
A PORTABLE BENCHMARK SUITE FOR HIGHLY

PARALLEL DATA INTENSIVE QUERY PROCESSING
Ifrah Saeed, Sudhakar Yalamanchili, School of ECE

Jeff Young, School of Computer Science

February 8, 2015

The Need for Accelerated Data Warehousing

Data Warehousing has become a large part of supply chain
operations

Analytics of weekly and monthly trends helps to predict future supply needs and
ordering patterns

• How many people will buy grills around July 4th?

The explosion of Big Data makes this analytics tougher

New hardware like GPU and Phi accelerators can be used to accelerate queries
for data warehousing applications with large amounts of data

• Co-processing with GPUs can provide 2-27x speedup [1]

Our work focuses on mapping a data warehousing benchmark, TPC-
H, to a portable accelerator language, OpenCL

2 A PORTABLE BENCHMARK SUITE FOR HIGHLY PARALLEL DATA INTENSIVE QUERY PROCESSING

[1] B. He, et. al, “Relational query coprocessing on graphics processors,” ACM TODS, 2009

Related Work

Currently, there is little work in the area of data analytics on
accelerators and no accelerator-based analytics benchmarks

• OmniDB: Kernel-adapter design that uses OpenCL operators as part of larger
framework; unclear as to current project status [2]

• Work has also focused on portable database primitives from a software
engineering standpoint [3]

• Companies like Map-D are focusing on CUDA-based analytics using SQL
queries [4]

3 A PORTABLE BENCHMARK SUITE FOR HIGHLY PARALLEL DATA INTENSIVE QUERY PROCESSING

[2] S. Zhang, J. He, B. He, and M. Lu. OmniDB: Towards portable and efficient query processing on parallel CPU/GPU
architectures. Proceedings of the VLDB Endowment, 6(12):1374–1377, 2013.
[3] D. Broneske, S. Breß, M. Heimel, and G. Saake. Toward hardware-sensitive database operations. EDBT, 2014.
[4] Mostak, Todd. "An overview of MapD (massively parallel database)." White paper. Massachusetts Institute of
Technology, 2013.

Related Work: Red Fox [5]

4 A PORTABLE BENCHMARK SUITE FOR HIGHLY PARALLEL DATA INTENSIVE QUERY PROCESSING

Our OpenCL primitives grew out of this GPU-focused project

Red Fox is a collaborative project with LogicBlox that has focused on CUDA
implementations of the TPC-H queries using relational algebra (RA).

OpenCL primitives build off the CUDA primitives

• Existing primitives have “GPU slant” – vectorization and testing geared
towards Fermi-class GPUs

• Red Fox work demonstrates

 a path forward for full OpenCL

 implementation of TPC-H

[5] H. Wu, et al, “Red Fox: An Execution
Environment for Relational Query
Processing on GPUs”, CGO 2014

Contributions of this work

• Portable database relational algebra primitives using OpenCL for cross-
platform compatibility

• A new open-source benchmark that allows these primitives to be run on a
variety of systems (extensions for SHOC)

• Evaluation of these primitives and related microbenchmarks on multiple
hardware platforms – Intel and AMD CPUs, integrated and discrete GPUs,
and Xeon Phi

• An eventual path towards a fully portable, accelerated implementation of the
standard data warehousing benchmark, TPC-H [6]

5 A PORTABLE BENCHMARK SUITE FOR HIGHLY PARALLEL DATA INTENSIVE QUERY PROCESSING

[6] T. P. P. Council. TPC Benchmark H (Decision Support) Standard Specification, Revision 2.17.0 . http://www.tpc.org/tpch/spec/
tpch2.17.0.pdf, 2013.

TPC-H Benchmark Suite

6 A PORTABLE BENCHMARK SUITE FOR HIGHLY PARALLEL DATA INTENSIVE QUERY PROCESSING

Consists of 21 queries meant to
represent common data
warehousing operations

Benchmark results typically report on the
capabilities of a particular hardware system
and database setup.

Accelerated versions of TPC-H
are complex

Previous Red Fox implementations of
queries required many CUDA kernels – the
simplest query requires ~15 CUDA kernels
and an accompanying scheduler

•For this reason, our work focuses on
OpenCL primitives first

Q1: Pricing Summary Report Query:

returns a price summary of all items

shipped within a certain date range

Scalable HeterOgeneous Computing (SHOC) Suite

Accelerator-based benchmark suite that
provides benchmarks written in multiple
languages [8]

• Designed as a tool to compare algorithms across

software platforms but also to compare hardware

systems

• OpenCL, CUDA, Phi (OpenMP), and OpenACC

variants include “speeds and feeds” benchmarks

as well as parallel benchmarks

Currently there is a focus to add more
“Big Data” benchmarks to represent
non-scientific workloads

• TPC-H primitives and queries are a good

candidate along with ML and graph algorithms

7 A PORTABLE BENCHMARK SUITE FOR HIGHLY PARALLEL DATA INTENSIVE QUERY PROCESSING

[8] A. Danalis, et al. The scalable heterogeneous computing (SHOC) benchmark suite. In Proceedings of the 3rd
Workshop on General-Purpose Computation on Graphics Processing Units, pages 63–74. ACM, 2010.

