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Role of NoCs 

www.themobileindian.com 

www.theregister.co.uk 

Nvidia Tegra4  IBM Power8 

Qualcomm Snapdragon 

The System Defines the NoC 
Requirements 
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Overview 

n Impact of Technology and Applications 

n Transition to Memory Centric Compute: Inside the Package  

n Transition to Memory Centric Compute: Inside the Stack  

n Concluding Remarks  
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How are Technology and Applications 
Reshaping Systems? 
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Moore’s Law and the End of Dennard Scaling  

From betanews.com 

•  Performance scaled with 
number of transistors* 

Goal: Sustain 
Performance Scaling 

*R. Dennard, et al., “Design of ion-implanted MOSFETs with very small physical dimensions,” IEEE Journal of Solid State Circuits, vol. SC-9, 
no. 5, pp. 256-268, Oct. 1974. 
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 Power and Performance 
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Operator_cost + Data_movement_cost + Storage_cost 

Specialization ! heterogeneity, 
asymmetry, technology diversity 

* 

Power Supply (regulation) + Power Consumption + Cooling 

W. J. Dally, Keynote IITC 2012 
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Energy Cost of Data Management 
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Three operands x 64 bits/operand 

DataMovementEnergy = #bits× dist −mm× energy− bit −mm

*S. Borkar and A. Chien, “The Future of Microprocessors, CACM, May 2011 

Operator_cost + Data_movement_cost + Storage_cost 

W. J. Dally, Keynote IITC 2012 

•  Refresh 
•  Access  
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Interconnect Energy Taper: Electrical 

n Relative costs of compute and memory accesses 
n Time and energy costs have shifted to data movement 

Courtesy Greg Astfalk, HP 

Core Core Core Core 

L1$ L1$ L1$ L1$ 

Last Level Cache  

DRAM 

1’s ns 

ms 

Data Access 
Latency 

10’s ns 

100’s ns 

Data Access Energy 
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Shift in the Balance Point  
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I. Paul, W. Huang, M. Arora, and S. Yalamanchili, “Harmonia: Balancing Compute and Memory Power in High 
Performance GPUs,” IEEE/ACM International Symposium on Computer Architecture (ISCA), June 2015.  
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Pin Bandwidth Challenges1 

n Number of transistors/die continues to grow 
n Number of pins growing at a slower rate than #transistors  
n Number of supply pins are crowding out data pins 

n Reducing supply current/pin limits growth of #transistor/die 

1P. Stanley-Marbell, V. C. Cabezas, and R. P. Luijten, “ Pinned to the Wall – Impact of Packaging and Applications on the Memory and 
Power Walls,” IEEE/ACM international symposium on Low-Power Electronics and Design (ISPLED), 2011 

Data pin bandwidth is not growing as fast as number 
of transistors on chip 

CPU Die 

Package Substrate 

PCB To 
DRAM 

Die 

CPU Die DRAM Die 

Si Interposer 

Package Substrate 

PCB 
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Re-Emergence of Processing In (Near) Memory 
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Kogge – Execube (4K DRAM + 100K 
gate parallel processor (www3.nd.edu) 

Draper et.al, DIVA chip (isi.edu) 

Courtesy Gokul Kumar 

1990’s 

Today 
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The Data Tsunami 

www.hq.unu.edu 
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Shift in Re-Use Patterns: Locality  

Adaptive Mesh Refinement (AMR) 
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Shift to Finer Arithmetic Density 

…… 

LargeQty(p) <- 

 Qty(q), q > 1000. 

…… 

Relational Computations Over Massive Unstructured Data Sets 
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Where do the $$ and Energy Go? 

GPUPwr 
MemPwr 
RestOfCardPwr 

•  Increasing percentage of costs 

•  Increasing percentage of power 

•  Increasing percentage of 
performance (latency-BW) 

•  Increasing memory intensive 
applications 

I. Paul, W. Huang, M. Arora, and S. Yalamanchili, “Harmonia: Balancing Compute and Memory Power in High 
Performance GPUs,” IEEE/ACM International Symposium on Computer Architecture (ISCA), June 2015.  

15 



SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY 

The (Re)-Emergence of Near Data Processing 

Silicon 
Interposer 

Multicore 
Chip 

Logic Tier 

Memory Tiers 

Where are the Networks? 

New BW Hierarchy 
and energy taper  

• Hybrid Memory Cube (HMC) 
• High Bandwidth Memory 
(HBM)  

• Wide I/O 

Compute Package Capacity Tier Memory 
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Transition to Memory Centric Compute: 
Inside the Package 
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Impact of Interposer: Processor-Memory Hierarchy 

V. Garg, D. Stogner, C. Ulmer, D. E. Schimmel, C. Dislis, S. Yalamanchili, and D. S. Wills, “Early Analysis of Cost/Performance Trade-Offs 
in MCM Systems,” IEEE Transactions on Components, Packaging, and Manufacturing Technology–Part B, vol. 20, no. 3, August 1997.  

n Attraction 
n Smaller die (better yield), process customization, and larger L2 
n Better thermal behaviors 

n Issues 
n Increased die and substrate testing costs (increase in I/Os) 
n Cost  

18 



SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY 

Impact of Interposer: SIMD Image Processor 

V. Garg, D. Stogner, C. Ulmer, D. E. Schimmel, C. Dislis, S. Yalamanchili, and D. S. Wills, “Early Analysis of Cost/Performance Trade-Offs 
in MCM Systems,” IEEE Transactions on Components, Packaging, and Manufacturing Technology–Part B, vol. 20, no. 3, August 1997.  

n Trading cost vs. chip size vs 
number of I/Os 

n What is the most cost 
effective partitioning? 

