
Bubble Sharing: Area and Energy Efficient
Adaptive Routers using Centralized Buffers

Syed Minhaj Hassan
School of Electrical and Computer Engineering

Georgia Institute of Technology
Email: minhaj@gatech.edu

Sudhakar Yalamanchili
School of Electrical and Computer Engineering

Georgia Institute of Technology
Email: sudha@ece.gatech.edu

Abstract—Edge buffers along with multiple virtual channels
have traditionally been used to provide deadlock freedom guaran-
tees in on-chip networks. The problem with such schemes is their
high buffer space requirement which consumes significant power
and area. In this work, we propose bubble sharing flow control
to provide deadlock freedom with small, shared central buffers,
eliminating edge buffers, improving buffer utilization, and de-
creasing router buffer requirements. The key insight involves
sharing of the flit-size bubbles (free buffers) among cyclic network
paths via central buffers in the router, reducing the overall
router buffering space requirement. This technique effectively
reconciles the trade-off between high radix and buffer space,
encouraging the use of low hop count, high-radix topologies,
with both deterministic and adaptive routing. Comparisons show
improvement in average packet latency by 31% as compared to
traditional 2VC edge buffer routers with 33% reduction in area
for an 8x8 generalized hypercube topology.

I. INTRODUCTION

The state of the practice for baseline network-on-chip (NoC)
routers has been the use of edge buffers, whose buffer capacity
requirements are proportional to the router radix and link
length (to fully utilize the link in the presence of flow control
delays). These buffer requirements are commonly increased
through the use of virtual channels (VCs) to ensure deadlock-
free routing, and further increased multiplicatively with the
number of message classes, to avoid protocol deadlock [3] [7].
This results in substantial area and power devoted to buffers,
up to several hundred KBs of storage for a 32-64 node NoC.
These overheads mitigate the advantages of NoCs, specially
with high radix routers (which have low hop count and utilize
the increased wiring density of NoCs more effectively). We
argue that the desirable design point for NoCs is the one with
high radix, low buffer space, and supports both adaptive and
deterministic routing.

This paper proposes a router architecture that effectively
reconciles this trade-off between radix and buffer space, using
a novel combination of flow control and buffering strategies.
The key idea is to use shared central buffers coupled with
novel wormhole-based extensions to bubble flow control.
Techniques for ensuring deadlock freedom have evolved from
early channel dependency-based techniques to the more recent
buffer management approaches, wherein progress is ensured
by guaranteeing the availability of free buffer space (bubbles)
in every cyclic packet path. The key insight in this paper
involves the sharing of the flit-size bubbles, (free buffers),
among cyclic network paths via central buffers in the router,
hence called bubble sharing flow control. These extensions
minimize the amount of buffer space that has to be reserved to
ensure deadlock freedom, permitting the use of small, low-cost

central buffers without the need for edge buffers, increasing
area and energy efficiency. The buffer size is independent of
radix, but grows slowly with the number of escape paths. The
result is a large reduction in the buffer space for adaptive or
deterministically routed high radix NoC routers, harnessing
the benefits of high radix, while minimizing traditional high
buffer space overheads. For example, in an 8x8 generalized
hypercube, our adaptive bubble shared router decreases the
average packet latency by 31% over a traditional 2VC router
with 33% reduction in area.

This paper makes the following contributions.
• Introduces Bubble Sharing, a flow control technique that

extends the worm-bubble flow-control [1] scheme to
centralized buffer routers, reducing its buffer space.

• Proposes Adaptive Bubble Sharing that enable adaptive
routing with bubble sharing flow control for wormhole
switched networks.

• Evaluates a centralized buffer router architecture that
implements the bubble sharing scheme, and compares its
power and performance against competing approaches.

The remainder of the paper is organized as follows. Sec-
tion II explains the importance of reduction in the buffer space
and the recent proposals that enable it. Section III describes
the bubble sharing scheme and its adaptive version. Finally,
section IV compares the power and performance of our scheme
with different state of the art low latency routers.

II. BACKGROUND & MOTIVATION

A. Need for Buffer Space Reduction

Traditional virtual channel based routers use edge buffers
for deadlock freedom and performance optimization. This puts
increased pressure on buffering requirement of an on-chip
network. The problem with large buffer space is high area and
static power that dominates all other components in traditional
networks. Buffer storage in these networks increases with
an increase in the number of ports, the number of virtual
channels, the number of message classes, and the link width.
Furthermore, to keep the links fully utilized, each buffer has
to be large enough to hide the credit round trip delay, which
becomes higher with longer links. Thus, a 5 ported router
with 2VCs, used in a 2 dimensional torus, with 16 byte
wide links, and 5-flit input and 2-flit output buffer requires
(16∗5∗(5∗2+2) = 960) ∼ 1K bytes of storage per message
class. With 3 message classes (as required in MEOSI directory
protocol) and an 8x8 network, the buffer space required by the
network approaches 1 ∗ 3 ∗ 64 = 192KB. In addition, packet



sized buffering is required in the network interface for both
injection and ejection that further increases the buffer area.

5P 7P 10P 15P 1VC 2VC 3VC 4VC
0

1

2

3

4

5

6
A

re
a

D
is

tr
ib

u
ti

on
(m

m
2
) ×10−7

Buf NonBuf

Fig. 1. Area distribution with different ports & VCs

Figure 1 gives the breakdown of buffer vs. non-buffer area,
(calculated from Orion2.0 [16]), with different ports and VCs.
The four bars on the left gives the area by changing the number
of ports. Input buffer size, output buffer size, and link width
is 5 flits, 1 flit, and 128 bits, respectively. VCs and message
classes are fixed at 2 and 1 respectively. With small number
of ports, e.g., in 2D torus, buffers constitute more than 60%
of the router area. By increasing the number of ports to 10,
(as required by a 4x4x4 flattened butterfly), the buffer area
increases by 2x. Note that this does not account for extra
buffering required to keep the pipeline busy with longer links.
The bars on the right sets the number of ports to 5 but increases
the virtual channel count. Again, even with 4 VCs, buffers
constitute almost 55% of the total router area.