TPC-H Primitives and Microbenchmarks

8

• This talk focuses on project, select, and join primitives; see [7] for others

• Microbenchmarks A (Chained Select), B (Chained Join), C (Select, Join, Project)

represent patterns common in TPC-H queries

A PORTABLE BENCHMARK SUITE FOR HIGHLY PARALLEL DATA INTENSIVE QUERY PROCESSING

[7] I. Saeed. A portable relational algebra library for high performance data-intensive query processing (MS
thesis). https://smartech.gatech.edu/handle/1853/51967, 2014.

Basic Design of Primitives

Partition, compute, gather

 Values are stored as an array of tuples with key-value pairs

Project:

• Partition, compute, and gather are all combined into one kernel

Select:

• Partition and compute are combined into “Selection” kernel; separate
gather phase

Join:

• Find Bounds kernel is part of partition phase, separate compute and gather
stages implemented by different kernels

9 A PORTABLE BENCHMARK SUITE FOR HIGHLY PARALLEL DATA INTENSIVE QUERY PROCESSING

Select Primitive

10 A PORTABLE BENCHMARK SUITE FOR HIGHLY PARALLEL DATA INTENSIVE QUERY PROCESSING

Key 0x1235 0x1462 0x1172 0x1903

Value 0xAB23 0xD3F2 0x7213 0x8931

Find position of
intermediate output

Find position of final
output

Migrate local results
from shared to global
memory

Sum number of outputs in
 histogram

Selection

Prefix Sum

Prefix Sum

Gather

Sum

Selection

Prefix Sum

Prefix Sum

Gather

Sum

Key 0x1172 0x1903

Value 0x7213 0x8931

Select < 0xA000

Join Primitive

11 A PORTABLE BENCHMARK SUITE FOR HIGHLY PARALLEL DATA INTENSIVE QUERY PROCESSING

Key 0x1235 0x1462 0x1172 0x1903

Value 0xAB23 0xD3F2 0x7213 0x8931

Key 0x1172 0x1235

Value 0x7213 0xAB23

Value 2 0x8723 0x0342

Join (L0:L3, R0:R4)

Find position of
intermediate output

Find position of final
output

Migrate local results
from shared to
global memory

Sum number of outputs
in histogram

Join

Prefix Sum

Prefix Sum

Gather

Sum

Join

Prefix Sum

Prefix Sum

Gather

Sum

Find Bounds Find Bounds Find sizes of input
arrays and estimate
output array size

Key 0x1172 0x1235 0x1820 0x1903

Value 0xB723 0x0342 0x6418 0xC298

Experimental Test bed

OpenCL 1.2 used because vendor implementations vary

• AMD, Intel support OpenCL 2.0 to a reasonable degree; NVIDIA

supports 1.2; Intel discrete GPUs only supported on Linux by

“Beignet”

Intel OCL latest version has an issue with vectorizing functionality

– this resulted in disabled optimizations for Phi and CPU

platforms

• Beignet is unaffected

12 A PORTABLE BENCHMARK SUITE FOR HIGHLY PARALLEL DATA INTENSIVE QUERY PROCESSING

13

Select Total (Compute and Data)

Total time for 256 MB select operation ranges from 95 ms (M2090) to 854 ms
(Trinity CPU)

A PORTABLE BENCHMARK SUITE FOR HIGHLY PARALLEL DATA INTENSIVE QUERY PROCESSING

14

Select Kernel Accelerators (Compute)

Integrated GPUs complete 256 MB Select compute in less than 215 ms
• NVIDIA GPUs and AMD Trinity likely benefit from implicit 256 workgroup size
• Xeon Phi may be penalized by lack of vectorization optimizations

A PORTABLE BENCHMARK SUITE FOR HIGHLY PARALLEL DATA INTENSIVE QUERY PROCESSING

15

Select Kernel - CPUs (Compute)

Sandy Bridge compute takes just 60 ms compared to total runtime (with data transfer) of 225 ms
• This Xeon CPU has higher clock rates, more threads (16), and more cache than other tested

CPUs

A PORTABLE BENCHMARK SUITE FOR HIGHLY PARALLEL DATA INTENSIVE QUERY PROCESSING

16

Select Data Transfer (Input/Output)

As expected, data transfer consumes a large amount of execution time
• 165 ms out of 225 ms runtime on Sandy Bridge (74.7%); 48 ms out of 132 on Haswell (31.8%)

• Lower data transfer costs on Ivy Bridge and Haswell GPU are likely due to zero-copy
schemes not used for CPU

