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Abstract—Performance scaling is now synonymous with
scaling the number of cores. One of the consequences of
this shift is the increasing difficulty of designing processors
with predictable and controllable performance. To address
this challenge this paper proposes a chip-scale throughput
regulation technique that is based on dynamic tracking of in-
struction execution dynamics in each core. A new variable gain
controller design is developed for regulating the throughput
of modern out-of-order cores. The gain is adjusted based on
an on-line sensitivity analysis of the core’s throughput to the
control parameter. We explore throughput regulation using two
control paramaters - core frequency and instruction issue width
and demonstrate via cycle-level, full system simulation the
utility of the proposed regulator on both compute and memory
intensive workloads. Performance results are presented for the
application to a 16 core, cache coherent 3D multicore processor.

Keywords-multicore processor, throughput regulation, 3D
multicore, variable gain controller

I. INTRODUCTION

While performance scaling is now synonymous with
scaling the number of cores, power and thermal constraints
have precipitated the shift to heterogeneous and asymmetric
multicore designs. One of the effects of this shift is the
increasing difficulty of designing processors with predictable
and controllable performance. For example, the need arises
in multimedia applications where a fixed frame rate must be
maintained to avoid choppy video or audio. Another appli-
cation is in hard or soft real-time systems where constant
throughput processors enable task and thread schedulers
to effectively reason about the consequences of scheduling
decisions and thereby provide tight performance bounds.
This paper addresses one important aspect of design-for-
predictability by addressing the problem of throughput reg-
ulation where the instruction throughput of a multicore
processor is maintained (regulated) at a set target by varying
a microarchitectural parameter such as instruction issue
width or core frequency.

Throughput regulation in microprocessors presents sev-
eral challenges. The first is the time-varying instruction
level parallelism (ILP) exhibited by applications. Instruc-
tion and resource dependencies affect instruction flows in
out-of-order cores and consequently instructions’ execution
times can vary significantly within an application let alone

across different applications. Such variability is amplified in
asymmetric multicore architectures comprised of cores that
support varying degrees of issue width and complexity, e.g.,
out-of-order vs. in-order cores. Furthermore, communication
delays between cores and other components, such as caches,
DRAM, and SSDs, can rarely be predicted reliably. Threads
executing on distinct cores interfere with each other in
shared caches and on-chip networks introducing dynamically
determined delays in instruction execution. It is therefore
difficult to develop general analytic models that can relate
core and chip instruction throughput to microarchitectural
parameters such as frequency or core issue width. All of this
suggests the merit of dynamic on-line throughput regulation
techniques that are not reliant on a priori, accurate analyt-
ical models but rather continually adapt to the processor’s
dynamics to regulate core and chip instruction throughput at
set levels.

This paper proposes such a chip-scale throughput regula-
tion technique that is based on dynamic tracking of instruc-
tion execution dynamics in each core. In control-theoretic
terms, the key ingredient in feedback-based tracking is an
integrator, however, it is well known that an integrator alone
often results in oscillations and poor stability margins of
the closed-loop system. Therefore, it is common to use it
in conjunction with proportional and (sometime) derivative
control, resulting in a PID controller [6]. However, for the
throughput-regulation considered in this paper we seek a
control law that is as simple as possible while rapidly
responding to changing program-loads in very short time
frames. In other words, our fundamental approach is to
tilt the balance between precision and low computational
complexity in favor of the latter at the expense of the former.
For this to work, the control-system’s performance must be
robust with respect to modeling uncertainties and real-time
load variations during an application program. We realize
this design philosophy by using an integrator with variable
gain, in contrast with typical implementations of PID or
PI controllers whose gains are fixed or tuned off line. The
gain is adjusted based on an on-line sensitivity analysis of
the core’s throughput to the control parameter, e.g., core
frequency. By setting throughput targets for each core on
the chip, we can regulate the throughput of the multicore



processor, maintaining it at a level equal to the sum of the
core-level instruction throughput targets.