It is evident that reduction in buffer space with minimum
cost in performance is desirable. In this work, we propose
using shared central buffers coupled with novel variations of
bubble flow control to achieve this goal.

B. Related Work

Many recent works have addressed the buffer space reduc-
tion problem [15] [12]. The main focus has been to either share
the buffers among the VCs, or reduce the number of entries
per input buffer. The extreme case includes various versions
of buffer-less flow control that removes the input buffers alto-
gether, by the use of deflection routing [10] [6]. The problem
with buffer-less routers is their low saturation throughput and
out of order delivery of packets. Out-of-order delivery requires
greater buffering at the network interface, negating much of
the advantages. Some other techniques include flit-reservation
flow control [14] and whole packet forwarding [8] that focus
on the efficient utilization of the input buffers. Recently, the
use of shared central buffers have been proposed to keep the
buffering space largely independent of radix [5]. We have
extended the ideas used in their scheme to flit level, for
wormhole networks, using bubble flow control [11].

We will next discuss the key ideas behind centralized buffer
routers and bubble flow control, that target reduction in the
number of input buffers and VCs, respectively.

1) Bubble Flow Control and its Variant: Bubble Flow
Control (BFC) has been proposed [11] to avoid deadlocks
in a packet based ring without the use of VCs. The basic
idea is to ensure that at least one packet sized bubble (empty
buffer space) is kept in the ring all the time, even after a
new packet is injected into the ring. This is ensured locally
by allowing injection in any ring only when an empty space

of 2 packets is available at the input port. The problem with
this local bubble flow control (LBFC) is that it keeps too
many empty packets in the ring. Critical Bubble Scheme
(CBS) [2] was proposed to ensure that only one global empty
packet is required in each ring, by marking one packet sized
bubble in the ring as critical. Injection into the critical bubble
is prohibited, keeping it preserved all the time. Both LBFC
and CBS, however, only works for packet based networks.
A wormhole-based version of CBS called worm-bubble flow
control (WBFC) was presented recently [1]. The idea is to
mark flit size bubbles in the input buffer as critical before
injection, and keep a count of the marked bubbles. Once an
injection port has marked enough bubbles to hold a complete
packet, a new packet is allowed to enter the ring. In this
way, the original critical bubbles of the ring, (inserted at
initialization), will always be maintained. We extended the
WBFC scheme to routers with shared central buffers, called
Bubble Sharing. Both WBFC & Bubble Sharing schemes are
further explained with an example in Section III-A.

0 1 2 3

4 5 6 7

10 11

P0

P
1

P2

P
3

8 9

Critical
Bubble

Fig. 2. Bubble Coloring Scheme (BCS)

[17] presents bubble coloring scheme (BCS), a method to
perform adaptive routing using bubble flow control in packet
based networks. The basic idea is to maintain a virtual ring
with a critical bubble that connects all the routers of the
network. This ring will always be kept deadlock free, and can
be used as an escape path for adaptive routing. Consider the
example of a mesh shown in Fig 2. The dotted line represents
a fully connected virtual ring utilizing some channels of the
network. A critical bubble is maintained in the ring using the
injection/ejection rules of CBS. This bubble will allow packets
in the ring to always make forward progress. Packets that are
not in the ring can always contest for injection into the ring.
e.g. in Fig 2, four packets are waiting on each other in a
cycle. However, packet 0 is also contesting for the north port,
which is part of the virtual ring. The critical bubble present
in the ring will move backwards, allowing packet 0 to escape
the cycle. This scheme was proposed for packet based edge
buffer networks.We have used the basic idea of providing an
escape path using a virtual ring to design our adaptive bubble
sharing scheme for wormhole based centralized buffer routers.
Section III-B provides the details.

2) Centralized Buffer Routers for High Radix Networks:
[5] proposes centralized buffer routers (CBR). The basic idea
is to remove the edge buffers per port, and use a central buffer
to be shared among all ports. The router micro-architecture,
with modifications for the current scheme presented as shaded
regions, is given in Fig 5. The major components of the router
are the central buffer (CB) and the crossbar, with single flit
input and output staging buffers. The central buffer is bypassed



in case there is no conflict at the output port. Packets that enter
the central buffer are prioritized over packets at the input buffer
that arrive later. This is done by three different allocation
stages that work in parallel (i.e., IBSA, CBSA, and CBA).
The authors argue that because of the bypass path, only the
packets that conflict at the output ports will enter the central
buffer. This means that the probability of conflicts at the input
port of the central buffer is low. However, if multiple packets
do collide, their entry into the central buffer will be serialized.
They note that the waiting time of this serial entry is very small
(equal to pkt size). This allows them to keep the number of
input ports of the central buffer as one, keeping its area small.
This holds true for the output port of the central buffer as well.

