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Motivation 

Box, G. E. P., and Draper, N. R., (1987), Empirical Model Building 
and Response Surfaces, John Wiley & Sons, New York, NY.  

“Remember that all models are wrong; the practical question is how 
wrong do they have to be to not be useful.”  

 
George E. P. Box, 2011 

George E. P. Box, 2011 
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Simulation Infrastructure Challenges 
n Scalability 

n Processors are parallel and tools are not 
à not sustainable 

n Multi-disciplinary 
n Functional + Timing + Physical models 

n Need to model complete systems 
n Cores, networks, memories, software at 

scale 

n Islands of expertise 
n Ability to integrate point tools à best of 

breed models 

n Composability 
n Easily construct the simulator you need 
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Overview 

n Execution Model 

n Multicore Emulator Front-End & Component Based 
Timing Model Back-End 

n Physical Modeling 

n Parallel Simulation 

n Some Example Simulators 
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Manifold Overview 
n A parallel simulation framework for multicore architectures 
n Consists of: 

n  A parallel simulation kernel 
n  A (growing) set of architectural components 
n  Integration of physical models for energy, thermal, power, and so on 

n Goal: easy construction of parallel simulators of multicore 
architectures 
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Related Work: Graphite, Sniper, Gem5, SST, PTLSim, etc. 
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Execution Model: Overview 

•  Instruction stream  
•  Generated by i) trace files, ii) Qsim server, iii) Qsim Lib 

•  System timing model 
•  Multicore model built with Manifold components 
•  Components assigned to multiple logical processes (LPs) 

•  Each LP assigned to one MPI task; LPs run in parallel 

Instruction stream 

System timing 
model 

Traces Serial 
Emulator  

Parallel 
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Options  

Cycle level 
components 

High level timing 
components 

Physical Models 
(e.g., Power) 

backpressure 
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Execution Model (Socket/Blade) 
n Full-system simulation 

n Parallel Simulation 

n  Integrated Physical 
Models 

n Hybrid timing model 

n Multiscale  

n Component-based 
design 
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Parallel Simulation 

Parallel Simulation Kernel (PSK) 
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QSim Multicore Emulator  
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n Library for instantiating multicore emulators  
n Based on the core translation engine from QEMU  

n  Runs unmodified x86 (32-bit) 
binaries on lightly-modified Linux 
kernel. 

n  Provides callback interface for 
execution events 

n  Callbacks generated for all 
instructions, including OS 

n  Filtering of instruction stream 

n  Can be extended to support other 
ISAs, e.g., ARM, PPC, via QEMU 
support 
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QSim Features 

n Fine-grained Instruction-level execution control 
n Single instruction level 

n Two ways to use: 
n QsimLib: for creating multithreaded emulators 

n QSim Server: for serving parallel/distributed simulations 

n State files for fast startup 
n State file contains memory state after Linux bootup 

n Fast forward and region of interest support 

n Booted up to 512 virtual cores 

10 
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Timing Model Components 
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Links are 
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event_handler(T*) 

Inter-LP events 

n Component may be time-
stepped, discrete event, 
or both 
n Named handlers for each 

case 
n Clock subscription 
n Can mix time stepped and 

DES 
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send(data*) 
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Manifold Component Models 
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IRIS: Flit level Network Simulator 

Multiple core models: in-order, out-of-order, abstract, etc.  

CaffDRAM 

Coherent cache hierarchy 

Client Client Client Client

Manager

Client Client Client Client

Manager

Coherence Realm

$ $ $ $

Manager

Coherence Realm

Tier 1

Tier 2

Tier 3

Coherence Domain

*J. G. Beu,, “Manager-Client Pairing: A Framework 
for Implementing Coherence Hierarchies,” 
MICRO-44, Dec., 2011. 

G. Loh et. al Zesto: A Cycle-Level Simulator for Highly 
Detailed Microarchitecture Exploration, ISPASS 2009 

•  Multiple Models 
•  Multiple level of 

Abstraction 
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Modeling Physical Phenomena 
n Energy Introspector (EI) is a modeling library to facilitate the 
(selective) uses of different models and capture the 
interactions among microprocessor physics models. 
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Architecture-Level Physical Modeling 
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Abstract Representation of Architecture-Physics Interactions 
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Processor Representation 
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Parallel Simulation Kernel: Synchronization 
Algorithms 

18 

l  Problem: Synchronized advance of simulation time 
l  State of the Practice solutions 

l  Conservative algorithms, e.g., lower bound time stamp (PBTS)  
l  Optimistic algorithms, e.g., Time Warp 
l  Included in Manifold 

l  New: Forecast Null Message (FNM) 
l  Use domain specific information to predict time of future events 
l  For example, consequence of Last Level Cache access.  
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Forecast Null Message (FNM) Algorithm 

1.  Forecast determined by runtime state 

•  E.g., at cycle t, cache receives a request; with latency L, the earliest 
time when it sends out a message is (t + L). This is its forecast. 

2.  Because components send credits after receiving events, 
time-stamp for Null-message must consider neighbors’ 
forecast. 

