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Abstract—A compelling confluence of technology and application trends in which the cost, execution time, and energy of applications
are being dominated by the memory system is driving the industry to 3D packages for future microarchitectures. However, these
packages result in high heat fluxes and increased thermal coupling challenging current thermal solutions. Conventional design
approaches utilize design margins that correspond to worst case temperatures and process corners leading to a significant impact on
system level performance. This paper advocates a design approach based on microarchitecture adaptation to device-level
temperature-dependent delay variations to realize average case performance that is superior to which can be achieved by using worst
case design margins. We demonstrate this approach with adaptation principles for the last level cache (LLC) in a 3D many-core
architecture. We propose and evaluate two adaptation mechanisms. In the first case, the access time to the LLC from the L1 tracks the
LLCs temperature-delay variations. In the second case, the processor DVFS state tracks the LLC temperature as a negative feedback.
Compared to a worst case design baseline, the full system simulation results show that both approaches increase the IPC by over
20%, and improves the energy efficiency by up to 3%.

F

1 INTRODUCTION

As CMOS technology advances, we are observing a conflu-
ence of technology and application trends in which the cost ($),
execution time, and energy of applications are being dominated
by the memory system. This is driving the industry to 2.5D
and 3D packages for processor and memory systems. However,
these packages also lead to higher heat fluxes and increased
thermal coupling between the die challenging thermal solutions
[1] [2]. The key issue addressed in this paper is that conven-
tional design approaches for 3D systems utilize design margins
that correspond to worst case temperatures and process cor-
ners. While such physical conditions may not occur often, the
use of worst case design margins leads to a significant impact
on average and peak system level performance. This paper
advocates for microarchitecture operational principles based
on adaptation to thermal effects to improve performance over
that achievable with designs based on worst case margins and
demonstrate that this approach has considerable promise. The
thermally adaptive mechanism is presented using the multi-
physics methodology, interacting with the available thermal
headroom and circuit critical path delay during operation. This
approach differs from past approaches focused on adaptation
to maintain temperatures below a peak value. In contrast, our
techniques extend the dynamic operating range (voltage and
temperature) of the processor and view thermal headroom also
as a resource to be consumed for performance.

We consider a 3D many-core architecture [3] that integrates
a 16-core logic die, an LLC die and a 3D DRAM stack from
Micron’s Hybrid Memory Cube (HMC) [4]. This 3D model
implies a future direction of the memory hierarchy, which
enables high communication bandwidth between processors
and main memory. Applications can exhibit a wide range of
thermal behaviors affecting the temperature-dependent delay
characteristics of the SRAM-based LLC producing temperature
dependent access times. We provide a characterization of this
delay behavior and propose two mechanisms for adapting to
these delay variations. The first mechanism adapts the L1-
LLC interface to vary the LLC access time as a function of
temperature. The second mechanism adapts the core speed and

scales the LLC frequency to match the time-varying LLC hit
time. Using a full system simulator executing stock 32-bit x86
applications, we quantify the feasible performance gains and
share some insights into the potential of this approach seeking
to establish the need for, and value of, a multi-physics co-design
approach for 3D microarchitectures for future processor design.

2 SYSTEM MODEL

The target system is a 16-core homogenous x86 processor in a
3D stack organization illustrated in Figure 1. The cores reflect a
typical out-of-order core design with the floorplan as shown
in Figure 1. Guidelines for pipeline parameters are derived
from a Intel Nehalem processor description [5]. The processor is
modeled at the 16nm technology node and is the bottom die of
the stack, followed by the LLC and a HMC-style DRAM stack
in terms of internal concurrency. In this paper we only model
the stack and not the next level of the memory hierarchy.