The idea of adjustable-gain integrator was first explored in
[1] for regulating dynamic power in 2D multicore processors
by DVFS, and extended to instruction-throughput in [2]. In
[1] the frequency-to-power model is simple and predictable,
thereby avoiding a main difficulty associated with control-
ling the instruction throughput. In [2] the instruction-flow
queueing model is imprecise and does not include the details
of the memory system. In contrast, the system-model in
this paper describes more-accurately modern 3D processors,
includes detailed queueing dynamics of the memory system,
and its sensitivity-analysis is more precise; consequently, its
simulation results indicate faster convergence (by an order
of magnitude) of the control algorithm. Moreover, we test
the proposed regulation technique on control not only by
frequency but also by issue width which is not considered
in [2].

This paper seeks to make the following contributions.
1) A new variable gain controller design for regulating

the throughput of modern out-of-order cores.
2) The use of detailed, on-line sensitivity analysis to dy-

namically estimate sensitivity of instruction through-
put to microarchitectural parameters such as instruc-
tion issue width and frequency

3) The application of this regulator design to 2D and 3D
multicore processors.

4) An evaluation of the regulator design with full sys-
tem, cycle-level multicore simulator executing indus-
try standard benchmark applications under a Linux OS
on homogeneous (out-of-order) multicore processors.

The rest of the paper is organized as follows. Section
II describes the model and defines the problem. Section
III presents the closed loop control in a general setting.
Section IV applies the model to throughput regulation while
conclusions are summarized in Section V.

II. MULTICORE PROCESSOR MODEL

There are two emergent trends that are shaping the future
landscape of high performance embedded systems. The first
is 3D packaging. Multiple dies are stacked vertically with
die-to-die interconnects realized with through silicon vias
(TSVs). The reduced physical geometries enable higher
performance in a smaller footprint, but present thermal
and power management challenges [11]. The second is
near data processing where cores are integrated within the
memory system to reduce the cost of data movement while
exploiting the much higher intra-die memory bandwidth.
Taken together, both trends can boost the computing power
in embedded multimedia applications such as smart cameras,
unmanned arial vehicles, and smart phones. Consequently,
we evaluate our regulators in such an emergent processor.

The modeled system is a 16-core homogenous x86 pro-
cessor die coupled with a shared last level cache (LLC)

cache die as illustrated in Figure (1). The cores reside on
the bottom die and are interconnected by a 2D torus - one
core and its L1 cache are connected to a single router.
Each of the x86 out-of-order cores includes the front-end,
L1 instruction cache, the out-of-order scheduler, the integer
ALU, the floating-point unit and a private L1 data cache
of 32KB. The structure of a typical out-of-order core is
shown in Figure 3. The die floor plans shown in the figure
assumes implementation at the 16 nm technology node.
The shared L2 LLC SRAM cache resides on the next tier,
with 16 banks each of 2MB while each bank is associated
with the corresponding core on the lower die. The memory
hierarchy is coherent implementing the MOESI protocol.
The remaining component is the DRAM stack comprised of
the next 8 dies stacked on top of the first two tiers [22].
The DRAM is modeled after the Hybrid Memory Cube
(HMC) with 16 channels, where each channel has 8 ranks
(on per die) and 2 banks per rank. Each channel has a
memory controller attached to the router associated with
a core. Finally, the system simulation model computes the
power dissipation and resulting thermal fields produced by
the package. The throughput targets are typically set to
ensure that the total power dissipation does not exceed the
thermal design power (TDP) of the package - an important
role for throughput regulators.

We investigate the design of a throughput regulator for
each core using different microarchitectural parameters to
demonstrate the generality of our approach. The first pa-
rameter we study is core frequency for which the model
and approach are described in Section IV-B. A key set
of microarchitecture parameters control the bandwidth of
certain pipeline stages, e.g., fetch width, dispatch width,
issue width, and retire width. We assume that the front-
end decode and rename pipeline stages match the dispatch
width. It is important that the instruction delivery subsystem
provides a sustained flow of instructions that matches the ex-
ecution rate requirements of the processor to issue, execute,
and commit instructions. However, the specific number of
instructions that can be issued in a cycle are a function of the
dynamically occurring dependencies between instructions.
Effective throughput regulation must track these dependen-
cies. Therefore the second control parameter we study is the
issue width. Section IV-C describes this approach in detail.

