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Abstract—There has been little research that studies the ef-
fect of partitioning on parallel simulation of multicore systems.
This paper presents our study of this important problem in
the context of Null-message-based synchronization algorithm
for parallel multicore simulation. This paper focuses on coarse
grain parallel simulation where each core and its cache slices
are modeled within a single logical process (LP) and different
partitioning schemes are only applied to the interconnection
network. In this paper we show that encapsulating the entire
on-chip interconnection network into a single logical process is
an impediment to scalable simulation. This baseline partition-
ing and two other schemes are investigated. Experiments are
conducted on a subset of the PARSEC benchmarks with 16-,
32-, 64- and 128-core models. Results show that the partitioning
scheme has a significant impact on simulation performance
and parallel efficiency. Beyond a certain system scale, one
scheme consistently outperforms the other two schemes, and
the performance as well as efficiency gaps increases as the
size of the model increases – with up to 4.1 times faster speed
and 277% better efficiency for 128-core models. We explain the
reasons for this behavior, which can be traced to the features of
the Null-message-based synchronization algorithm. Because of
this, we believe that, if a component has increasing number
of inter-LP interactions with increasing system size, such
components should be partitioned into several sub-components
to achieve better performance.
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I. INTRODUCTION

Multicore designs for CPUs have been widely employed
in recent years. Researchers and industry CPU architects use
simulation to evaluate their design. So, simulation presently
plays an important role in the field of multicore system
design. The complexity of multicore system is high and
sequential simulation for such systems can hit bottlenecks
in terms of execution time. To handle the complexity and
achieve scalability for simulation, [1] [2] [3] and [4] pro-
posed parallel simulation for multicore system with parallel
discrete even simulation (PDES) [5].

In PDES programs, simulation is separated into processes
called logical process (LP). Each LP generates and processes
events in a distributed manner by sending and receiving mes-
sages with time stamps and ensures global order of events.
Synchronization algorithms play a key role and largely
determine the performance of PDES programs. Various syn-
chronization algorithms have been proposed by researchers,

including the Chandy-Misra-Bryant (CMB) algorithm [6].
CMB is a conservative algorithm that guarantees the correct
order of events. It uses Null messages to prevent deadlock.
A Null message is a message that has no content. Its
time stamp is the local time of the sender plus a positive
value called lookahead and represents a lower bound for all
future messages from the same sender. The purpose of Null
messages is to help the receiver to advance its simulation
time so that deadlocks are avoided. The CMB algorithm
was implemented as one of the synchronization algorithms
in the Manifold project [1].

Recently, [7] proposed an enhanced Null message algo-
rithm for multicore system using domain specific knowledge
and implemented it in the Manifold project. Experiments
showed promising results for reducing the number of Null
messages and speedup compared to serial simulation. How-
ever, [7] is mainly focused on the optimization of the
Null message algorithm itself and doesn’t explore the effect
of partitioning on the different system models with such
algorithms.

The purpose of this study is to examine the effect of
partitioning on the performance and scalability of the Null-
message-based parallel simulation of multicore systems. In
the following sections we will first show the effect that three
different partitioning schemes have on 16-, 32-, 64- and 128-
core system models. Then we will analyze the reason for
such effects based on the features of Null-message-based
synchronization algorithm. Finally, following this reason
we will present our conclusions as a general guide for
partitioning of Null-message-based parallel simulation.

II. BACKGROUND AND RELATED WORK

The Manifold project is an open source software project
that provides a scalable infrastructure for modeling and
simulation of many-core architectures [1]. It uses PDES, and
a component based design and standardized interfaces. A
typical system model that Manifold is designed to simulate
is presented in Figure 1. As shown in Figure 1, the system
model consists of a certain number of cores, caches, memory
controllers, and one interconnection network. Each core is
connected to a cache, and then cache and memory controllers
connected to an interconnection network. The dashed line
shows one partitioning scheme we will cover in this paper.



Figure 1: Typical system model of Manifold with the base-
line partitioning.

The kernels interact with each other and keep synchro-
nization for all components within its LP. The Manifold
project provides two major categories of synchronization
algorithms, which include a barrier based algorithm called
LBTS [5] and the CMB algorithm. The following discussion
is based on the enhanced CMB algorithm proposed in [7]
e.g. Forecast Null Message algorithm (FNM).

There has been extensive research on the problem of
partitioning general networks, particularly VLSI systems.
For example, Karypis and colleagues developed the hMETIS
[8] partitioning package for VLSI systems, and hMETIS
achieved 9%-30% [9] performance gain compared to other
schemes they evaluated in [9]. And [9] confirmed partition-
ing can have significant impact on performance of parallel
simulation for large scale systems. However their work
focuses on parallel simulation of large scale systems such
as VLSI that has components in the order of hundreds of
thousands, which is different from multicore systems with
much smaller scale that we discuss here.

