I
e |12 -' !
L1

3 I I e R L2 L2
L1 L1 L1 L1

L1 N A T e N
a) b) )

= Refactor memory hierarchy to reduce hop count

= Modify address space mappings to retain/improve
locality

» Maximize L2-DRAM BW

= Remove serialization latency
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Importance of Address Space Management: Locality

Global Address Space v
- Fommm —» c DRAM]
[COI‘G] [ L1$ ][ L2% ]‘("""3_ ___________ B R jom T T T T T >
L }_ ..... : : | 1
B M
[Core] [ L1$ ][ L2$]< ------------------ 8 SR E—([e DRAM]
N
........... I N Ml
[Core] [ L1$ ][ L2$ ]< ''''' L -» c DRAM]
~ ¥ - :
[ » }_ ..... |' .....
[Core] [ L1$ ][ L2$ ](_._._.; { e N I\C/I DRAM]
Cache Address Global Address Local Address
Mapping (CAM) Mapping (GAM) Mapping (LAM)

- Different mapping functions determine parallelism in memory and network traffic
* More parallelism - better 3D bandwidth utilization but more load on the network
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Emphasis on Co-Design

Global Address Space

L1$ L1$ L1$ L1$

[DRAMw v [ 125 ]ie}%}%}%?[ 125 ] I\C/IrDRAM]
o
[DRAMJI\CA [ 125 ]Et{/}j;}j;}\{/;b[ 125 ] I\CA:DRAM]

mRefactor the memory hierarchy

= Co-design address space assignment across levels of the
memory hierarchy

mDiversity of interconnect technologies
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Cymric: A Near Data Processing Architecture

H. Kim, S. Mukhopadhyay, and S. Yalamanchili
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Short Stack: Physical Structure
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Why is Temperature A NoC Problem?




Thermal Challenges and Microfluidic Cooling

Courtesy Professor Muhannad Bakir (GT/ECE)

Inlet/outlet Fin pth Electrical Fluidic
port  Processor Memory stack TSV interc mlcrobump Fluidic via microbump
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e Fluid flow through the microchannels carry heat out to an
external heat exchanger (e.g., heat sink)

This research supported by the DARPA ICECOOL Program

: RS FLORIDA —
(cogmares AErERA B KIAKAND FIUERw QDD

=

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY CASL



3D FPGA: 3D Bandwidth — Performance Tradeoff

. . A - 100
Courtesy: A. Srivastava (UMD) 140 LA
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Concluding Remarks

m\We are going to see a reshaping of the boundaries
between compute and memory

nSystem-level Co-design for memory-centric compute

mExploration of network technologies: wireless,
capacitive coupling, optics, etc.

mExpand the scope of traditional NoCs
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Scaling Performance —>

Technology &
Cooling

Thank You
Questions?

Architecture
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