III. FEEDBACK CONTROL LAW

The purpose of the controller described in this section is to
regulate the instruction-rate of each core to a given setpoint
reference, and we assume that for this purpose each core has
its own controller and target reference. Furthermore, the vec-
tor of setpoints is computable by a high-level performance-
management module according to chip-level considerations
such as power capping, load balancing, or temperature
management. These computations are performed off line
at far-longer time frames than the throughput controller



Figure 1. System Architecture Model Including Power and Thermal Models
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Figure 2. Close-loop control

described below, and we are not concerned with their specific
details. This section describes the control law in general
terms, and the next section specifies it for the special case
of throughput regulation.

Consider the configuration shown in Figure (2), associated
with a particular core. Suppose that the instruction through-
put is measured over contiguous observation periods, called
control cycles, denoted by Cn, n = 1,2, . . .; the throughput
measured during Cn is denoted by yn. Let un denote the
control variable during Cn, where we consider un to be
either the core’s clock frequency or the issue width. un is
assumed to be assigned by the controller at the start of Cn
and maintain its value throughout that control cycle, while
yn is assumed to be computed from measurements during
Cn and be obtained at the end of it. Let r be the setpoint
target for the output yn, and the objective of the controller
is to ensure that yn approaches r.

The action of the controller is defined by the equation

un = un−1 +Anen−1, n = 1,2, . . . , (1)

where An is its gain during Cn. We observe that for the case
where An = 1 for all n = 1, . . ., the controller acts as an
adder, or integrator in the context of discrete time, in that
its output un is the sum of its past inputs, ek, k = 1, . . . ,n−1.
In the general case defined in Equation (1) the gain An is
a function of n, and hence we say that the controller is an

integrator with adjustable gain. As for the error signal, it is
evident from Figure (2) that

en = r− yn. (2)

For reasons explained in [1], [20] and summarized below,
we define the gain An as

An = ξ
(dyn−1

dun−1

)−1
, (3)

where ξ ∈ (0,1) is a given constant determined experi-
mentally in a way that maximizes the controller’s track-
ing performance. The term dyn−1

dun−1
in Equation (3) is the

sample derivative of the core’s input-output relation during
Cn−1. We point out that the relationship between un−1 and
the throughput yn−1 during Cn−1 cannot be described by
a simple function, but rather by a complicated queueing
model (described below) that defies analysis. However, it
is fairly simple to compute yn−1 from observation of the
system (core) by simply counting the number of instructions
completed during Cn−1 and dividing it by the duration of
Cn−1. This procedure yields the sample throughput and
not the mean throughput, where different control cycles
are associated with different sample paths. The term dyn−1

dun−1
is the derivative of that sample relation, hence called the
sample derivative. As we shall see it can be computed quite
easily from the sample path by observing the instructions’
schedule in the core throughout Cn−1. Furthermore, the result
is available at the end of Cn−1, hence can be used to compute
un via Equation (1) at the start of Cn.

The rationale behind the definition of the gain An via
Equation (3) can be seen by considering the case where
the un − yn relation is given by a deterministic function
L(u), so that yn = L(un). For ξ = 1, it can be seen that



the control law implements the Newton-Raphson method
for solving the equation L(u) = r, which is the objective
of tracking. Convergence of the Newton-Raphson method
is known to be robust to variations in that equation as
well as to computational errors [13], and therefore we
expect the control law to yield tracking regulation in the
stochastic, time-varying setting under consideration. The
results, presented below, satisfy our expectation. The factor
ξ ∈ (0,1) in Equation (3) is used to reduce oscillations that
are due to the randomness.