19 
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The Opportunity: Network in Package 

•  Smaller micro bumps à increased #connections 
•  Shorter faster wires in the interposer 
•  Higher signal integrity à Lower power 
•  Interposer cost? 
•  Example: Network on Interposer:  Jerger, Kannan, Li, and 

Loh (MICRO 2014) 
•  Example: memory networks: G. Kim et. al. PACT 2013 
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Transition to Memory-Centric 
Compute: Inside The Stack 
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3D Multicore Architecture 

http://www.extremetech.com/computing/197720-beyond-ddr4-understand-the-differences-between-wide-io-hbm-and-hybrid-memory-cube 
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Source of Memory Bandwidth 

•  Mismatch between bus bandwidth and DRAM access 
latency 

•  Over the past two decades density has increased by 
1000X and latency reduced by 56% [source:hynix] 

•  Solution: Have more, narrower 
channels and exploit parallelism 
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Parallelism in the Memory System  

n Move towards more narrower channels  
n Increases data cycles improving efficiency and utilization 

4 channels with 256 bit bus vs. 16 
channels with 64 bit bus 

32, x86 cores, Hybrid Memory Cube (HMC) Model 

You can buy bandwidth  but you cannot bribe God! 
        -- Unknown 
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2D Bandwidth Still Matters! 

25 



SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY 

Network Impact of Memory Parallelism 

Impact of reduced 
queuing delays 

•  Tiled 3D memory with 16 
channels, similar to HMC 

• Distributed directory based 
coherence with shared L2 banks 

• DRAM latency vs. MC queuing 

More channels à less load per 
channel à reduced queueing 

2D torus network on compute Tier 
Network component 
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Impact of DRAM Latency vs. Network Latency 

•  Impact on all requests is low. 

• Coherence requires a 
request to take multiple hops 
before being satisfied 

•  It’s the network! 

Normalized increase in CAS latency 

32 cores, 16 memory channels 

2D Network 
dominates 

L1 L2 MC 

1 2 

3 4 

Coherence 
Traffic 

Miss 
Traffic 

L1 

2 

27 



SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY 

The Opportunity 

3D BW 

2DBW Locality 
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Refactoring the Memory 
Hierarchy 
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How is the Network Used? 
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Optimization: Memory Side Caching 

n Refactor memory hierarchy to reduce hop count 

n Modify address space mappings to retain/improve 
locality  

n Maximize L2-DRAM BW 
n Remove serialization latency 
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Importance of Address Space Management: Locality 
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Global Address Space 

Cache Address 
Mapping (CAM) 

Global Address 
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Local Address 
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•  Different mapping functions determine parallelism in memory and network traffic 
•  More parallelism à better 3D bandwidth utilization but more load on the network 
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Emphasis on Co-Design 

Core Core Core Core 

L1$ L1$ L1$ L1$ 

DRAM DRAM M
C 

M
C 

Global Address Space 

L2$ L2$ 

DRAM M
C L2$ DRAM M

C L2$ 

n Refactor the memory hierarchy 
n Co-design address space assignment across levels of the 
memory hierarchy 

n Diversity of interconnect technologies 
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Cymric: A Near Data Processing Architecture 

…… 
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•  High Radix, Small Buffer 
Networks 
•  GHC, Slimfly, FB 

H. Kim, S. Mukhopadhyay, and S. Yalamanchili 
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Short Stack: Physical Structure 

Active Layer BEOL Silicon TSV 

25um 

25um 
10um 

25um 
10um 

100um 

LLC & Memory controllers 
L2 (per core): 2MB, 4096 
sets, 128B, 35 cycles; 

Die Dimension: 8.4 mm X 8.4 mm 

16 homogeneous  OOO x86 cores 
3GHz, 1.0V, max temp 100◦C      
DL1: 128KB, 4096 sets, 64B 
L1: 32KB, 128 sets, 64B, 1 cycles;     Short Stack 

Memory 
Controller and 

LLC Bank 
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Why is Temperature A NoC Problem? 
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Thermal Challenges and Microfluidic Cooling 

37 

•  Fluid flow through the microchannels carry heat out to an 
external heat exchanger (e.g., heat sink) 

Courtesy Professor Muhannad Bakir (GT/ECE) 

This research supported by the DARPA ICECOOL Program 
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3D FPGA: 3D Bandwidth – Performance Tradeoff 

Physical Architecture of  
Micro-Fluidically Cooled 3D FPGA 

Parameters Values  

Chip Size (1.65x1.65)cm2 

Number of CLBs 980K 
Number of TSVs per 3D Switch 
Box 

4 

Horizontal Routing Channel 
BW 

30 

Micro-Channel Dimension  ()  (50x100) µm2 

Fluid Velocity  1 m s-1 

(50um pitch) 

n Tradeoff between cooling 
capacity and 3D bandwidth 

n Co-Design Exploration  
n Routing quality plays a key 

role 

Courtesy: A. Srivastava (UMD) 

2D vs. 3D 
congestion 
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Concluding Remarks 

n We are going to see a reshaping of the boundaries 
between compute and memory 

n System-level Co-design for memory-centric compute 

n Exploration of network technologies: wireless, 
capacitive coupling, optics, etc. 

n Expand the scope of traditional NoCs 
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