The cache hierarchy includes a 16KB private L1 data cache
with a 1 cycle hit time and a shared LLC divided into 16, 2MB
banks. The cache coherent protocol is directory-based MESI co-
located in the LLC cache. The on-chip network is a 2D torus
with 128-bit channels, which connects the LLC and the DRAM
stack. The virtual channel wormhole switched routers are on
the processor die. Memory controllers are integrated in the LLC
tier. Each die is modeled as three layers, indicated in Figure 1.
Electrical interconnects between different dies is realized with
through silicon via (TSVs). The heat sink on top of the package
is configured as the forced air convection cooling with heat
transfer coefficient of 100 W/m2-◦C.

3 THERMAL ADAPTATION: MODEL

The temperature-delay characterization in an SRAM bank is
simulated with a Hspice model in 16nm technology, depicted in
Figure 2. The transistor sizing and cell configurations are opti-
mized for the predictive model from Sinha et al. [6]. The critical
path of a conventional SRAM bank is limited by the word-
line driver, cell drive bit-line, sensamp sensing, and bit-line
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Fig. 1. The physical structure of the stacked 3D chip.
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Fig. 2. The SRAM static timing delay model in terms of supply voltage
and temperature

precharge/sensamp reset. This model assumes the wordline-
rest is masked during sensamp evaluation with a divided-
bitline multiplexing architecture. A latch-based sense amplifier
architecture is considered for simulation of sense-amp delay [7].
Due to the regularity of the SRAM array, the extracted critical
path of the sub-array is deterministic, and is defined as:

Trandom−cycle = Twordline−driver + Tcell−drive−bitline+

Tsensamp + Tsensamp−precharge

(1)

According to Figure 2, the LLC bank access delay at 20◦C
is 54% of that at 85◦C. Figure 3 illustrates the IPC difference of
the system with LLC operating delays corresponding to 20◦C
and 85◦C. The baseline uses SRAM delay at 85◦C as the worst-
case design, while the ideal case keeps the SRAM delay corre-
sponding to 20◦C. The IPC measurements are taken over 250M
cycles in the region of interest for each benchmark selected from
SPLASH-2 [8] shared memory application suite. The geometric
mean of the system IPC is improved by an average of 11%.
Barnes and raytrace experience over 20% speed-up as they
have a relatively lower L1 hit rate, but higher L2 hit rate. All the
other applications achieve over 7% performance improvement
except for radix (2%). A closer look reveals that it is bounded
by the memory latency, as it has the highest LLC miss rate.
The results indicate the performance achievable with delay-
dependent adaptation mechanisms.
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Fig. 3. System IPC comparison between 20◦C and 85◦C

4 THERMAL ADAPTATION: ALGORITHMS

The basic idea of thermal adaptation here is to consistently
convert thermal headroom into performance improvement. In
this section, we discuss two LLC adaptation models in details.
The sampling rate is a critical factor for both models, as we
need to make sure that the SRAM timing properties does not
change significantly within the sampling period. For a 2-tier 3D
structure demonstrated in this paper, a typical silicon thickness
is 0.03cm. The thermal time constant [9] is computed as:

τ = (
2 ∗ th
π

)2
ρ ∗ Cp

K
= (

2 ∗ 0.03

π
)2

2.33 ∗ 0.7

1.0
= 609µs (2)

where ρ, Cp and K are the density, specific heat and thermal
conductivity of the silicon. The temperature change [9] in 10µs
(the sampling period chosen in the simulation) for a single core
with TDP of 20W is computed as:

∆T = P ∗R(
4

π1.5
)(
t

τ
)0.5 = 20 ∗ 0.2

4

π1.5
(

10

609
)0.5 = 0.37◦C (3)

where P and R are the power consumption and thermal
resistance of a single core. As shown, the temperature variation
within 10µs is less than 0.5◦C.

