
ParallelJS: An Execution Framework for JavaScript on
Heterogeneous Systems

Jin Wang
Georgia Institute of

Technology
Atlanta, 30332

jin.wang@gatech.edu

Norman Rubin
NVIDIA Research
California, 95050

nrubin@nvidia.com

Sudhakar Yalamanchili
Georgia Institute of

Technology
Atlanta, 30332

sudha@ece.gatech.edu

JavaScript has been recognized as one of the most widely
used script languages. Optimizations of JavaScript engines
on mainstream web browsers enable efficient execution of
JavaScript programs on CPUs. However, running JavaScript
applications on emerging heterogeneous architectures that
feature massively parallel hardware such as GPUs has not
been well studied.

This paper proposes a framework for flexible mapping of
JavaScript onto heterogeneous systems that have both CPUs
and GPUs. The framework includes a frontend compiler, a
construct library and a runtime system. JavaScript pro-
grams written with high-level constructs are compiled to
GPU binary code and scheduled to GPUs by the runtime.
Experiments show that the proposed framework achieves up
to 26.8x speedup executing JavaScript applications on par-
allel GPUs over a mainstream web browser that runs on
CPUs.

Categories and Subject Descriptors
C.1.4 [Computer Systems Organization]: Processor Ar-
chitectures—Parallel Architectures; D.3.2 [Programming
Languages]: Concurrent, distributed, and parallel languages

General Terms
Languages, Performance

Keywords
GPGPU, JavaScript, Parallel Construct

1. INTRODUCTION
The development of modern software is accompanied by

the advance of high-level programming languages and envi-
ronments, which emerges to address productivity and algo-
rithmic issues. Simultaneously, the community of high per-
formance computing are in a growing demand for the abil-
ity to harness massively parallel hardware such as Graphic
Processing Units (GPUs). The gap between programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
GPGPU-7 March 01 2014, Salt Lake City, UT, USA
Copyright 2014 ACM 978-1-4503-2766-4/14/03 ...$15.00.

languages and environments that designed for productiv-
ity, and heterogeneous systems optimized for massive par-
allelism, speed, and energy efficiency introduces challenges
to the compiler techniques, application design and runtime
systems.

As one of the most prevalent script language, JavaScript
has been well accepted for its high productivity and portabil-
ity. JavaScript runs on essentially all platforms, both client
and servers. It is also a deterministic language, which re-
quires a single thread of control and heavy use of events.
While recent JavaScript implementations have greatly im-
proved performance, developers are still often forced to limit
web content because JavaScript still does not take advantage
of the massive parallelism available on modern hardware.

This paper proposes a framework, ParallelJS, which en-
ables developers to use high performance data parallel accel-
erators such as GPUs in standard web applications. Paral-
lelJS provides a simple language extension that offers mas-
sive speedup over sequential JavaScript. In ParallelJS, an
application is written in the combination of regular JavaScript
semantics and the constructs defined in a library. The pro-
gram can be executed in either the CPU using the native
JavaScript compiler or translated to PTX and executed in
the GPU.

ParallelJS is evaluated with a set of JavaScript programs
executed on systems with Intel CPUs and NVIDIA GPUs.
This paper makes the following main contributions:

• A compilation and execution flow running JavaScript
programs expressed in parallel constructs on heteroge-
neous systems with both a regular CPU and a massively-
parallel GPU.

• A systematic performance evaluation and comparison
of the implementation on different heterogeneous ar-
chitectures with emphasis on understanding how to ef-
ficiently accelerate high-level programming languages
utilizing massively-parallel processors.

The rest of the paper is organized as follows. Section 2 in-
troduces the JavaScript language, GPGPU terminology and
tool chains used in this paper. Section 3 provides a sys-
tem overview. Section 4 describes the language extension
defined in ParallelJS infrastructure. Section 5 proposes the
implementation of ParallelJS on heterogeneous architectures
which consists of a compiler frontend and a runtime system.
Section 6 evaluates and compares the performance of differ-
ent systems. Section 7 reviews the related work, followed by
the conclusion in Section 8.

Parsing

AST

User-defined
function

Type
Inference

input/output
Types

Code
Generation

LLVM IR

NVVM
Compiler

PTX Code

Par$
Construct

Library

NVVM
Library

Runtime

Figure 1: Compilation Flow of ParallelJS

2. BACKGROUND

2.1 JavaScript
JavaScript is a programming language that has been widely

used in website clients, servers, mobile applications, etc [4].
It focuses on security and portability. Security means that
JavaScript has been limited to execute in a sandbox so that
calling C/C++ code from JavaScript requires additional ex-
tensions. Portability enables the same set of JavaScript pro-
grams to execute on different platforms without any system-
dependent configurations or changes.

JavaScript is dynamically typed, does not have classes,
and supports high level functions and closures. Program-
mers in JavaScript often use a rapid iterative development
style which limits the use of offline compilation. JavaScript
Engine is used to compile JavaScript to native binary run-
ning on CPUs. Optimizations on JavaScript engines in the
mainstream browsers such as V8 in Google Chrome [5] and
SpiderMonkey [16] in Mozilla Firefox enable highly efficient
execution of JavaScript code on CPUs. Traditionally sin-
gle threaded, JavaScript Engine is able to conserve the fea-
tures of JavaScript such as determinism. However, single-
threaded JavaScript execution fails to utilize the parallel ar-
chitectures in modern processors.