IV. THROUGHPUT REGULATION

To quantify the throughput, recall that the instruction
flow through the core involves four steps, or stages (see
Figure (3)): Issue, Execute, Memory, and Commit. We next
derive the equations that describe these four steps. To start
with the Issue step, consider a sequence of instructions,
denoted by I1, I2, . . ., according to their issue order. Let ξi
denotes the arrival time of instruction Ii to the Reorder
Buffer (ROB) in terms of clock cycles. If the instruction
has a data dependency, we use k(i) to denote the index of
the instruction that computes the last operand required for
instruction Ii . Let τ denote the core’s cycle time, and denote
by αi the enqueue time of Ii, namely the time that all the
operands of Ii are available and the instruction is ready to
be executed. Then

αi = max{ ξiτ , βk(i) }+ τ. (4)

Secondly, in Execute stage, assume that the execution
time of a non-memory instruction Ii is approximated by
μiτ , where μi is total number of clock cycles it takes the
execution unit to process instruction Ii . Denote by βi the
completion time of executing Ii. Then,

βi = αi +μiτ, (5)

and we note that βi is also the time that the result of
instruction Ii becomes available as an operand for other
instructions.

Thirdly, if instruction Ii is a memory instruction, the
memory hierarchy is involved in the process. Let us denote
the sequence of instructions Ii that are in the memory path by
Ii( j), j = 1,2, . . .. The processing time of instruction Ii( j) in
the cache is νi( j)τ , where νi( j) is the number of clock cycles
it takes to proceed the instruction in cache. The completion
time of executing a cache-hit instruction is the dequeuing
time from cache, that is,

γi( j) = max{ αi( j) +ν j(i)τ, δi( j)−λ }, (6)

where λ is the total number of MSHR (Miss Status Holding
Register) entries. We assume if the number of instructions
in MSHR reaches λ , the whole memory system stops
processing.

If instruction Ii( j) is a cache miss then it needs to access
other storage devices such as DRAM. The major part of
its latency can be approximated by a term denoted by
MEMi( j), which typically is hundreds of clock cycles and
hence one-to-two orders of magnitude longer than compute
instructions. Note that MEMi( j) is independent of τ since the
clock of such memory systems is different from the clock
of cores and caches. The completion time of a cache-miss
instruction Ii( j) in Memory stage is its departure time from
the MSHR back to execution, and denoting it by δi( j), it can
be seen from the above discussion that

δi( j) = max{ γi( j) +Mi( j)τ +MEMi( j) , δi( j)−1}, (7)

where Mi( j)τ is the proceeding time in MSHR.
Thus, the completion time of executing instruction Ii is

computed as follows:

βi =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

αi +μ(i)τ, if instruction Ii is a
non-memory instruction

γi( j), if instruction Ii is a cache
hit memory instruction

δi( j), if instruction Ii is a cache
miss memory instruction.

(8)

Finally, let us consider the final stage, Commit. The order
of departure of instructions should be the same as their
arrival order. Let di denote the time that instruction Ii in
the ROB is committed (dequeuing time), then we have

di = max{ βi + τ , di−1 + τ }. (9)

Considering all of this during a control cycle Cn com-
prised of M instructions, the throughput yn is given by

yn =
M
dM

. (10)

We will use these equations to compute the sample deriva-
tives, dyn

dun
, for the two aforementioned control parameters:

the core’s clock rate and instruction issue width. Recall
that these derivatives define the gain An by Equation (3).
They will be computed by a technique called Infinitesimal
Perturbation Analysis (IPA), a general method for estimating
performance sensitivities in discrete event dynamic systems
[3]. While the details of the derivations are relegated to
the appendix, the simulation results of experiments with the
control algorithm are presented in this sections.

A. Simulation Model

The control techniques proposed in this paper have been
simulated and tested by Manifold, a discrete event simu-
lation framework for modern multicore computer architec-
tures [18]. Manifold enables cycle-level full system proces-
sor simulation, i.e. application and operating system bina-
ries driving cycle-level models of cores, coherent caches,
on-chip networks, and the DRAM system. Manifold also
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Figure 3. Data Flow in an Out-of-order Execution Core
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Figure 4. Manifold Execution Model

supports dynamic voltage frequency scaling and is coupled
to energy and thermal models via the Energy Introspector
multi-physics modeling library [15]. Figure ( 4) depicts a
Manifold cycle-level model of the 3D near-data processor
core described in Section II, whose specific parameters are
shown in Table I. The simulation results are describes in the
next two subsections.

