
Position Paper: Software-based Techniques for Reducing the Vulnerability of
GPU Applications

1Si Li, 2Vilas Sridharan, 3Sudhanva Gurumurthi, 1Sudhakar Yalamanchili
1Computer Architecture Systems Laboratory, Georgia Institute of Technology

2RAS Architecture, Advanced Micro Devices, Inc.
3AMD Research, Advanced Micro Devices, Inc.

Abstract

As highly-parallel accelerators such as graphics pro-
cessing units become more important in high-performance
computing, so does the need to ensure their reliable opera-
tion. In response, research has been directed at several ef-
forts to characterize and understand the hardware vulner-
ability of GPU microarchitecture structures, as well as to
detectng and correcting such vulnerabilities. In this posi-
tion paper, we advocate a transparent, customizable, and
dynamic software approach to reduce the vulnerability of
GPU applications. Specifically, we propose to realize these
enhancements via transparent code patching of GPU appli-
cations to increase protection of critical program regions.
We outline our approach, current infrastructure, some early
results, and long-term plans.

1 Introduction

Fault-detection and recovery mechanisms are integral to
computing devices deployed in environments that demand
high reliability (e.g., supercomputers). As GPUs increas-
ingly are used for general-purpose computing, there is a
need to incorporate reliability features to meet customer ex-
pectations. Some GPU accelerators already implement reli-
ability mechanisms (e.g., redundancy in the memory system
and bus operation). Error-correction code (ECC) enabled
memory corrects transient faults in DRAM, while cyclic
redundancy checks in the GDDR5 interface prevent faults
from occurring during transfers across the memory bus[12].
GPUs also employ ECC to protect large on-chip memory
structures [11]. However, not all devices employ these tech-
niques and such techniques do not cover all failure models
(e.g., untested corner cases or transient faults in the com-

Presented at the Dependable GPU Computing workshop of
ACM/IEEE DATE 2014 conference, Dresden, Germany, March 28, 2014

pute logic). Hardware-based protection mechanisms also
can impose significant area, performance, and power over-
heads.

Our research pursues a software-based approach to
providing resilience for applications running on GPUs.
Software-based approaches can facilitate end-to-end re-
silience that allows fault detection and recovery to be tai-
lored to the application rather than following a “one size fits
all” approach that is designed for the worst case. Flexible
software approaches can reduce the overall cost of imple-
menting reliability, by reducing die area dedicated solely to
reliability. Such approaches also can boost performance and
energy efficiency by incorporating the right level of protec-
tion for software to achieve resilience. Therefore, we seek
an approach that is customizable, extensible, and transpar-
ent to the application program to augment hardware tech-
niques. Previous approaches [16, 17, 14, 20] demonstrated
the increased reliability of software-based fault-detection
techniques in CPU architectures. The growing predomi-
nance of GPUs in compute-heavy infrastructures motivates
the need to pursue a similar research direction.

The specific work discussed in this paper relies on the
well-known architecture vulnerability factor (AVF) con-
cept [1] and the more recent related concept of program
vulnerability factor (PVF) [19]. PVF is a component of
AVF that can be controlled by program transformations in-
cluding the insertion of error-detection and recovery code.
We refer to such approaches that mitigate vulnerability
as Software Reliability Enhancements (SRE) [10]. Such
approaches introduce error-checking mechanisms such as
checksums, redundant computations, and redundant mem-
ory operations. They are inserted into the application binary
during just-in-time (JIT) compilation. Each SRE has a spe-
cific coverage and associated performance overhead. The
actual decision to use SRE and the choice of specific tech-
nique (e.g., checksum), is made by a reliability-aware run-
time manager responsible for launching the applications.

Our approach is to estimate the vulnerability of regions
of an application kernel to transient errors to determine spe-



cific regions of a GPU kernel where the insertion of an
appropriate SRE will be most beneficial while minimiz-
ing performance overhead. This involves determining the
degree of vulnerability in a region of code as well as the
type of vulnerability, to choose the most beneficial SRE. In
turn, this enables a figurative “knob” to dial between per-
formance and reliability. This knob can be controlled by
the higher-level runtime manager that determines the level
of acceptable fault vulnerability relative to performance im-
pact.

2 Rationale for Software-based Approaches

As with the CPU industry, we see the emergence of mul-
tiple GPU platforms and consequently instruction set archi-
tectures (ISAs). Our goal is to develop a set of SRE tech-
niques that are based on the bulk synchronous parallel exe-
cution model and easily portable across multiple platforms.
Accordingly we focus on code injection at the low-level
ISA such as NVIDIA’s Parallel Thread Execution (PTX) or
the Heterogeneous System Architecture Intermediate Lan-
guage (HSAIL) ISA implemented on AMD GPUs. Thus,
while SRE techniques can be customized for a target GPU,
our approach can provide a repertoire of target-neutral SRE
program transformations.

