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Sustaining processor performance growth is challenged
by physical limitations due to increased power and heat
dissipations. Power and thermal management techniques
combined with inherent workload dynamics create the
spatiotemporal variations of power, temperature, and
degradation in processors. As industry moves to smaller
feature sizes, the performance will become increasingly
dominated by the physics. The challenge is in understanding
how the physics is manifested at the microarchitecture level.
This requires the modeling and simulation environment that
can capture multiple, distinct physical phenomena and their
concurrent impact on the microarchitecture.

There already exist various point tools for physical modeling
popularly used in the architecture research community, e.g.,
power, reliability, etc [1]-[5]. Considerable effort has been
invested in their development and availability. The principal
challenge is to accurately incorporate the interactions between
the models of multiple, distinct physical phenomena into
the same domain of analysis. The architecture community
continues to develop new models or update existing tools along
with technology changes. Thus, a modeling and simulation
framework must be compatible with various implementations
of models and open to the integration of new models as they
are developed. There are various engineering challenges to
the construction of a composable, scalable, and standardized
simulation framework. We introduce the integrated power,
reliability, and thermal/cooling modeling framework for
multicore architectures, named Energy Introspector (EI). We
emphasize that the purpose of the EI framework is to provide
an infrastructure and standardized interface to bridge different
models/tools without inter-dependency in software integration
while the interactions between the multiple physics (e.g.,
thermal, reliability) are correctly captured. The framework is
easily extensible (e.g., add new models), has well defined
interfaces to multicore simulation models [6], and itself can
execute in parallel.

Fig. 1 illustrates architecture-level modeling with the EIL
Each tool is typically specialized to model a single type
of physical property, and different tools have i) different
functionality, ii) are designed with different usage models in
mind, and iii) span different time scales [1]-[5]. Supporting
the features of all these tools in the same framework is
challenging. In the EI framework, the models are categorized
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Fig. 1. Architecture-level modeling of interactions between
physical phenomena and microarchitecture.

into classes called [ibraries including energy, thermal,
and reliability libraries. The energy library includes the
models used for power modeling (e.g., Cacti/McPAT [3],
Orion/DSENT [2], etc.), and the thermal library includes the
package-level temperature/cooling models such as 3D-ICE [4]
and HotSpot [1]. The reliability library includes wear-out
models [5] such as negative bias temperature instability
(NBTI) and time dependent temperature breakdown (TDDB)
that are used to calculate transient failure rates of processor
components with current operating conditions (e.g., voltage
and temperature stresses). For each model integrated into the
EI framework, a wrapper class is created. The wrapper class
is defined as the subclass of one of the library classes. It
includes the header/source codes of the tools to be integrated
and re-defines the use of the models according to the functions
of corresponding library. Therefore, the models of the same
library type can be used in an identical way although their
implementations are different.

The challenge for a flexible and composable framework
is that multiple libraries and their subclass models have to
be consistently connected to configure a processor model.
In addition, processor descriptions differ between architecture
simulators and physical models. Architecture simulators are
comprised of functional blocks (e.g., cores, caches, network),
while the physical models use circuit or package-level
representations of a processor design. Therefore, there has
to be a method to establish a correspondence between the
elements of processor descriptions and relevant library models.
In the EI framework, a processor is represented as a hierarchy
tree of pseudo components. Pseudo components are virtual
units where the integrated library models estimate physical
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Fig. 2. Energy Introspector framework comprised of pseudo
component hierarchy. Physical interactions are emulated by
cross-references of data between pseudo components.

phenomena. Different physical properties are characterized at
different levels of processor abstraction. For instance, energy
(or power) is characterized with architecture/circuit-level
components with access (or switching) counts. Temperature
is calculated at the package level, and reliability is
characterized at the block level. Therefore, pseudo components
represent different levels of processor abstraction. The pseudo
component hierarchy can be configured for different processor
designs. The tree can have as many levels in depth, and each
component can have as many sub-components as necessary.

Each pseudo component includes the data queues to store
the computed results and shared data (e.g., voltage, frequency).
The data queues are used to handle cross-reference and
synchronization between the models. For instance, power data
calculated by the energy library are stored in the queue,
and any libraries (e.g., thermal library) that depend on the
power can query the queue to retrieve the data. Since the
data are stored in separate structures than the integrated
tools, variables and states of the models can be updated by
referring to the data queues without erroneous accesses to the
computed results of previous computing intervals. Data in the
queues are associated with the time information for correct
synchronization, and error detection is provided.

Combining the interaction chain of multiple physical
phenomena in Fig. 1 and processor description method
using the pseudo component hierarchy, the Energy
Introspector framework is depicted in Fig. 2. The simulated
microarchitecture is decomposed into source components

where the linked energy library models estimate power
dissipation, and the calculated power values are stored (at
each computing interval) in the data queues of these pseudo
components. Power data are synchronized along the pseudo
component hierarchy by aggregating the power numbers from
the leaves toward the root of the tree, and the data queues
of pseudo components are updated. Since the data in the
queues are tagged with the time information, violations can
be detected. After power synchronization is completed, the
pseudo components that are designated as the floor-plans
of the package-level model have updated power numbers,
and the thermal library can safely process the temperature
computation. The thermal library model internally converts the
floor-plan powers to grid-level power distribution, calculates
thermal grid states, and translates the grid-level states to
floor-plan temperatures. After the temperature calculation
is performed, the EI interface updates the temperatures of
floor-plan components. When synchronizing the temperature
data, it is assumed that the temperature is uniform within each
floor-plan component. If there are multiple sub-components
belong to the same floor-plan component, they are updated
with the same temperature value. When new data are
inserted into the queues, the callback functions of libraries
are called to update the dependent variables and states of
subclass models. Reliability is characterized at the block
level (e.g., floor-plans). It is expressed as a failure rate and
dependent on operating conditions such as temperature and
voltage stresses. The failure rates can be used to address
the relative impacts of concurrent workload executions and
microarchitectural operations on the lifetime reliability. This
process is repeated at every computing interval. Computed
results stored in the data queues of pseudo components are
viewable to user simulators, and power/thermal controls
such as voltage-frequency scaling can be simply applied
by inserting new voltage/frequency values into the data
queues, which triggers the callback functions of library
models to update the states. The EI framework supports
parallel simulations via the MPI interface. In summary, the
EI framework has the following features and contributions.
o Compatible integration of physical models/tools
e Coordinated interactions between multiple,
physical models
o Composable framework to model and simulate different
processor designs
e User API for user architecture simulators to simplify the
use of models
e Parallel simulation using the MPI interface for scalability
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