The scheme uses elastic buffer links [9] instead of credit
based flow control. This allows downstream packets to not
wait on the credit round trip latency, avoiding holes among
subsequent flits, even with single flit staging buffers at the
input. Moreover, the control and data information in the links
are split to make the bypass path latency single cycle. The
design uses a variant of localized bubble flow control. The idea
is to inject in a ring only if there is enough space in the central
buffer to drain the complete packet, and still leaves at least
one flit-sized bubble in the ring. This scheme was typically
proposed for large radix routers, which require substantial
buffering at the inputs. The shared central buffer reduces
this requirement proportional to packet size and network
dimension, i.e., 2*dim*PktLength+1 [5]. Our Bubble Sharing
scheme took the basic CBR design and extended the WBFC
idea to be used with central buffers. This reduces the buffering
requirement to flit or worm-bubble level.

III. BUBBLE SHARING FLOW CONTROL

A. Bubble Sharing with Central Buffers

This section describes our bubble sharing scheme. We
first explain the key ideas of WBFC using an example and
points out the modifications required to adapt it to CBRs. We
organized the central buffer as dynamically allocated multi-
queue (DAMQ) [15] with shared pool of small worm-bubble
sized slots. Each slot has a space of 2-3 flits and assigned
completely to an output port; that is, once a slot is assigned
to output x, all entries will be consumed by packets going to
output x, until the slot is unassigned. Each slot act as a worm
bubble, multiple of which can be taken by each ring.

R0 R1 R2 R3 R4 R5

CntI=1

R0 R1 R2 R3 R4 R5

CntI=0

(a)

(b)

Fig. 3. Worm Bubble Flow Control (WBFC)

Black & White Bubbles: Consider the example in Fig-
ure 3 with edge buffer routers. Suppose each bubble indicates
an empty input buffer in the downstream router and is denoted
by worm-bubble or simply bubble. Black means a marked
worm-bubble and white means an unmarked worm-bubble. Let

PktS WB = M/x denote packet size in terms of worm-bubbles,
where M = packet-size and x = worm-bubble size.

Injection: Before insertion into a ring x, a new packet
first marks the worm-bubble of the corresponding ring as
black. This is shown in Fig 3a), where a packet at R4 is
trying to get injected. It marks the corresponding bubble as
black, and also maintains a count of the marked bubbles,
shown by CntI = 1. Forward movement of flits displaces the
bubble along with their color backwards. Hence the black
bubble at R4 will be pushed backwards to R3, leading to
the reappearance of a white bubble at R4. The packet trying
to get injected can again mark this bubble as black, further
incrementing its count. Now consider the case when PktS WB-
1 worm-bubbles have already been marked for the ring, (i.e.,
CntI ≥ PktS WB − 1), and it encounters an empty white
bubble. If the packet is injected now, it will occupy the space of
bubbles marked by itself and the current white bubble. Hence,
guaranteeing that any black worm-bubbles injected in the ring
during initialization, will remain intact. This is the key idea
in WBFC that has been used in our Bubble Sharing scheme.
Central buffers, as explained earlier, provide a shared pool
of these bubbles, instead of having 1 bubble for each ring,
per router. Hence, instead of reserving a black bubble every
cycle, for a particular ring, multiple black bubbles can be
allocated simultaneously. A count called WhiteBubbleCnt,
is maintained to keep track of the unoccupied white bubbles.
Hence, if WhiteBubbleCnt+CntI ≥ PktS WB and there
is an empty white bubble, injection can happen directly. It
should be noted that during injection, CntI is passed to the
head flit of the packet as done in the original WBFC. The
rules for injection are given by label 4 & 6 in algorithm 1.

Transit: In the original WBFC, the marked bubbles are
unmarked when the packet is moving through the ring, decre-
menting CntH . In case of Bubble Sharing, multiple black
bubbles for a particular ring are unmarked simultaneously at
a particular router. This quickly reduces the amount of black
bubbles in the ring, leading to significant reduction in injection
delays as compared to WBFC. The rule is given by label 11
& 12 in algorithm 1.

Ejection: If the packet does not encounter an equal amount
of marked bubbles, the remaining count is passed to the
ejecting router, which means that this router has already
injected few black bubbles into the corresponding ring, This
rule, (label 10 in algorithm 1), remains the same in both WBFC
and Bubble Sharing.

Grey Bubble: If multiple ports are marking bubbles in the
ring simultaneously, it is possible that all the bubbles in the
ring are marked without any packet being injected. This can
lead to starvation. A grey bubble was introduced in original
WBFC that allows packets to be injected even if the input
port has not marked enough bubbles. An example of this is
shown in Fig 3b), which illustrates a case when all bubbles
are either occupied, or have been marked as black except for
one grey bubble. Since the packet encounters a grey worm-
bubble, it will be injected. The details of why grey bubbles
work can be found in [1]. Bubble Sharing scheme uses the grey



T1

H1
B1

H2
B2

B3B3 H
3

B3

B1 B1

32

76

x

x

V
ir

tu
al

 r
in

g 
bl

oc
ke

d

This path is blocked

Pkt 1
came
from 
here

Bubble
can't be
used

x

d)

R7R6R5R4

R10

R14

R2

R7R6R5R4

R10

R14

R2

R7R6R5R4

R10

R14

R2a) b) c)

RingY Blue

RingX Blue

RingY Black

RingX Black

Fig. 4. (a,b,c) Avoiding 1 ring to take all bubbles. (d) Deadlock in wormhole networks with BCS

bubble rules without any modifications (label 5, 7, 8). It should
be noted that the grey bubble rules require PktS WB black
and one grey bubble at initialization (label 1, algorithm 1).
Furthermore, progressive movement of grey worm-bubble is
necessary to ensure progress. Details can be found in [1].