III. PARTITIONING SCHEMES AND DESIGN OF
EXPERIMENTS

Currently Manifold does not use any automatic partition-
ing tool, mainly because the scale of the systems Manifold is
designed to simulate is relatively small compared to systems
like VLSI. In this study, we compare three different manual
partitioning schemes, examine their effect on simulation
performance and parallel efficiency, and explain the reason
for the effect.

A. Partitioning Schemes

The multicore systems we consider have a star topology
consisting of an interconnection network and a number of
nodes connected to the network. Each node contains either a
memory controller or a core and its cache slices. The inter-
component links that can be cut by a partitioning scheme
fall into the following categories:

• Core-cache links.

• Cache-network links.
• Memory controller-network links.
• Router-router links.
We do not cut the core-cache links, due to the fact

that cache hit rate is generally well above 95%. In the
experiments we conducted, the average number of messages
on the cache-network links is less than 1.7% of that of the
core-cache links. Therefore we always cut the cache-network
links but do not cut the core-cache links. We do not discuss
the effect of assigning multiple cores and caches to a single
LP and leave this problem as future work. On the other hand,
the memory controller models that we use are rather simple,
so each memory controller is assigned to the same LP as the
router to which it is connected.

According to above discussion, it leaves only the question
of whether the router-router links should be cut. The inter-
connection network in a multicore system is responsible for
communication among caches to maintain cache coherence
and it also transfers memory accesses between memory
and caches. Intuitively, the network should be divided into
multiple parts. Due to the features of Null-message-based
simulation, an LP’s ability to make progress depends heavily
on the messages it receives from all its input channels. The
more input channels it has, the longer it has to wait for
all the input channels to have new messages, and the more
messages it needs to process. Therefore, in general, having
more input channels is detrimental to the performance of a
Null-message-based parallel simulation. The three partition-
ing schemes we study in this paper differ only in how the
network is partitioned.

1) Scheme 1: 1-part: The first partitioning scheme, which
also is the baseline scheme, can be seen in Figure 1. It is
the partitioning scheme adopted in [7]. In this scheme, the
entire interconnection network and all memory controllers
are assigned to a single LP. For simulations utilizing this
partitioning scheme, number of cores + 1 LPs are required,
e.g. 17 LPs for 16-core system and so on.

2) Scheme 2: 2-part: In this partitioning scheme we
divide the interconnection network into two equal halves,
and each half is assigned to one LP. This scheme can be
seen in Figure 2. It is straightforward to see number of cores
+ 2 LPs are required.

3) Scheme 3: Y-part: As shown in Figure 3, the Y-part
scheme separates the network into Y parts, where Y equals
the value of the y dimension in an X×Y torus network. Each
row of routers is assigned to one LP, and each network LP is
connected to roughly X core-cache LPs. In this partitioning
scheme, number of cores + Y LPs are required.

B. Design of Experiments

The system models we built and tested included multicore
systems with 16, 32, 64 and 128 cores. For each system
model, all cores and their caches are connected to a sin-
gle interconnection network, and one memory controller is



Figure 2: 2-part scheme.

Figure 3: Y-part scheme.

created for every 8 cores in the systems. The underlying
interconnection networks we use in our systems are torus
networks. And, 5×4, 6×6, 9×8 and 12×12 torus networks
are built for 16-, 32-, 64- and 128-core systems respectively.
The core model we use in this paper is a cycle-accurate out-
of-order x86 model called Zesto [10]. Each core component
has a private write-back L1 cache and a shared write-back L2
cache slice [11]. Cashes implement the Modified-Exclusive-
Share-Invalid (MESI) coherence protocol [12]. All the ar-
chitecture components in our system are registered to the
same clock and run at the same frequency. A credit based
flow control protocol has been employed along the core-
cache-network path and among routers inside the network.
Simulations are conducted on a Linux cluster that has two
Intel Xeon X5670 6-core CPUs with 24 hardware threads
on each node. The operating system is RHEL release 6.3,
and MPI version is Open MPI 1.5.4. In all tests, we use
enough hardware resources such that each LP has its own
hardware thread. For each combination of system model
and partitioning scheme, tests have been conducted with 5
PARSEC benchmarks [13], which include facesim, ferret,
freqmine, streamcluster and vips.

In our tests, total time consumption (t total) and time
consumed by each LP to gather and process Null mes-
sages (t gp) are recorded for each run of test. We utilize
Linux time command to record t total and clock gettime()
[14] function to get the t gp. In the function that gathers
and processes Null messages, we insert two calls of the
clock gettime() function, one at the beginning and one at
the end, to measure the execution time of the function. The

execution time is accumulated in t gp.