Algorithm 1 Thermal Adaptaion Framework
1: update power(core[], cachebk[]);
2: update temperatre();
3: synchronization barrier();
4: for i = 0 to cache.banknum-1 do
. Reduced Cycle Model

5: cachebk[i].cycle = cycle tbl(cachebk[i].temp);

. Partial Boosting Model
6: new freq = core boost(core[i].ipc,
7: cachebk[i].temp);
8: if power avail(new freq) > 0 then
9: core[i].freq = new freq;

10: end if
11: end for
12: synchronization barrier();

4.1 Reduced Cycle Model (RCM)
RCM focuses on the interface between the core and adjacent
LLC cache bank. The RCM algorithm reduces the number of
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Fig. 4. System simulation framework with thermal feedback loop

cycles to access the bank in proportion to the temperature drop
during execution, and thus improves the cache performance.

As the temperature of the cache banks does not have sig-
nificant changes within the sampling period, the new bank
access time in number of cycles is updated as a function of
the temperature at the end of the sampling period by indexing
from a pre-computed cache cycle lookup table. Support for the
RCM is at the cache interface and does not affect the core.

The performance gain of RCM comes from the reduced miss
penalty in the L1 cache. RCM is suitable for memory bounded
applications, as the applications have more cache interactions.

4.2 Partial Boosting Model (PBM)
Unlike RCM, PBM scales up the core frequency according to the
temperature of its adjacent cache bank and the power budget,
and tries to boost the frequency (and therefore voltage) of a
core when the vertically adjacent LLC bank temperature is low.
The voltage of LLC does not change during the period to keep
a constant access based on the SRAM temperature-delay curve.
Compared to conventional sprinting techniques, PBM uses the
LLC bank temperature as a negative feedback to prevent system
degradation from overheating.

At first, the core frequency is pre-set with respect to the IPC
and temperature of its associated cache bank. We construct a
compact model of the upper bound on power in core and cache
as a function of frequency and IPC. If the power budget (TDP
minus estimated power at new frequency) is greater than 0, the
core frequency will change to the new value. The maximum
frequency is set to 4.5GHz to prevent system failure.

As the PBM improves the performance of cores, computa-
tional bounded applications will get more performance gain.

5 SIMULATION RESULTS

5.1 Simulation Framework
The full system simulator is based on the cycle-based Manifold
infrastructure [10]. Manifold boots Linux and is integrated with
the Energy Introspector [11] multi-physics modeling library
which includes interactions between models for energy/power
(McPAT) [12] and temperature (3D-ICE) [13], as shown in
Figure 4. Our baseline has all 16 cores running at 3GHz.

We characterized 8 applications from SPLASH-2 with base-
line configuration as shown in Table 1. The hit rate of L1 cache
and the miss rate of the last-level cache are the geometric means
of the 16 cache banks.

5.2 Performance Comparison
Figure 5.a presents the IPC comparison of the SPLASH-2
benchmark. RCM has the best IPC, as its cache performance is
improved. However, the IPC of PBM is worse than the baseline,

TABLE 1
SPLASH-2 benchmark characterization on a 16-core machine. L1 HR -

L1 hit rate. LLC MR - last-level cache miss. rate.

APP uops flops memR memW L1 HR LLC MR
barnes 2437M 11.9% 20.3% 15.6% 96.86% 16.97%
fmm 2624M 33.9% 18.1% 3.1% 98.13% 40.57%
lu-nc 415.9M 18.7% 21.1% 9.7% 93.55% 43.17%
radiosity 2891M - 17.6% 10% 99.17% 17.36%
radix 325.8M - 23.7% 13.8% 97.40% 44.65%
raytrace 719.6M - 25.2% 9.6% 96.48% 24.70%
water-ns 675.1M 21.3% 17.6% 7.7% 98.62% 25.25%
ocean-c 665.4M 26.7% 21.6% 4.9% 93.55% 44.28%

as the cache miss penalty is increased as measured in number of
clock cycle when the core boosts up.

Both RCM and PBM improve the system throughput shown
in Figure 5.b. RCM speeds up the cache system by reducing the
access cycle while PBM gains better throughput by boosting up
the system clock. For typical computational bounded applica-
tions such as radiosity, PBM outperforms RCM by around 9%
as more instructions can be executed from a faster core, yet for
memory bounded application such as lu-nc, the performance
of RCM is better than PBM by 5.2%.