Init: for each ring do
1 Insert PktS WB BLACK & 1 GREY bubble;
2 For each router, assign 1 bubble as BLUE;
3 WhiteBubbleCnt = non-assigned worm-bubbles;

end
Injection:

4 if WhiteBubbleCnt > 0 and
CntI +WhiteBubbleCnt ≥ PktS WB then

assignColor(BLACK); // till CntI == PktS WB-1;
HF.CntH = CntI; CntI = 0;

5 else if isColor(GREY ) and CntI ≥ 0 then
HF.color = GREY; color = WHITE;
HF.CntH = CntI; CntI = 0;

6 else if WhiteBubbleCnt > 0 and CntI < PktS WB − 1
then

assignColor(BLACK); // till CntI == PktS WB-1;
don’t Inject;

end
Ejection:

7 if HF.color == GREY then
8 if WhiteBubbleCnt > 0 then

assignColor(GREY);
9 else

turnBlueToGrey;
end

end
10 CntI=HF.CntH; HF.CntH = 0; HF.color=WHITE;

Transit:
11 if isColor(BLACK) and HF.CntH > 0 then

removeColor(BLACK); // as much as possible
12 else if isColor(BLACK) and HF.CntH == 0 then

bkwdDispl(BLACK);
end
CntI Logic:

13 if CntI > PktS WB − 1 then
bkwdDispl(CNTI); CntI–;

end
Algorithm 1: Bubble Sharing Flow Control

Blue Bubbles: It is possible that one ring takes all the
white bubbles and starves others. Moreover, the movement
of this ring can be dependent on movement of other rings, for
example in xy routing, movement of rings in the x-dimension
are dependent upon successful movement of rings in the y-
dimension. If the ring x takes all bubbles at a particular router,
ring y may not be able to move through that router, which
will stop ring x from moving as well, causing deadlock. The
example in Fig 4a) explains the situation. A packet in R2
in ringY wants to move through R6, but all bubbles of R6
are taken by ringX. Thus ringY cannot move, although it has
sufficient bubbles in R10. Since ringY cannot move, a packet
at R5 in ringX cannot make progress as well.

The problem can be solved by introducing a blue bubble for
each router in each ring. This bubble acts as a normal white
bubble assigned to that ring, but as a black bubble assigned
to a different ring for all other rings. This ensures that at least
1 worm-bubble slot is kept in each router for each ring, thus
allowing that ring to always make progress. In the previous
example, Fig 4b) shows blue bubbles for both rings. The blue
bubble of ringY will allow flits waiting at R2 to move forward
into R6 consuming the blue bubble (Fig 4c). However, as soon
as the flit leaves the router, the blue bubble for that ring is
reclaimed, ensuring forward movement all the time. It should
be noted that to guarantee progressive movement of a grey
bubble, the blue bubble should be converted to grey bubble
for that ring, in case no other white or black bubble for that
ring is left in that router. This also holds true in the case of
ejection. The ejection rule is slightly changed to encounter the
blue bubble as shown by label 9 in algorithm 1.

Starvation Concern: As explained earlier, if a packet does
not encounter enough black bubbles during transit, it passes
the remaining count of its marked black bubbles (i.e., CntH)
to the ejection port. However, for traffic patterns with 1-
1 communication, it is very likely that this counter keeps
incrementing at a particular ejection point. This means that
one router has injected most of the black bubbles in that ring.
This condition can lead to starvation of other routers in the
ring, which may never inject new black bubbles.

We solved this problem by having a separate backward
displacement signal for CntI. Every time CntI becomes greater
than the packet size in terms of worm bubbles, CntI is
displaced backwards, evening out the black bubbles injected by
different routers in the ring (rule 13). Backward displacement
of CntI means that a router, which has injected too many black
bubbles in the ring, is giving those bubbles to its neighboring
routers to decrease their injection delay.

B. Adaptive Bubble Sharing
Deadlock avoidance with adaptive routing requires three

things to happen: 1) There must always be an escape path
from any source to any destination. 2) Packets ejecting the
escape path must be consumed. 3) All packets are guaranteed
to contest for injection into the escape path.

Satisfying Condition 1: The first condition is satisfied by
having a virtual ring with guaranteed bubbles, as used in
BCS. For networks with centralized buffers, bubble sharing
can be used instead of a packet-based critical bubble. A
problem, however, is that the virtual ring in BCS allows the
use of 180 degree turns. With wormhole networks, this can
lead to deadlocks within a packet, that is, a packet going
towards its minimal direction takes a 180 degree turn to



enter the escape ring, and then takes another 180 degree
turn towards its minimal direction, deadlocking itself. We
avoided this by having two separate virtual rings going in
opposite directions, and prohibit 180 degree turns. Since both
escape paths are deadlock free, prohibiting one does not break
deadlock avoidance guarantees provided by the other.

Satisfying Condition 2: The second condition is similar to
what is generally called the consumption assumption. How-
ever, since packets can leave the virtual ring without reaching
their destinations, it is possible that the head flit leaves the ring
and gets stuck in the non-ring channels of the network, leaving
body and tail flits in the virtual ring. This situation is explained
in Fig 4d) for edge buffer wormhole networks, in which the
head H1 of a packet P1 is contesting for the escape path in the
virtual ring. However, another packet P3 has occupied it, but
cannot make forward progress because the tail T1 of packet
P1 is stuck in its path in the virtual ring. The bubbles present
somewhere else in the virtual ring cannot be used to remove
the deadlock. This condition does not occur in original BCS
because, in packet-based networks, when a packet leaves the
ring, it always drains, i.e., there are no body and tail flits
to get stuck. With central buffers, we can utilize the above
mentioned fact by checking a space of PktS WB in the central
buffer before ejecting a packet from the ring, ensuring that it
will drain completely. Hence, ejection out of the virtual ring
is only allowed if WhiteBubbleCnt > PktS WB − 1

Satisfying Condition 3: The third condition is satisfied
in edge buffer routers by allowing head flits to leave only
when the input buffer of the downstream router is empty
(credit=input buffer size). This cannot be used with central-
ized buffer routers due to the presence of EB links with no
credit based flow control. This means that it is possible that
all head flits wait behind the tail flits in a cycle, and are not
even allowed to contest for the escape path.

