Position Paper:
Software Based Techniques for Reducing the Vulnerability of GPU Applications

Si Li, V. Sridharan*, S. Gurumurthi*, and Sudhakar Yalamanchili

School of Electrical and Computer Engineering
Georgia Institute of Technology

+RAS Architecture, AMD Inc.
*AMD Research, AMD Inc.

Scaling Computing Performance

New Packaging

Ultralow Power

Performance

Energy/Power

Reliability

Thermal

Cray Titan: Heterogeneity
Software Reliability Enhancement (SRE)

- Software-based approach to resilience
 - Hardware neutral
 - Not specific to a particular application or algorithm
- Reliability-Aware runtime manager
 - On-line monitoring
 - Apply one or more SRE to meet a reliability/overhead target
 - Recovers or restarts application when an error is detected

Transparent, customizable, selective, and extensible

SRE: Motivation

- C/C++ OpenCL CUDA Python

 Language Front End

 Optimization

 Virtual ISA, e.g., HSAIL, PTX

- **Performance**
 - Application Validation
 - Maintenance and Update
 - Phase Behavior
 - Impact of Deployment Environment

- **Energy/Power**
- **Reliability**

- **One size fits all**
SRE Approach

Key Idea: Code injection and JIT Compilation

Ocelot: Multiplatform Dynamic Compilation

Just-in-time code generation and optimization for data intensive applications

- Environment for i) compiler research, ii) architecture research, and iii) productivity tools
Dynamic Instrumentation: GPU Lynx

Naila Farooqui

Example Instrumentation Code

```
NVCC
PTX
```

- Transparent instrumentation of CUDA applications
- Can treat program level abstractions such as warps and thread blocks

GPU Lynx for AMD

```
__kernel void

test(global int *x)
{
...
}
```

- Prototype with IL
- Moving to HSAIL

Software Reliability Enhancement Framework

- Real time customized information available about GPU usage
- Use this information to drive SRE decisions

Framework: On demand, customizable, transparent, and extensible, software reliability enhancement (SRE)

Past Work: Correctness Checks

- Out-of-Bounds Checks:
 - All kernel memory accesses can be checked against global memory allocations
 - Used to catch out-of-bounds or illegal memory accesses

- Alignment checks
 - Alignment of every memory access checked against instruction type

- Control Flow errors
 - ~3 orders of magnitude faster than using the emulator
Program Vulnerability*

- **Program Vulnerability Factor (PVF)** is a component of Architectural Vulnerability Factor (AVF)
 - It an ISA level measure of how vulnerable the program is to SE
 - It is independent of hardware implementation
 - Code regions with maximum exposure to live state

- Use PVF to direct, online SRE techniques for detection
- Use PVF based analysis to reason about different GPU architectures and applications

Target of Vulnerability

Grid of cooperative thread arrays
- Coarse-grain parallelism

PTX Virtual ISA
- RISC Instruction Set
- Defined by NVIDIA - target of CUDA compiler

Volume of Exposed State

Cooperative Thread Array
- Fine-grain parallelism
Experiments

- Understand liveness behavior in GPU kernels
- Use this understanding to improve PVF

Insight
- There is a **sweet spot** between low overhead checks and live range size
- Maximize PVF improvement (dynamically) at relatively low cost

Experiment
- Lightweight silent data corruption error detector (Hauberk2011)
- Low-overhead value checksum
- Constant vulnerability & overhead per live-range

Live Range Distribution

![Live Range Distribution Graph](image)
Per Benchmark Instruction Overhead

Preliminary Results

- Reduction in program vulnerability by adding live range checks
Potential Benefits of SRE

- Customizable, extensible, transparent
- Flexible trade-off between runtime overhead and reliability target
- Fault detection and recovery on-demand
- Reduce hardware cost
- End-to-end resilience

Limitations of SRE in BSP

- Compete with kernel for local resources
 - Registers
 - Shared memory
- A single thread cannot terminate kernel
 - If an error occurs in one thread, it cannot abort the kernel
 - Requires hardware support
The Future is (Reliable) Acceleration

Thank You