Further, we envision developing and cataloging SRE
techniques that target different fault models or different
classes of effects of faults. For example, in earlier work [10]
we reported on symptom-based SRE techniques for an
alignment checker that targets errors in memory address
operands in load/store instructions. These errors can be the
result of transient bit-flips or algorithmic or logic errors.
We also reported a control-flow checker that targets faults
in the branch address operand of control-flow instructions
and detects illegal control flows. We also want to introduce
vulnerability-based SRE techniques that provide end-to-end
protection as opposed to symptom or structure-based error
detection in hardware-based techniques such as ECC; these
solutions are limited to strict protection-domains.

Finally, we want to introduce techniques to estimate pro-
gram vulnerability to maximize reliability-coverage while
minimizing the cost of SRE overhead. We believe this can
be acheived by using information that is available statically
or at JIT time such as PVF, control-flow, and key GPU-
specific variables. Ultimately, the long-term solution is to
enable selective, transparent, customizable code injection to
improve reliable operation of applications on GPUs. While
algorithm-based fault tolerance (ABFT) techniques also can
provide software-based fault tolerance for GPUs [8], such
techniques target specific algorithms. Our goal is to de-
velop more generic software approaches that provide GPU
reliability. However, an interesting area of study would be
a performance comparison of SRE and ABFT techniques.

In fact, one question is whether SRE be used to imple-
ment ABFT techniques, thereby leveraging the advantages
of both.

3 Code Injection Mechanism

Lynx [7] is a dynamic instrumentation engine for data-
parallel applications on GPU architectures. Specifically,
Lynx allows the creation of customized, user-defined in-
strumentation routines that can be applied transparently at
run-time for a variety of purposes, including performance
debugging and correctness checking. Lynx originally was
written as part of GPU Ocelot [3], a dynamic compilation
framework for executing CUDATM applications on multi-
ple backends. CUDA kernels were compiled to NVIDIA’s
PTX ISA and then parsed and stored in Ocelot’s interme-
diate representation (IR) format. The Ocelot pass manager
applied analysis and transformation passes over the kernel
to insert instrumentation code. Lynx now exists as a stand-
alone library and provides both an API to integrate with any
runtime as well as a default implementation of the CUDA
runtime to support the execution of CUDA applications di-
rectly. The general procedure for executing CUDA applica-
tions includes specifying the desired instrumentation (or in
our case SRE code) in a C-like syntax, lowering to PTX, ap-
plying the relevant PTX transformations to inject this code,
and emitting the patched kernel for execution on the device.
For more information on the transformation pass frame-
work, please refer to [6].

Our current infrastructure is being extended to support
other low-level virtual ISAs such as HSAIL [9]. This is
being achieved by generalizing the Ocelot IR to serve as a
neutral target supporting multiple vendor IRs, thereby lever-
aging the significant investments so far to support a reper-
toire of target-neutral SRE program transformations. Ad-
vances that are more recent have combined symbolic exe-
cution with the use of AMD’s intermediate language (IL)
to reduce the overheads of instrumentation and extend the
scope of SRE [13].

4 A Motivating Example

To locate code regions of high vulnerability, we currently
focus our attention on the liveness properties of variables in
the IR. The intuition is that the greater the live range of a
variable, the more vulnerable it is to transient errors.

We can currently execute kernels with Ocelot’s PTX em-
ulator and study the live ranges of individual values, which
correspond to unique virtual registers in a one-to-one map-
ping. Live ranges are measured in the number of PTX in-
structions between the initial production and final consump-
tion of a value. We study the live range behavior by consid-
ering several metrics. For example, we sum the live ranges

2



0	
  

0.2	
  

0.4	
  

0.6	
  

0.8	
  

1	
  

1.2	
  

1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
   9	
   10	
   20	
   30	
   40	
   50	
   100	
   200	
   300	
   400	
   500	
  1000	
  1200	
  

N
or
m
al
iz
ed

	
  to
	
  T
ot
al
	
  R
eg
is
te
r	
  V

ul
ne

ra
bi
lit
y	
  

Live	
  Range	
  Size	
  

MatrixMul	
  

Scan	
  

BlackScholes	
  

Eigenvalues	
  

Mersenne	
  Twister	
  

Monte	
  Carlo	
  

Scalar	
  Prod	
  

SoboQRNG	
  

Dct8x8	
  

Figure 1. Cumulative Histogram of IR-level
Live Range Distribution

of all variables in a thread that provides the thread block
live range. Extending the sum across all the threads in a
thread block provides the thread block live range. Further,
computing the sum of thread block live ranges across a ker-
nel provides the kernel live range. We can now express er-
ror coverage as a percentage of the preceding sums that are
protected by the insertion of error-detection code. We also
can construct live range histograms in which a bin corre-
sponds to live range values and the count corresponds to the
number of variables in all of the kernels in that application
whose live range lies in the bin range. We can express error
coverage and overheads as a percentage of the number of
bins protected by error-detection code. Some examples are
discussed in the remainder of this section.