The solution requires a guarantee that once a head flit
traveling outside the virtual ring leaves the allocation stage, it
will reach the head of the downstream input buffer, contesting
for the escape path (if required). A simple way to guarantee
this is to allow movement only when there is a space of one
packet left among the white slots in the central buffer. This
will ensure that the current packet drains completely, and the
subsequent packet’s head reaches the top of the input buffer.
However, this will put a significant injection bottleneck in the
non-ring channels, especially because the virtual ring will be
eager to occupy any available white bubbles. We reserve a pool
of bubbles, (let’s call them yellow bubbles), specifically for the
non-ring channels, and prohibit the virtual ring to take these
bubbles. Channels not in the ring are allowed to occupy from
the pool of yellow and white bubbles, while channels within
the ring can only take white or their own black, blue or grey
bubbles. Injection in the non-ring channels is allowed as long
as WhiteBubbleCnt+Y ellowBubbleCnt > PktS WB−1.
This condition is enough for drainage of packets ejecting the
ring as well (condition 2), since they are also injecting into
the non-ring channels. The introduction of yellow bubbles will
allow packets to take minimal non-ring channels more often,

having a significant impact on low load latency.

C. Modifications to Centralized Buffer Router

RC

Crossbar

Input 1

Input N-1
Output N-1

CB

Output 0

Input 0

Link 
Pipeline

States

clr &
port#
/ slot

worm slots

IBSA

CBA
CBSA

CntI

Bkwd
disp.

signals

Fig. 5. Centralized Buffer Router [5]

The modifications to CBRs required to implement both
deterministic and adaptive bubble sharing is given as shaded
regions in Fig 5. As explained earlier, the DAMQ-style central
buffer is organized as small worm-bubble sized slots. A color
and a portno field is added to each slot to determine the
color and the ring assigned to the slot. A logic of few
gates is added during the allocation and deallocation of each
slot, to determine whether a slot can be assigned a specific
color and ring, based on its current color and status. IBSA
stage is modified to implement algorithm 1, and rules of
adaptive bubble sharing. This, however, works in parallel to
the allocation logic, having minimal impact in its critical path.
Other modifications like CntI for each ring, CntH in each
head flit, progressive movement, and backward displacement
signals are added similar to the original WBFC and BCS
schemes. Backward displacement hardware is slightly mod-
ified to accommodate exchange of CntI signals. Overall, the
modifications added a few gates, flip flops, and control signals,
with almost negligible impact on the critical path of the router.

D. Worm Bubble Coloring (WBCS)

The idea of adaptive routing with single-VC wormhole
networks can also be applied to edge buffer routers. We only
need to satisfy the three conditions given above. Condition
1 and 3 can be satisfied by WBFC, and by allowing head
flits to leave only when credit=input buffer size. The problem
of drainage from the virtual ring can be solved by providing
a small packet size - worm bubble size entry central buffer.
Ejection from the virtual ring is only allowed when this buffer
is empty, and there is no other packet leaving any of the virtual
ring. If a packet leaving the ring is detected to be stuck, it is
moved to the central buffer to allow subsequent packets to
contest for the virtual ring. We call this scheme as Worm-
Bubble-Coloring and used it for evaluation purposes.

IV. RESULTS
A. Simulation Setup

The proposed schemes are evaluated with an in-house router
micro-architectural simulator. We also developed 3 edge buffer
router models for comparison: First using Worm Bubble Col-
oring, second using WBFC, and third using standard Duato’s
protocol [4] to avoid deadlocks. Any extra VCs in all edge
buffer routers use minimal adaptive routing. We used worm
size of 2 flits for central buffers in all our simulations. For



0.05 0.10 0.15 0.20 0.25
0

20

40

60

80

100

120

140
A

vg
L

at
en

cy
(c

yc
le

s)
Random

0.05 0.10 0.15 0.20 0.25
0

20

40

60

80

100

120

140

Reversal

0.05 0.10 0.15 0.20 0.25
0

20

40

60

80

100

120

140

Tornado

0.05 0.10 0.15 0.20 0.25
0

20

40

60

80

100

120

140

Rotation

Base VC2 WBFC VC1 WBFC VC2 Worm BCS VC1 Worm BCS VC2 Bubble Share C10 Adp Bubble C4 6

Fig. 6. Delivered Throughput (Retired Flits/Node/Cycle) vs Average Latency (Cycles) for 4x4 Torus with different traffic patterns

adaptive bubble shared routers, the routing logic provides
minimal adaptive paths along with the non-minimal escape
rings. We prioritize minimal paths over non-minimal ones
during allocation. We assume that backward displacement or
progressive movement of bubbles can take place in a single
cycle regardless of link delays. This can be done by having a
separate network for control signals.

Parametric configurations of each of the routers is given
in Table I. The table also shows the abbreviations used in
the results section for each of the router. Here VCx means
edge buffer router with x number of VCs. Similarly, Cx y
represents bubble sharing routers with x entries reserved for
white bubbles, and y entries reserved for yellow bubbles.
Note that the reserved slots for blue bubbles (1 per ring) are
additional from the ones given by Cx y. We have assumed
1-message class and single flit output buffers, with 128 bit
wide links for all the routers. Injection & ejection queue size
is kept to be 20 flits for all cases.