B. Throughput Regulation Using Clock Frequency

In this experiment we execute two SPLASH-2 bench-
marks, Cholesky and Ocean-nc [21]. Cholesky is a com-
putation intensive application while Ocean-nc is a memory
intensive application. Eight cores execute the Cholesky

benchmark, and eight cores execute the Ocean-nc bench-
mark. Each control cycle consists of 50,000 instructions,
chosen to balance the settling (convergence) time with
local high-frequency oscillations. The frequency-range of
the cores is 0.5 GHz to 5 GHz. These simulations assume
that a continuous range of frequencies are feasible. We set
the target throughput of each core at 4000 MIPS (Million
Instruction Per Second) for Cholesky, and 1000 MIPS for
Ocean-nc.

A typical simulation run for the Cholesky benchmark
(chosen at random from the eight cores executing this
benchmark) is shown in Figure (5), where the horizontal
axis indicates time in ms and the vertical axis indicates
instruction throughput for a single core. The value of ξ
in Equation (3) is ξ = 1. The total run time of 333 ms is

Parameters Out-of-order Core
Architectural Configuration

ISA x86 IA32
Pipeline Depth 10 stages
Fetch/Decode 4 instructions

Execution 6 Issue ports
L1 Cache 8-way 16KB/core
L2 Cache 64-way 2MB/bank, 16 banks

Physical Configuration
Clock Frequency 0.5-5.0GHz
Supply Voltage 0.5-1.2V

Feature Size 16nm

Table I
SIMULATED PROCESSOR CORE CONFIGURATION



the duration of the Cholesky program, and it corresponds to
about 106 control cycles at 2GHz clock frequency. The target
throughput 4000MIPS is the highest tracking execution rate
for Cholesky benchmark. We discern from the graph a fast
rise in throughput from an initial value of 400 MIPS to
about 4300 MIPS in 0.8 ms. Thereafter the throughput
stabilizes at about the target value of 4,000 MIPS except
for sporadic variations which are due to variable program
workload and other random aspects of the system. However,
the controller seems to compensate for them in short time-
frames. Furthermore, the average throughput computed over
the time interval [0.8ms,333ms] (soon after the throughput
has reached the target value) is 3964.4 MIPS, which is
quite close to the target throughput of 4,000 MIPS. Similar
results for the Ocean-nc benchmark are shown in Figure (6).
Part (a) of the figure depicts the graph of the instruction
throughput for the first 35 ms of the program, while part
(b) shows the throughput for the entire run of 333 ms. The
reason for restricting the results to a subset of the program’s
duration is that the graph shows the rapid convergence of the
throughput from its initial value of 600 MIPS to about the
target value at time 0.5 ms, which is not visible in part
(b) of the figure. In both parts of the figure we discern
fluctuations of the throughput from its target value, but the
control algorithm stabilizes the throughput rapidly. These
fluctuations (oscillations) are more pronounced than in the
results concerning the Cholesky benchmark; the reason is
that Ocean-nc is more memory intensive than Cholesky,
hence it experiences wider load variations. The frequency
keeps changing in every control cycle, which is 100μs. As
mentioned earlier, the parameter ξ ∈ (0,1) in Equation (3)
can be used to reduce oscillations in the throughput profile.
To test this point we simulated the control algorithm with
ξ = 0.2 for both the Cholesky and Ocean-nc benchmarks.
The results, shown in Figure (7) and Figure (8), respectively,
exhibit fewer and smaller oscillations but larger settling
times as compared to the respective results in Figure (5) and
Figure (6), resp., where ξ = 1.0. This is not surprising in
light of the fact that the controller’s gain is smaller. In fact,
the measured average throughput for Choleaky is 3989.8
MIPS for ξ = 0.2 and 3964.4 MIPS for ξ = 1.0, whereas
for Ocean-nc, it is 1004.6 MIPS for ξ = 0.2 and 1008.9
MIPS for ξ = 1.0.