IV. EXPERIMENTAL RESULTS

The experiment results show clearly the effect of parti-
tioning, and also indicate the t gp is the main factor that
determines the performance beyond certain system size.

A. Time Consumption and Comparison of Schemes

Tables I, II, III and IV show the total time consumption
to run simulation and the speedup compared to serial sim-
ulation (inside the parentheses) for each system model and
benchmark. From these 4 tables we can see the speedup
keeps growing with increasing system scale for Y-part,
however, for the other two schemes, the speedup goes down
when system scale reaches 64 cores.

As shown in Table I, in tests of the 16-core system the
difference in performance of the partitioning schemes is
relatively small. Y-part always has best performance that
is 1% to 9% better than the others, 1-part and 2-part have
very similar performances with a difference of about 1%.

Table II shows experiment results for tests of 32-core
system. From this table we can see Y-part consumes at least
14% less time than 1-part and 7% less time than 2-part.
Different from the tests for 16-core system, in tests for 32-
core system 2-part consistently outperforms 1-part by 3%
to 9%.

The performance gap between partitioning schemes grows
enormously in tests for 64-core system. From Table III, we
can observe that Y-part achieved about 2 times faster speed
than 1-part in 4 out of 5 benchmarks, and 1.7X faster speed
for vips. Additionally, it also outperforms 2-part by 30% to
67%. At the same time, 2-part runs more than 30% faster
than 1-part.

From Table IV we can see, the performance gap is further
increasing in tests for 128-core system. Y-part runs at least
3.5 times faster than 1-part, and compared to 2-part it
achieves 2.2 to 2.9 times faster speed. Very similar to
tests for 64-core system, 2-part has 26% to 42% less time
consumption than 1-part.

Table I: Simulation running time in seconds for 16-core
system.

Benchmarks Seq. 1-part 2-part Y-part
facesim 3996 735 (5.4X) 734 (5.4X) 696 (5.7X)
ferret 4021 818 (4.9X) 820 (4.9X) 750 (5.4X)
freqmine 4155 756 (5.5X) 750 (5.5X) 707 (5.9X)
streamcluster 4089 739 (5.5X) 739 (5.5X) 718 (5.7X)
vips 4116 720 (5.7X) 730 (5.6X) 708 (5.8X)

We compare the parallel efficiency of the partitioning
schemes in a normalized manner using the following equa-
tion:

Normalized Efficiency =
t total 1−part

t total
num lp

num LP 1−part

(1)



Table II: Simulation running time in seconds for 32-core
system.

Benchmarks Seq. 1-part 2-part Y-part
facesim 9023 1241 (7.3X) 1192 (7.6X) 1073 (8.4X)
ferret 8600 1531 (5.6X) 1368 (6.3X) 1087 (7.9X)
freqmine 8555 1241 (6.9X) 1208 (7.1X) 1085 (7.9X)
streamcluster 8748 1210 (7.2X) 1180 (7.4X) 1044 (8.4X)
vips 8634 1230 (7.0X) 1121 (7.7X) 1046 (8.2X)

Table III: Simulation running time in seconds for 64-core
system.

Benchmarks Seq. 1-part 2-part Y-part
facesim 18163 3740 (4.9X) 2656 (6.8X) 1592 (11.4X)
ferret 18561 3632 (5.1X) 2662 (7.0X) 1716 (10.8X)
freqmine 17959 3753 (4.8X) 2753 (6.5X) 1956 (9.2X)
streamcluster 14079 3786 (3.7X) 2796 (5.0X) 1813 (7.8X)
vips 18000 3619 (5.0X) 2717 (6.6X) 2080 (8.7X)

where t total 1-part and num LP 1-part are the total
time consumption and number of LPs used in tests of 1-
part, and t total and num LP are the total time consumption
and number of LPs used in the partitioning scheme in
question. It’s easy to see with equation (1) the efficiency
of 1-part is normalized to 1. As, shown in Figure 4, 1-part
has the best efficiency for 16-core system, as it achieved
similar performance with fewer LPs. However, 2-part and
Y-part outperform 1-part in tests for system models with
larger scale. Based on these results, we can see good
partitioning scheme also improves efficiency greatly when
system reaches a certain scale.

B. Relation between Total Time Consumption and Time
Consumed by Network LP(s) to Process Null Messages

From Table I to Table VIII we can observe that t gp of
1-part and 2-part increases much faster than the total time
consumption, and this results in increasing of percentage
of t gp out of the total running time. In tests using 1-
part the average percentage of t gp increase sharply from
18% to 49% when system scale grows from 16-core to
128-core. Similarly, for 2-part, when system scale increases
from 16 to 128 cores, percentage of t gp increases from
17.7% to 37.4%. On the other hand, Y-part’s t gp and total
time consumption increase roughly at the same speed as the
system scale. Its percentage of t gp stays below 20% in tests
for all system models. The results indicates that if we do not
partition the network LP, the number of inter-LP links that
the network has grows with growing system scale, making
the amount of Null messages that the network LP needs to
handle also increase. Therefore, the overhead incurred on the
network LP to gather and process Null messages increases
greatly. Eventually, the t gp becomes the major impediment
for performance.