The cumulative histogram of the live ranges across a set
of benchmarks is illustrated in Figure 1. Total register vul-
nerability is represented by the sum of kernel live ranges
across all kernels in an application. The Y-value of each
live range bin captures the fraction of the total live range
whose size is equal to or smaller than the live range size of
the bin. The figure expresses this value as a percentage of
the register vulnerability. Let V be the total number of live
range instances in an application (across all kernels), and let
s be the number of live range bins, the histogram then is hi

and the cumulative histogram is Hi:

V =

s∑
i=1

hi Hi =

i∑
j=1

hj

For example, only 13% of the total register vulnerability
belongs to values whose live ranges are less than 50 instruc-
tions. This histogram captures a coarse measure of the cov-
erage possible when implementing an error check across a
subset of values based on live range size. The overhead to
detect a transient bit-flip in a live range is a fixed constant of
two instructions. This overhead is amortized over the dura-
tion of the live range. The larger the live range, the smaller
the relative cost. From Figure 1, it is apparent that the ma-
jority of live ranges are relativelty large (>10). Thus, the

overall PVF can be improved at a modest cost. Our current
infrastructure can insert these checks for all variables with
a specific live range and execute the modified kernel on the
device. While the software engineering is demonstrable, the
interesting research questions of quantifying coverage and
developing control schemes for fine-grained orchestration
of performance-reliability tradeoffs are in progress. The re-
sults are encouraging in establishing the opportunity to as-
sess and manage program vulnerability to transient errors at
a microarchitecture-neutral intermediate program level.

Measuring PVF over the intermediate representation has
pitfalls as well as advantages. The IR representation is
hardware-neutral. However, when mapped to a specific de-
vice with a specific number of registers the actual PVF will
be different. We argue that the IR still provides useful in-
formation and guidance especially if there is consistent rela-
tionship between PVF computed over the IR and that com-
puted over the target binary (this currently is a open ques-
tion). Register allocation may split the live range (generate
spill code) but the checks will still be valid although now
any errors detected in the memory system can lead to fail-
ures. Further, we see that PVF is sensitive to the thread
block scheduler because scheduling decisions can change
the period of (real) time over which register values are live.
Consequently they become more vulnerable to transient er-
rors and can degrade PVF. Understanding and mitigating
these effects are among the research challenges we are ad-
dressing.

5 Related Work

Yau, et al. [20] first demonstrated self-checking software
over function calls, control sequence, and data integrity.
Annelid [14] records the ranges of allocated memory and
performs bounds-check on each memory access. Annelid
operates on top of Valgrind [15], a dynamic instrumentation
platform for the x86 ISA. Erez et al. [5] proposed a fault-
tolerance technique using redundant execution, checkpoints
at control flows that govern write-backs, and control-flow
checking only at checkpoints. This technique focuses on the
Merrimac architecture. Sheaffer et al. [18] proposed redun-
dant hardware execution resources to provide resilience in
the face of transient faults in computational logic. Dimitrov
et al. [4] proposed three methodologies of redundant execu-
tion to achieve software reliability in GPU applications with
approximately 100% overhead: duplicate kernel execution,
instruction-level redundancy, and thread-level redundancy.
Maruyama et al. [12] showed a low-overhead software-
based ECC for GPU applications by offloading parity com-
putation to the CPU in the form of a library. This required
manual modification of the target application, whereas re-
liability enhancements using Lynx can be performed trans-
parently at runtime. Chung et al. [2] proposed the concept

3



of containment domains (CD) for resilient computing in a
scalable and efficient manner. CDs are hierarchical in na-
ture and failures in nested CD are localized and do not prop-
agate outward. Reliability enhancements proposed in this
paper can be used to detect failures when a more efficient
algorithmic failure detection does not exist.

6 Future Work

In general the notion of improving program vulnerabil-
ity using software reliability enhancements as described in
this work has multiple possible research directions. From
an engineering perspective, our vision is to extend our soft-
ware infrastructure to adopt a general intermediate repre-
sentation so that the open-source infrastructure can be lever-
aged across GPU platforms; HSAIL is a nearer-term target.
From a research perspective we wish to explore multiple
SRE techniques and draw initial inspiration from the body
of existing work on software-based fault tolerance to im-
prove the program and architectural vulnerability factors.
The SRE techniques then could become a library to deploy
selectively by a JIT compilation infrastructure to adapt to
temporally varying vulnerability demands.