Router Abbreviation InBuff CBuff
Baseline Base VCx 2*x 0

Worm Bubble Flow Control WBFC VCx 2*x 0
Adaptivity with Edge Buffers Worm BCS VCx 2*x 4

Bubble Sharing Bubble Share Cx 1 x+8
Adaptive Bubble Sharing Adp Bubble Cx y 1 x+y+4

TABLE I
SYSTEM CONFIGURATIONS OF VARIOUS ROUTERS

We model 4 different topologies, namely 4x4 and 8x8 torus,
and 4x4 and 8x8 generalized hyper-cube (GHC), representing
various degrees of high and low radix routers. The torus
networks have single cycle link delays between subsequent
routers. The GHC models multi-cycle links, equal to the
number of routers between the source and destination, that
is, the link delay for node 2 and node 3 from node 0 in x-
dimension will be two and three cycles, respectively.

Four different synthetic traffic patterns, (random, tornado,
bit-reversal, and bit-rotation), are used. The packet size for
synthetic traffic is kept to be 6 flits. All simulations are done
for 10 million cycles. Application traces are taken by running
64 threaded version of PARSEC and SPLASH benchmarks
with 64 cores, 16 MC configuration, using an in-house sim-
ulator, with DRAMSim2 [13] as the main memory model.
The traces are generated at the back side of the L1 cache,
and messages are classified into read/write/coherence type
requests. A reply of 6 flits is generated from the destination
for all read requests. Read requests and coherent messages
consists of 2 flits, and write messages are 6 flits. This allows
us to test our scheme for variable size packets as well.

For area & power modeling, Orion 2.0 [16] is used. We
modified Orion to accurately model centralized buffer routers
(CBRs). As a conservative estimate, EB links are modeled to

take 3x more leakage power and 3x more area in routing logic
than non-EB links. Since CBRs have 3 allocation stages, they
take 3x more area and power in arbiters. Furthermore, they
have an additional crossbar output port going to the central
buffer, increasing their area. The extra injection & ejection
logic used for WBFC takes few gates and is ignored. Similarly,
power taken by extra backward displacement signals, and extra
injection and ejection logic are assumed to be negligible. The
network is modeled to be running at 2GHz with Vdd = 1.0V
and 45nm technology. Activity for different components such
as crossbar, input and, output buffers, etc., are taken directly
from performance simulations, and fed as activity of different
components to Orion.

B. Performance with Synthetic Traffic

2D Torus Topologies: Figure 6 compares throughput and
average packet latency of various schemes in a 4x4 torus
network. The performance of single-VC WBFC and single-VC
Worm-BCS is low. This is because of the injection limitations
required to enter a ring. However, with 2VCs, the performance
increase significantly, more than the baseline 2VC router for
most traffic patterns. The reason lies in the availability of more
non-ring channels that does not suffer the injection limitation.
Bubble Sharing gives the best result both in terms of low
load latency and saturation throughput. Reduction in low-
load latency is attributed to elastic links and single cycle
pipeline delay in the router. Furthermore, having multiple
bubbles per ring reduces the injection delay, which results in
improved throughput as compared to WBFC. Adaptive bubble
sharing suffers performance loss, both in terms of no-load
latency and saturation throughput, because of the ejection
limitations discussed in section III-B. Since, there are a few
number of non-ring channels, ejection limitation does not
allow packets that have already entered the ring to leave it,
limiting the throughput equal to the throughput of the virtual
ring. However, the minimum number of buffers required is
extremely low, even with respect to bubble shared router. This
is explained in section IV-C. 8x8 Torus topology shows similar
results (not shown due to space constraints).

2D GHC Topologies: Figure 7 shows the same result with
a 4x4 GHC. In this case, the ejection limitation is reduced
because of the high number of non-ring channels available.
Furthermore, prioritizing minimal hops reduces the low-load
latency of the adaptive bubble sharing router, as well as its
saturation throughput. Both edge buffer routers suffer due to
the presence of credit base flow control. Figure 8 compares
throughput and average packet latency with an 8x8 GHC. It
can be seen that the adaptive bubble scheme surpasses others
by a large margin. Again, this is because of the high number of



0.05 0.10 0.15 0.20 0.25 0.30
0

20

40

60

80

100

120

140
A

vg
L

at
en

cy
(c

yc
le

s)
Random

0.05 0.10 0.15 0.20 0.25 0.30
0

20

40

60

80

100

120

140

Reversal

0.05 0.10 0.15 0.20 0.25 0.30
0

20

40

60

80

100

120

140

Tornado

0.05 0.10 0.15 0.20 0.25 0.30
0

20

40

60

80

100

120

140

Rotation

Base VC1 Base VC2 Worm BCS VC1 Worm BCS VC2 Adp Bubble C4 2

Fig. 7. Delivered Throughput (Retired Flits/Node/Cycle) vs Average Latency (Cycles) for 4x4 GHC

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0

20

40

60

80

100

120

140

A
vg

L
at

en
cy

(c
yc

le
s)

Random

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

20

40

60

80

100

120

140

Reversal

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

20

40

60

80

100

120

140

Tornado

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

20

40

60

80

100

120

140

Rotation

Base VC1 Base VC2 Worm BCS VC1 Worm BCS VC2 Adp Bubble C4 6

Fig. 8. Delivered Throughput (Retired Flits/Node/Cycle) vs Average Latency (Cycles) for 8x8 GHC

non-ring channels available along with EB links. Furthermore,
the buffering requirement per router did not change, even with
high number of ports. Extremely low no-load latency is also
achieved due to the presence of EB links, priority for minimal
hops, and low hop count.