3.  Null-message time-stamp set to min(out_forecast, 
in_forecast), where in_forecast is forecast carried 
on incoming Null-messages. 
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Null(ts, forecast)l 

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | SCHOOL OF COMPUTER SCIENCE | GEORGIA INSTITUTE OF TECHNOLOGY MANIFOLD 

Building and Running Parallel Simulations 
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Instantiate 
Components 

Connect Components 

Register Clocks 

Simulation Functions 

Initialization Configuration parameters 

•  From Manifold Library 
•  Inputs (trace, QSIM, etc.) 

Instantiate Links 

•  Set Timing Behavior 
•  Time stepped vs. discrete event 

Set Duration, Cleanup, etc.   
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CMP (16-, 32-, 64-core) 

n 16, 32, 64-core CMP models 

n 2, 4, 8 memory controllers, respectively 

n 5x4, 6x6, 9x8 torus, respectively 

n Host: Linux cluster; each node has 2 Intel Xeon X5670 6-core 
CPUs with 24 h/w threads 

n 13, 22, 40 h/w threads used by the simulator on 1, 2, 3 
nodes, respectively 

n 200 Million simulated cycles in region of interest (ROI) 
n Saved boot state and fast forward to ROI 
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Sample Results: Simulation Time in Minutes 

16-core 32-core 64-core 
Seq. Para. Seq. Para. Seq. Para. 

dedup 1095.7 251.4 (4.4X) 2134.8 301.3 (7.1X) 2322.9 345.3 (6.7X) 

facesim 1259.3 234.9 (5.4X) 2614.2 303.6 (8.6X) 3170.2 342.3 (9.3X) 

ferret 1124.8 227.8 (4.9X) 1777.9 255.6 (7.0X) 2534.3 331.3 (7.6X) 

freqmine 1203.3 218.0 (5.5X) 1635.6 245.6 (6.7X) 2718.9 337.3 (8.1X) 

stream 1183.8 222.7 (5.3X) 1710.6 244.3 (7.0X) 4796.4 396.2 (12.1X) 

vips 1167.0 227.3 (5.1X) 1716.3 257.2 (6.7X) 2564.6 337.9 (7.6X) 

barnes 1039.9 224.3 (4.6X) 1693.0 283.3 (6.0X) 3791.8 341.4 (11.1X) 

cholesky 1182.4 227.2 (5.2X) 1600.3 245.7 (6.5X) 4278.3 402.1 (10.6X) 

fmm 1146.3 229.6 (5.0X) 1689.8 253.6 (6.7X) 5037.2 416.1 (12.1X) 

lu 871.2 156.4 (5.6X) 1475.8 204.6 (7.2X) 4540.3 402.7 (11.3X) 

radiosity 1022.3 228.8 (4.5X) 1567.5 250.4 (6.3X) 2813.5 350.3 (8.0X) 

water 671.5 158.4 (4.2X) 1397.3 236.7 (5.9X) 2560.1 356.3 (7.2X) 
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Simulation KIPS and KIPS per H/W Thread 
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n Need metrics for 
assessing scalability of 
parallel simulation 

n Note the impact of non-
instruction events, e.g., 
network or memory 
events 

n Drop roughly parallels 
drop in parallel efficiency 
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Some Lessons 

n Variations in component timing behaviors 

n Physical models can be the bottleneck 

n Event flow control 
n Hidden (infinite capacity) buffers occurrence 
n Example: Memory controller interface 

n Effects of simulation model partitioning 
n Synchronization overhead 

n Relaxed synchronization for power/thermal modeling 
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Power Capping Controller 

§  Dynamic Voltage Frequency Scaling 

§  Regulating asymmetric processors 

N. Almoosa, W. Song, Y. Wardi, and S. Yalamanchili, “A Power Capping 
Controller for Multicore Processors,” American Control Conf., June 2012. 

New set point  
Two in-order and 
two OOO cores 
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Microfluidic Cooling in Die Stacks 
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Nehalem-like, OoO cores;    
3GHz, 1.0V, max temp 100◦C      
DL1: 128KB, 4096 sets, 64B 
IL1: 32KB, 256 sets, 32B, 4 cycles;     

L2 & Network Cache Layer: 
L2 (per core): 2MB, 4096 sets, 
128B, 35 cycles; 
DRAM: 1GB, 50ns access time (for 
performance model) 

Ambient:  
Temperature: 300K 

•  Thermal Grids: 50x50 
•  Sampling Period: 1us 
•  Steady-State Analysis 
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H. Xiao, Z. Min, S. Yalamanchili and Y. Joshi, “Leakage Power Characterization and Minimization over 3D Stacked Multi-core Chip with 
Microfluidic Cooling,” IEEE Symposium on Thermal Measurement, Modeling, and Management (SEMITHERM), March 2014 

Executing SPLASH and 
PARSEC Benchmarks 
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Impact of Cooling Co-design on Leakage Power 
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H. Xiao, Z. Min, S. Yalamanchili and Y. Joshi, “Leakage Power Characterization and Minimization over 3D Stacked Multi-core Chip with 
Microfluidic Cooling,” IEEE Symposium on Thermal Measurement, Modeling, and Management (SEMITHERM), March 2014 
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Summary  
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n Composable simulation infrastructure for constructing multicore 
simulators 
n Parallel execution 
n  Integrated physical models 

n Provide base library of components to build useful simulators 

n Distribute some stock simulators 

n Need: Validation Techniques such as Uncertainty Quantification 
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