C. Throughput Regulation Using Issue Width

The experiment uses the same two SPLASH-2 bench-
marks as in the last experiment, Cholesky and Ocean-nc.
The issue width of each core ranges from 1 to 4, and
hence the control parameter u is constrained to the set
U := {k : k = 1,2,3,4}. The target throughput of each core
for the Cholesky benchmark is 1.2 GIPS, and for the Ocean-
nc benchmark is, 1.0 GIPS. The control cycle is 0.1 ms, and
we note that this is in units of time rather than instructions
per second, as it was in the frequency-control experiment.
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Figure 5. Frequency regulation: Cholesky
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Figure 6. Frequency regulation: Ocean-nc
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Figure 7. Frequency regulation (modified algorithm): Cholesky

The IPA derivative of the u-to-y relation, presented in
the appendix, assumes that u has a continuous range of
the control. However, the implementation of the controller
allows only the aforementioned, four-point set of values. To
address this issue we modify the control algorithm in the
following way. Suppose that un−1 ∈U is the control variable
at the start of the control cycle Cn−1. We replace Equation (1)
by the following calculation of the auxiliary variable vn,

vn = un−1 +Anen−1, (11)



0 5 10 15 20 25 30
500

600

700

800

900

1000

1100

1200

1300

Time (ms)

Th
ro

ug
hp

ut
 (M

IP
S

)
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Figure 9. Issue width regulation: Cholesky

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

Time (s)

Th
ro

ug
hp

ut
 (G

IP
S

)

Figure 10. Issue width regulation: Ocean-nc

and then take un to be the point in U closest to vn. In all
runs we took ξ = 1 in Equation (3). The results are shown
in Figure (9) for Cholesky and Figure (10) for Ocean-nc,
respectively. Still, the target throughput of each core for
the Cholesky benchmark is 1.2 GIPS, and for the Ocean-
nc benchmark it is 1.0 GIPS. Although the figures indicate
convergence towards the target values (notwithstanding the
oscillations that are due to the system’s variability), a bias is
discerned from the graphs. As a matter of fact, the average
instruction throughput was computed at 1.2868 GIPS for
the Cholesky experiment, and 1.2025 GIPS for the Ocean-
nc benchmark. The bias is due in part to the quantization
inherent in the computation of un, which permits the control
to get trapped in a set of values close to the target.

To reduce the bias we modify Equation (11) as follows.
Let αn−1 be a running variable computed at the start of Cn−1.
At the start of Cn, compute vn via

vn = un−1 +Anen−1 +αn−1, (12)
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Figure 11. Issue width regulation: Cholesky (with accumulator)
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Figure 12. Issue width regulation: Ocean-nc (with accumulator)

then set un to the value in U closest to un, and set

αn = αn−1 +un − vn. (13)

In other words, αn tracks to cumulative quantization error in
successive iterations of the control algorithm. Running the
experiments with this modification we obtained the results
shown in Figures (11) (Cholesky) and Figures (12) (Ocean-
nc). The average throughput is 1.1936 GIPS for Cholesky
and 1.1839 GIPS for Ocean-nc, which is closer to the target
values of the benchmarks than the results of the controller
without quantization-error accumulation. The pipeline width
varies from 1 to 4, and it changes in every couple control
cycles depending on the application phase.

V. CONCLUDING REMARKS

This paper addressed the challenge of realizing pre-
dictable performance for the execution of multithreaded
applications on cache coherent shared memory multicore
processors - specifically realizing predictable throughput.
This was achieved via the design of a per core variable
gain throughput regulator that adjusted a control parameter
(core frequency or instruction issue width) to maintain fixed
instruction throughput/core in the presence of dynamically
varying parallelism and inter-instruction dependencies in
the instruction stream. The regulator illustrates a novel
application of on-line sensitivity analysis to periodically
change the controller gain thereby avoiding the need for any
a priori profiling or characterization of the applications. The
performance results on both compute and memory intensive
applications demonstrate robust and agile tracking perfor-
mance. Our future research involves using this capability



for designing soft real time systems with controllable and
predictable performance.