We conclude this section by making the following remarks.
For low radix networks, adaptivity using bubbles does not
help. In such a case, deterministic bubble sharing scheme
performs the best with reduced buffer space due to sharing.
However, with high radix topologies that have many routes
to destination, adaptivity provided with bubbles significantly
improves performance without increasing the buffer area.

C. Buffer Space Analysis and Impact on Area

Edge buffer routers requires at least 1 worm-sized entry per
input port per VC. Worm BCS also requires a packet size
- worm size central buffer for minimum operation. WBFC
requires PktS WB Black and 1 Grey bubble to be injected per
ring at initialization. For a 6 flit packet with bubble size of 2,
this means four bubbles per ring. The total number of rings
in a 4x4 torus are 16, four in each direction. Thus, 4x16=64
bubbles will be injected at initialization. Edge buffer routers
use input buffers to provide these bubbles. With central buffers,
minimum number of entries required by each router is 64/16=4
bubbles. Assuming that we have at least 1 white bubble per
router at initialization, the number of entries required at each
router = 5 worm-bubbles or 10 flits. Furthermore, each router
requires 1 blue bubble per ring making the minimum central
buffer size to be 18 entries for routers with bubble sharing. It
should be noted that with an 8x8 torus, this will be reduced to
12 entries per router. In the adaptive bubble sharing case, the 2
virtual rings require 4*2=8 bubbles anywhere in the network,
in addition to the 2 blue bubbles per router. This makes the
minimum requirement with adaptive bubble sharing to be 6-8
entries per router.

Table II gives the total buffer space requirements of different
routers with different configurations. The formula for calculat-
ing the buffer space is [P ∗ (I ∗V C+O)+C]∗L, where L is
the link width, P is the number of ports, I , O, C is number of
flits in input, output and central buffers, respectively. For 2D-
ring topologies, the 2VC baseline and WBFC routers require
400 bytes per router. Worm BCS requires slightly more with a

small central buffer. Since, worm size is only 2 flits, and we
have 1 flit staging buffer in the centralized buffer routers, the
total buffer space in bubble sharing router with central buffer
entries of 20 is high. However, the buffer size increases very
slowly with increase in the number of ports and gets extremely
low, e.g., for 8x8 GHC. The adaptive bubble sharing router will
always have smaller buffering requirement than others because
of its small entry central buffer. Furthermore, its throughput
with large number of adaptive channels is high, making it an
ideal candidate for high-radix routers.

RowNo Parameter 2D-Torus 4x4-GHC 8x8-GHC
1 Baseline VC2 400 560 1200
2 WBFC VC2 400 560 1200
3 Worm BCS VC2 464 624 1264
4 Bubble Share C10 448 512 768
5 Bubble Share C12 480 544 800
6 Adp Bubble C4 2 320 384 640
7 Adp Bubble C4 6 384 480 704

TABLE II
BUFFER SPACE PER ROUTER (BYTES) WITH DIFFERENT CONFIGURATIONS

Fig 9a) gives the area distribution of a 4x4 Torus and an
8x8 GHC router with different configurations. Baseline has a
large area in the input buffer for both 4x4 and 8x8 routers
even with a single message class. The input buffer area for
bubble sharing routers is low. However, central buffer takes
a significant amount of area as well. In 2D-Torus, this area
dominates over other parts making bubble shared routers 3%
more expensive than the baseline 2VC router. However, with
adaptive bubble sharing and small buffers, the area decreases
by 27% making it the cheapest. Furthermore, with high radix,
such as in GHC, the increase in central buffer area is very low,
as compared to area requirements of multi-VC input buffers
and crossbars, thus reducing the area of adaptive bubble router
by 46% and 52% compared to the Base VC2 and Worm-
BCS VC2 routers, respectively. Note that the crossbars are
configured as input channels X output ports, that makes
their area larger depending upon the number of VCs. Since
centralized buffer routers do not have VCs, their crossbar area
does not increase as significantly as edge buffer routers.

D. Power Analysis

Figure 9b) compares the static and dynamic power dissipa-
tion of different routers at low loads configured in a 4x4 torus
and 8x8 GHC topology. At low loads, most of the router power



Base-2VC

WBFC-2VC

WBCS-2VC

Bbl-Shr-C12

Adp-Bbl-C4-6
Base-2VC

WBCS-2VC

Adp-Bbl-C4-6
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
A

re
a

D
is

t.
(m

m
2
)

4x4 Torus

8x8 GHC

InBuf OutBuf CBuf Xbar

Base-2VC

WBFC-2VC

WBCS-2VC

Bbl-Shr-C12

Adp-Bbl-C4-6
Base-2VC

WBCS-2VC

Adp-Bbl-C4-6
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

P
ow

er
D

is
t.

(W
at

ts
)

Static Dyn-Buf Dyn-nonBuf

Base-2VC

WBFC-2VC

WBCS-2VC

Bbl-Shr-C12

Adp-Bbl-C4-6
Base-2VC

WBCS-2VC

Adp-Bbl-C4-6
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
.

P
ow

er
D

is
t.

Fig. 9. Router Area & Power with different configurations a) Area Distribution b) Low Load Power Distribution c) High Load Power Distribution

ocean
radio radix stream vips

volrend water
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
.