A PORTABLE BENCHMARK SUITE FOR HIGHLY PARALLEL DATA INTENSIVE QUERY PROCESSING

17

Select Kernel Breakdown – Xeon Phi

Select kernel consumes an increasing portion of kernel runtime
• As described earlier, partitioning and compute were placed into one kernel –

good place for future optimization

A PORTABLE BENCHMARK SUITE FOR HIGHLY PARALLEL DATA INTENSIVE QUERY PROCESSING

18

Project Kernel

Project kernel is highly parallel operation – just 1 kernel, no data dependencies
• Discrete GPUs and highly multithreaded architectures (SNB and Xeon Phi) perform best
• 10.6 ms for 1 GB project on K20m; 15.4 ms for 512 MB on Phi; 89 ms for 512 MB on Trinity
• However, total times for 512 MB project range from 139 ms (Haswell CPU) to 336 ms (SNB)

with data transfer

A PORTABLE BENCHMARK SUITE FOR HIGHLY PARALLEL DATA INTENSIVE QUERY PROCESSING

19

Join Kernel

8.5 ms to 95.7 ms for 2x32 MB join operation
• Workgroup size of 256 (good for GPU, APU) unfairly penalizes Xeon Phi; Phi runs at lower

clock speed than CPUs and depends heavily on vectorization for performance

A PORTABLE BENCHMARK SUITE FOR HIGHLY PARALLEL DATA INTENSIVE QUERY PROCESSING

20

A Microbenchmark (Compute + Data)

Results mirror select very closely – total runtime of 101 ms (M2090) to 891 ms (Trinity CPU – not
shown)
• Subsequent selects operate on device-local data and each iteration, i, operates on 0.5i-1 input size

A PORTABLE BENCHMARK SUITE FOR HIGHLY PARALLEL DATA INTENSIVE QUERY PROCESSING

21

B Microbenchmark (Compute)

Chained join tracks single Join results linearly due to sequential operations
• 24 ms to 192 ms for 2x32 MB joins

A PORTABLE BENCHMARK SUITE FOR HIGHLY PARALLEL DATA INTENSIVE QUERY PROCESSING

22

C Microbenchmark (Compute)

3x64 MB input sets take from less than 20 ms to 1.88 seconds to perform select, join, and
project
• Join is the most limiting kernel for Phi performance

A PORTABLE BENCHMARK SUITE FOR HIGHLY PARALLEL DATA INTENSIVE QUERY PROCESSING

Common language != optimized code for each platform

• Vendor differences, tuning of code for GPU test platform, bugs in implementations all

contribute to widely varied performance across platforms

Architecture trends require further study

• Even in our limited tests, Sandy Bridge compute time was surprisingly low while Xeon Phi

was surprisingly slow

• Our speculation is that lack of support for large numbers of work-items and limited

vectorization opportunities limited the Phi

Data transfer costs still dominate, especially for small input sets

• In our tests, discrete GPU compute was fastest and data transfer was also relatively low

• However, improved zero-copy semantics make integrated GPUs more appealing for small

queries or sub-queries

Lessons Learned

23 A PORTABLE BENCHMARK SUITE FOR HIGHLY PARALLEL DATA INTENSIVE QUERY PROCESSING

Not just device portability but performance portability

•Needs more profiling!

• Support workgroup sizes specific to each device

•Results demonstrated that initial GPU-focused design limited performance on other

platforms

Retest with latest vendor OpenCL stacks

Use primitives to implement full set of TPC-H queries

Investigate scheduling decisions for larger data sets – at
what point is crossover from integrated to discrete
accelerators worth it?

Future Work

24 A PORTABLE BENCHMARK SUITE FOR HIGHLY PARALLEL DATA INTENSIVE QUERY PROCESSING

Ifrah Saeed’s Masters Thesis [7]

More detail on implementation of discussed primitives and all 11 primitives and
operators

Red Fox paper [5]

CUDA implementation of TPC-H queries

SHOC alpha release of these benchmarks

www.github.com/jyoung3131/shoc

Still under development, so please feel free to email me if (when) you find bugs!

More Information

25 A PORTABLE BENCHMARK SUITE FOR HIGHLY PARALLEL DATA INTENSIVE QUERY PROCESSING

[5] H. Wu, et al, “Red Fox: An Execution Environment for Relational Query Processing on GPUs”, CGO 2014
[7] I. Saeed. A portable relational algebra library for high performance data-intensive query processing (MS
thesis). https://smartech.gatech.edu/handle/1853/51967, 2014.

Ifrahsaeed@gatech.edu, jyoung9@gatech.edu

Special thanks to NVIDIA and Dr. Jeff Vetter of ORNL for the use of
GPUs and other accelerators used in this evaluation.

Questions?

26 A PORTABLE BENCHMARK SUITE FOR HIGHLY PARALLEL DATA INTENSIVE QUERY PROCESSING

F. Schulenburg, https://en.wikipedia.org/wiki/San_Francisco%E2%80%93Oakland_Bay_Bridge#mediaviewer/File:The_two_bridges.jpg