References

[1] A. Biswas and P. Racunas. Computing architec-
tural vulnerability factors for address-based structures.
Proceedings of the 32nd International Symposium on
Computer Architecture, pages 532–543, 2005.

[2] J. Chung, I. Lee, M. Sullivan, and J. Ryoo. Contain-
ment Domains: A Scalable, Efficient, and Flexible Re-
silience Scheme for Exascale Systems. SC, 2012.

[3] G. Diamos and A. Kerr. Ocelot: a dynamic optimiza-
tion framework for bulk-synchronous applications in
heterogeneous systems. Proceedings of the 19th in-
ternational conference on Parallel architectures and
compilation techniques - PACT ’10, 2010.

[4] M. Dimitrov, M. Mantor, and H. Zhou. Understanding
software approaches for GPGPU reliability. Proceed-
ings of 2nd Workshop on General Purpose Processing
on Graphics Processing Units - GPGPU-2, pages 94–
104, 2009.

[5] M. Erez, N. Jayasena, T. Knight, and W. Dally.
Fault Tolerance Techniques for the Merrimac Stream-
ing Supercomputer. ACM/IEEE SC 2005 Conference
(SC’05), (c):29–29, 2005.

[6] N. Farooqui, A. Kerr, G. Diamos, S. Yalamanchili,
and K. Schwan. A framework for dynamically in-
strumenting GPU compute applications within GPU

Ocelot. Proceedings of the Fourth Workshop on
General Purpose Processing on Graphics Processing
Units - GPGPU-4, page 1, 2011.

[7] N. Farooqui, A. Kerr, G. Eisenhauer, K. Schwan, and
S. Yalamanchili. Lynx: A dynamic instrumentation
system for data-parallel applications on GPGPU ar-
chitectures. 2012 IEEE International Symposium on
Performance Analysis of Systems & Software, pages
58–67, Apr. 2012.

[8] S. H. H-J. Wunderlich, C. Braun. Efficacy and effi-
ciency of algorithm-based fault-tolerance on GPUs. In
On-Line Testing Symposium (IOLTS, July 2013.

[9] G. Kyriazis. Heterogeneous system architecture: A
technical review. In AMD, October 2012.

[10] S. Li, N. Farooqui, , and S. Yalamanchili. Software
reliability enhancements for gpu applications. In Pro-
ceedings of the Sixth Workshop on Programmability
Issues for Heterogeneous Multicores, 2013.

[11] M. Mantor. AMD Radeon
TM

HD 7970 with Graphics
Core Next (GCN) Architecture. In HotChips, August
2012.

[12] N. Maruyama. A high-performance fault-tolerant soft-
ware framework for memory on commodity gpus.
Parallel & Distributed Processing (IPDPS), pages 1–
12, 2010.

[13] K. S. N. Farooqui and S. Yalamanchili. Efficient In-
strumentation of GPGPU Programs using Information
Flow Analysis and Symbolic Execution. In Proceed-
ings of Seventh Workshop on General-Purpose Com-
putation on Graphics Processing Units (GPGPU-7),
March 2014.

[14] N. Nethercote and J. Fitzhardinge. Bounds-checking
entire programs without recompiling. SPACE, 2004.

[15] N. Nethercote and J. Seward. Valgrind: a frame-
work for heavyweight dynamic binary instrumenta-
tion. ACM SIGPLAN Notices, pages 89–100, 2007.

[16] N. Oh, P. P. Shirvani, E. J. Mccluskey, and L. Fel-
low. Control-Flow Checking by Software Signatures.
51(2):111–122, 2002.

[17] G. Reis, J. Chang, N. Vachharajani, R. Rangan, and
D. August. SWIFT: Software Implemented Fault Tol-
erance. International Symposium on Code Generation
and Optimization, pages 243–254, 2005.

4



[18] J. Sheaffer, D. Luebke, and K. Skadron. A hardware
redundancy and recovery mechanism for reliable sci-
entific computation on graphics processors. Proceed-
ings of the 22nd ACM SIGGRAPH/EUROGRAPHICS
symposium on Graphics hardware, pages 55–64,
2007.

[19] V. Sridharan and D. R. Kaeli. Eliminating microar-
chitectural dependency from Architectural Vulnerabil-
ity. 2009 IEEE 15th International Symposium on High
Performance Computer Architecture, pages 117–128,
Feb. 2009.

[20] S. Yau and R. Cheung. Design of self-checking soft-
ware. ACM SIGPLAN Notices, 10(6):450–455, 1975.

5


	Introduction
	Rationale for Software-based Approaches
	Code Injection Mechanism 
	A Motivating Example
	Related Work
	Future Work