For applications that fall in between the computational and
memory bounded categories, the situation is not that straight
forward. The system throughput of barnes is higher than that
of radix, yet RCM outperforms PBM in barnes compared to
radix. The reason is that the L1 hit rate of radix is higher
than barnes, so barnes benefits more from improving cache
performance and radix gains more benefit from clock boosting.

5.3 Power/Energy Consumption

The power consumption of the adaptive system is proportional
to the system performance as shown in Figure 5.c, where
radiosity has the highest runtime power and fmm has the
lowest value. For barnes, lu-nc and raytrace, the RCM power
is higher than PBM as the system performance outperforms the
PBM model. Generally, the PBM system consumes more power
than RCM as both the core and cache run faster as shown in the
other 5 applications.

Although the average power increases, the total energy
consumption of the RCM and PBM reduces, as shown in Fig-
ure 5.d. The dynamic power remains constant, since the work-
load remains the same. However, the leakage power decreases
significantly, as the total execution time shrinks, as depicted in
Figure 5.e. The only exception is radix. Radix has the highest
LLC miss rate (44.65%) and its performance is constrained by
the memory system. As a result, the performance improvement
brought by RCM and PBM does not compensate for the power
increase. The total energy is thus increased.

5.4 Energy Efficiency

The energy efficiency is measured by energy per instruction
(EPI), showing the average energy for a single instruction. Fig-
ure 5.f gives the comparison results. For typical computational
bounded application radiosity, the PBM achieves the best EPI,
while typical memory bounded application lu-nc gets the best
EPI when applying RCM.

The LLC miss rate of barnes is as small as 17%, but the
energy efficiency of RCM outperforms PBM, since the L1 hit
rate of barnes is relatively small. Barnes is thus sensitive to the
LLC cache delay. As RCM provides the best LLC performance
among the three models, it also provides the best energy
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Fig. 5. The comparison of RCM and PBM running SPLASH-2 on: (a) instruction per cycle (b) system throughput in terms of MIPS (c) runtime power
dissipation (d) normalized energy consumption (e) normalized execution time (f) energy efficiency in terms of EPI

efficiency. Moreover, the front-end temperature of the cores are
high when running barnes, preventing PBM from running at a
faster speed. On the contrary, fmm has LLC miss rate of 40.6%,
yet PBM outperforms RCM in this application. This is because
fmm contains a large amount of float point operations, and
PBM provides more benefit by boosting up the cores.

The only exception in our experiments is the radix appli-
cation. Radix is bounded by the memory latency instead of
the cache latency, as it suffers from high miss rate of the last
level cache and contains no float point operations. For this
reason, both adaptive models will not gain much benefit in
performance, and the increase in power consumption in both
cases will lead to energy inefficiency.

6 CONCLUSION

In this paper, we argue for multi-physics as a driver for the
design of 3D processors presenting a use case of a thermally
adaptive LLC. Unlike previous efforts, the goal here is to
consistently utilize all of the thermal headroom across the chip.
Thermal headroom is a resource to be mined for performance
and not a constraint to be met. We presented two thermally
adaptive models for the LLC cache in a 3D stacking environ-
ment, RCM and PBM, to improve the system performance
compared to conventional worst-case design operation. The
RCM adapts the access time (in cycles) of the LLC cache to
the temperature, while PBM modifies the core frequency based
on the temperature of the vertically adjacent cache bank. Both
models improves the overall system performance by over 20%
and energy efficiency by up to 3%.

The thermal adaptation model presented in the paper uti-
lizes the circuit simulator to estimate a realistic temperature-
delay model to trade off between thermal headroom and per-
formance gain. We foresee to understand theses effects across

new device technologies e.g., FinFET vs. Planar, or eDRAM
vs. SRAM. As the physical phenomena increasingly manifests
itself at the system level, this visibility across thermal modeling,
circuit behaviors and microarchitecture design will become
increasingly critical to fine-grained optimizations.
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