A
vg

L
at

en
cy

Base VC2

Worm BCS VC2

Adp Bubble C4 6

ocean
radio radix stream vips

volrend water
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

T
h

ro
u

gh
p

u
t/

U
n

it
P

ow
er

) Base VC2

Worm BCS VC2

Adp Bubble C4 6

ocean
radio radix stream vips

volrend water
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

T
h

ro
u

gh
p

u
t/

U
n

it
P

ow
er

) Base VC2

WBFC VC2

Worm BCS VC2

Bubble Share C10

Fig. 10. Real Application Results. (a) Normalized average packet latency for 8x8GHC. Throughput per unit power for (b) 8x8GHC (c) 8x8Torus

is static, with very small dynamic power in the buffers. The
static power of the bubble shared router is 24% lower than the
baseline in 4x4 torus topology. This is due to the presence of
a smaller crossbar (single-VC) in it. Adaptive bubble shared
routers further reduces it to 32% & 41% for 4x4 torus and 8x8
GHC, respectively, because of their smaller central buffers.

At high loads, as shown in Figure 9c), buffers take a
significant portion of the overall dynamic power, with reduced
distribution in links & crossbars. The highest for torus topol-
ogy is taken by bubble sharing routers because of the largest
buffer size. However, the adaptive bubble sharing case, as can
be seen with the GHC topology, requires the least amount of
dynamic buffer power even with the highest throughput.

E. Results with Real Benchmarks

Fig 10a) gives the average packet latency of various schemes
with an 8x8 GHC topology normalized with respect to the
baseline 2VC router. As can be seen, adaptive bubble sharing
consistently gives lower latency across a range of benchmarks.
The percentage improvement on average is 31%. Similar
results can be seen in Fig 10b) showing throughput per unit
power. Average percentage improvement in this case is 41%.
With 8x8 torus (Fig 10c), although adaptive bubble sharing did
not perform as good, our bubble sharing scheme outperforms
all other schemes with an average improvement in throughput
per unit power by 13% and 25% compared to Base VC2 and
WBFC VC2, respectively. Average packet latency results for
an 8x8 torus (not shown) are similar.

V. CONCLUSIONS

This paper addresses the buffer space reduction problem
in on-chip networks by proposing to use variants of bubble
flow control in centralized buffer environment, specially for
high radix networks. A wormhole-based version of the bubble
coloring scheme is also presented to provide adaptivity without
the use of VCs in centralized buffer routers. The routers
presented use less buffering, with lower power and improved
throughput, as compared to traditional multi-VC edge-buffered
routers. Our results indicate an average improvement of 41%
in throughput per unit power for PARSEC and SPLASH

benchmarks, configured in an 8x8 GHC topology. Future work
includes the design of better virtual rings to reduce the latency
of non-minimal escape paths and allowing separation of flows
for different message classes within the rings.

ACKNOWLEDGEMENTS

This research was supported in part by the National Science
Foundation under grant CNS 0855110 and Sandia National
Laboratories. We also acknowledge the detailed and construc-
tive comments of the reviewers.

REFERENCES

[1] L. Chen and T. M. Pinkston, “Worm-bubble flow control,” in High
Performance Computer Architecture (HPCA), 2013.

[2] L. Chen, R. Wang, and T. Pinkston, “Critical bubble scheme: An efficient
implementation of globally aware network flow control,” in Parallel
Distributed Processing Symposium (IPDPS), 2011.

[3] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann Publishers Inc., 2003.

[4] J. Duato, S. Yalamanchili, and L. Ni, Interconnection networks. Morgan
Kaufmann, 2002.

[5] S. M. Hassan and S. Yalamanchili, “Centralized buffer router: A low
latency, low power router for high radix nocs,” in NOCS, 2013.

[6] M. Hayenga, N. Jerger, and M. Lipasti, “Scarab: A single cycle adaptive
routing and bufferless network,” in IEEE/ACM Microarchitecture, 2009.

[7] Y. Ho Song and T. M. Pinkston, “A progressive approach to handling
message-dependent deadlock in parallel computer systems,” IEEE Trans.
Parallel Distrib. Syst., 2003.

[8] S. Ma, N. E. Jerger, and Z. Wang, “Whole packet forwarding: Efficient
design of fully adaptive routing algorithms for networks-on-chip,” in
HPCA, 2012.

[9] G. Michelogiannakis and W. Dally, “Elastic buffer flow control for on-
chip networks,” Computers, IEEE Transactions on, 2011.

[10] T. Moscibroda and O. Mutlu, “A case for bufferless routing in on-chip
networks,” in ACM SIGARCH Computer Architecture News, 2009.

[11] V. Puente et al., “Adaptive bubble router: a design to improve perfor-
mance in torus networks,” in ICPP, 1999.

[12] R. Ramanujam et al., “Design of a high-throughput distributed shared-
buffer noc router,” in Networks-on-Chip (NOCS), 2010.

[13] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle
accurate memory system simulator,” IEEE Comput. Archit. Lett.

[14] L. shiuan Peh and W. J. Dally, “Flit-reservation flow control,” IEEE
Transactions on Parallel and Distributed Systems, 2000.

[15] Y. Tamir and G. Frazier, “Dynamically-allocated multi-queue buffers for
vlsi communication switches,” Computers, IEEE Transactions on, 1992.

[16] H.-S. Wang et al., “Orion: a power-performance simulator for intercon-
nection networks,” in MICRO 35, 2002.

[17] R. Wang, L. Chen, and T. M. Pinkston, “Bubble coloring: Avoiding
routing- and protocol-induced deadlocks with minimal virtual channel
requirement,” in International Conference on Supercomputing, 2013.