Following the discussion above, we believe that in Null-
message-based parallel simulation of multicore system,
when the system scale reaches a certain level, partitioning

Table IV: Simulation running time in seconds for 128-core
system.

Benchmarks Seq. 1-part 2-part Y-part
facesim 30295 7258 (4.2X) 4570 (6.6X) 2029 (14.9X)
ferret 30410 8455 (3.6X) 4864 (6.2X) 2062 (14.7X)
freqmine 29604 7517 (3.9X) 5551 (5.3X) 1936 (15.9X)
streamcluster 36300 7281 (5.0X) 5335 (6.8X) 2054 (17.7X)
vips 32413 7396 (4.4X) 4858 (6.7X) 2076 (15.6X)

Figure 4: Normalized efficiency of partitioning schemes.

the interconnection network is critical to achieving good
performance. Further, based on our study, we can draw the
conclusion that, in a Null-message-based parallel simulation,
if there are components whose number of inter-LP links
increases as system scales, then such components should
be partitioned into multiple parts to reduce the overhead of
Null messages and to achieve better scalability.

Table V: t gp and its percentage out of total time for 16-core
system.

Benchmarks 1-p. Per. 1-p. 2-p. Per. 2-p. Y-p. Per. Y-p.
facesim 131 17.8% 133 18.1% 132 19.0%
ferret 185 22.6% 151 18.5% 136 18.1%
freqmine 137 18.0% 146 19.4% 130 18.4%
streamcluster 123 16.6% 122 16.6% 113 15.8%
vips 118 16.4% 117 16.0% 115 16.3%

Table VI: t gp and its percentage out of total time for 32-
core system.

Benchmarks 1-p. Per. 1-p. 2-p. Per. 2-p. Y-p. Per. Y-p.
facesim 265 21.3% 270 22.7% 165 15.4%
ferret 426 27.8% 323 23.6% 165 15.2%
freqmine 271 21.9% 284 23.5% 127 11.7%
streamcluster 213 17.6% 258 21.9% 123 11.8%
vips 232 19.0% 232 20.7% 118 11.3%

V. CONCLUSION AND FUTURE WORK

This paper presents our study of partitioning multicore
systems for parallel simulation. Three partitioning schemes
are investigated. Our study shows partitioning schemes



Table VII: t gp and its percentage out of total time for 64-
core system.

Benchmarks 1-p. Per. 1-p. 2-p. Per. 2-p. Y-p. Per. Y-p.
facesim 1635 43.7% 822 30.9% 333 20.9%
ferret 1528 42.0% 845 31.7% 325 18.9%
freqmine 1684 44.9% 904 32.8% 315 16.1%
streamcluster 1651 43.6% 914 32.7% 328 18.1%
vips 1565 43.3% 833 30.7% 294 14.1%

Table VIII: t gp and its percentage out of total time for
128-core system.

Benchmarks 1-p. Per. 1-p. 2-p. Per. 2-p. Y-p. Per. Y-p.
facesim 3365 46.4% 1912 41.8% 429 21.1%
ferret 4096 48.4% 1990 40.9% 446 21.6%
freqmine 3751 50.0% 1966 35.4% 385 19.9%
streamcluster 3567 49.0% 1966 36.8% 399 19.4%
vips 3558 48.1% 1876 38.6% 425 20.5%

can have significant impact on the performance of Null-
message-based parallel simulation of multicore system. And,
the effect of partitioning becomes increasingly important
as the scale of the simulated system grows. In the mul-
ticore systems we study, the interconnection network is
connected to a number of core-cache nodes. As system
size grows, this number also increases. If the network is
not partitioned the overhead incurred on the network LP
to process Null messages grows exponentially, leading to
great performance degradation. Partitioning the network can
reduce this overhead and helps performance. Of the three
partitioning schemes we study, 2-part is only one step in
the right direction. The Y-part scheme, which partitions
an X × Y torus network into Y parts, appears to be a
scalable solution, and outperforms the other two not only
in simulation speed but also in parallel efficiency when the
system scale reaches a certain level. Based on this study,
we believe, in a Null-message-based parallel simulation, to
achieve reasonable scalability, any component whose inter-
LP links increases with system size should in principle be
partitioned.

For our future work, we intend to continue our study of
scalability of parallel multicore simulation and apply what
we have learned to even bigger models, i.e., models with
256 cores and beyond. Another important problem is to
determine the optimal number of cores and caches to assign
to a single LP, and explore the optimal value for Y in the
Y-part scheme.
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