VI. APPENDIX

In this section we derive the IPA derivatives dyn
dun

discussed
in Section IV, where un is the control input to a core (clock
rate or issue width) and yn is the resulting throughput during
the nth control cycle. In the forthcoming discussion we
omit the explicit notational dependence on n, and use prime
notation to indicate derivative with respect to the indicated
variable.

To begin with, consider the case where the control param-
eter is the clock frequency, and hence u = τ−1 in Equations
(4) - (10). Therefore we have that

y′(τ) = y′(u)
du
dτ

=−y′(u)
τ2 . (14)

The term y′(τ) can be computed by taking derivatives in
Equations (4) - (10, as follows.

By Equation (4),

α ′
i (τ) =

⎧⎪⎪⎨
⎪⎪⎩

ξi +1, if all the operands of
instruction Ii are ready
before Ii arrives at ROB.

β ′
k(i)(τ)+1, otherwise.

(15)

while by Equation (6),

γ ′i( j)(τ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α ′
i( j)(τ)+νi( j), if Load/Store Unit

does not stop
after processing
instruction Ii( j)−1.

δ ′
i( j)−λ (τ), otherwise.

(16)

Next, by (7),

δ ′
i( j)(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ ′i( j)(τ)+Mi( j), if instruction Ii( j)−1

leaves MSHR
before instruction
Ii( j) is completed.

δ ′
i( j)−1(τ), if instruction Ii( j)−1

stays in MSHR
when instruction
Ii( j) is completed.

(17)

and hence, and by Equations (8) and (15) - (17), we obtain,

β ′
i (τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α ′
i (τ)+μ(i), if instruction Ii

is not a
memory instruction.

γ ′i( j)(τ), if instruction Ii

is a cache hit
memory instruction.

δ ′
i( j)(τ), if instruction Ii

is a cache miss
memory instruction.

(18)

By Equation (9) we have that

d′
i(τ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β ′
i (τ)+1, if the entry of instruction

Ii is head of the ROB
d′

i−1 +1, if the entry of instruction
Ii−1 still remains
in the ROB

(19)

and we note that this is a recursive equation which, with
the aid of (18), gives out d′

i(τ) for all i = 1, . . . ,M, and in
particular, we can obtain d′

M(τ).
Recall (Equation (10)) that y = M/dM , and hence,

y′(τ) =−M
d′

M(τ)
dM(τ)2 . (20)

This, in conjunction with (14), gives

y′(τ) =
1
M

( y
u

)2
d′

M(τ). (21)

Consider next the case where the control parameter, u, is
the issue width, hence an integer which we assume to be
in the set {1,2,3,4}. In order to apply the IPA derivative
we consider an abstraction where u ∈ [1,4] is a continuous
variable. As before we let y be the core’s throughput during
a typical control cycle, and we estimate the IPA derivative
dy
du . In contrast to the frequency-regulation problem where
we define the control cycle in terms of the number of
instructions, here we define it in terms of a given time.
Therefore, in Equation (10), the term dM is a constant
independent of u, while M is a function of u. Furthermore,
assuming that all of the four pipelines are homogeneous, M
is related to u via the equation

M = ΦΨu, (22)

where Φ is the instruction flow rate on a single pipeline
and Ψ ∈ (0.5,1.0] is a number that reflects the relationship
between the total throughput and the execution rate of each
single pipeline. Φ and Ψ vary from one control cycle to
the next depending on the application patterns. However,
their variations between consecutive cycles often are small
enough to justify the following procedure: Measure the
product Φn−1Ψn−1 during a control cycle, and use the result
in Equation (22) for the next control cycle. Thus, Equation
(22) becomes Mn = Φn−1Ψn−1un, where the subscript n
indicates quantities associated with the nth control cycle, Cn.
Then, an adequate approximation to the sample derivative is

y′n(un) = Φn−1Ψn−1. (23)

Of course the effects of drastic changes in the product
Φn−1Ψn−1 would be delayed by one control cycle.
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