2.2 NVIDIA GPU Compilation Tools
The implementation of ParallelJS in this paper targets

NVIDIA GPUs and uses the compilation flow of NVIDIA’s
CUDA programming model. NVIDIA GPU compiler, NVCC,
can compile a CUDA application [17] into PTX format, a
virtual ISA that is realized on NVIDIA GPUs [19]. This
PTX representation is a RISC virtual machine similar to
LLVM [13], a widely used language and device independent
Intermediate Representation (IR). The NVVM compiler [18]
can translate LLVM IR into PTX, therefore many existing
LLVM optimization and analysis passes can be directly used
for GPUs.

While the current implementation is based on CUDA, the
use of the Bulk Synchronous Parallel (BSP) model also per-
mits relatively straightforward support for industry stan-
dard OpenCL [10].

3. SYSTEM OVERVIEW
A ParallelJS program uses the same syntax defined by

regular JavaScript. The program is compiled, like a regular
JavaScript program, by executing all the statements and
functions invoked by a JavaScript procedure (e.g. a webpage
or an application).

ParallelJS extends the language by defining a new library
with a special root object par$ which includes 1) a new
basic data type AccelArray and 2) a set of utility con-

structs such as par$.map and par$.reduce that oper-
ates on AccelArray. These constructs can further call
any regular JavaScript functions as user-defined functions.
For example, construct par$.map can use addition opera-
tion as its user-defined function. Unlike low-level language
bindings such as WebCL [9], ParallelJS is built directly into
JavaScript so that programmers do not need to use a second
language.

The ParallelJS compiler is responsible for converting the
user-defined function along with the invoked par$ utility
construct to low-level binary code that executes on the tar-
get GPU. The compiler is designed to be used in Just-
In-Time (JIT) compilation which is the same scenario for
JavaScript engines to execute regular JavaScript code, i.e.,
when a par$ construct is called from a JavaScript program,
the runtime invokes the ParallelJS compiler to generate code
for this construct.

Figure 1 shows the complete ParallelJS compilation flow,
including four stages: Parsing, Type inference, Code gener-
ation and NVVM compilation. The first three stages parse
and compile constructs to LLVM IR. Type inference is nec-
essary to generate type information since JavaScript is un-
typed while LLVM is strictly-typed. Constructs are written
in JavaScript themselves and delivered as part of the Par-
allelJS library. The final stage uses stock NVVM compiler
to compile generated LLVM IR to PTX kernel. After JIT
compilation, the runtime module manages the data alloca-
tion and movement as well as the kernel execution on GPUs.
The detailed implementation for each stage are described in
section 5.

ParallelJS is designed for heterogeneous systems that may
or may not have an available massively-parallel processor
such as a GPU. When the utility constructs are executed,
the user-defined function can be applied in parallel using
the GPU implementation of the constructs if there exists a
GPU in the system. Otherwise the execution will fall back
to a sequential implementation on the CPU. The runtime
determines where the code runs.

4. LANGUAGE EXTENSION
The aim of ParallelJS is to enable JavaScript on GPUs

with minimum change to the language itself. The language
extension is to deal with two issues: i) hiding the low level
memory hierarchy by introducing a new data type called
AccelArray; ii) adding several constructs that allow de-
velopers to specify which functions may execute in paral-
lel. Neither of these two extensions fundamentally change
JavaScript semantics so JavaScript developers will be able
to express data parallelism easily while still getting perfor-
mance improvements.

Each AccelArray consists of an array of binary data
along with helper information including sizes, types and

Construct Alias Description
AccelArray Construct a new AccelArray from array indices.
map collect, each, forEach Map values of input AccelArrays through user-defined functions to output(s).
reduce inject, foldl Combines the values of an input AccelArray into a scalar result.
find detect Returns one of the values in the input AccelArray that pass a truth test.
filter select Returns all the values in the input AccelArray that pass a truth test.
reject Returns all the values in the input AccelArray that fail a truth test.
every all Returns true if all of the values in the input AccelArray pass the truth test.
some any Returns true if any of the values in the input AccelArray pass the truth test.
scatter shuffle Reorders the input AccelArray by an integer index AccelArray.
gather Gather values in the input AccelArray according to an integer index AccelArray.
sort Sort the input AccelArray according to comparison function.

Table 1: Utility Constructs in ParallelJS

shapes. The helper information is specified explicitly when
the AccelArray is constructed so that the compiler can
determine the interpretation of the binary data correctly.
Currently the supported data types include 8/16/32 bit in-
tegers and single/double precision floats. The binary data
in AccelArray are organized as rectangular arrays whose
shape is one, two, or three dimensional rectangular arrays.
For example, a shape of [2,5] specifies that the output will
contain 10 elements and should be treated as two-dimensional
matrix of size 2x5.

ParallelJS adds a set of utility constructs with parallel se-
mantics in par$ that define the operations on AccelArray.
Each of these constructs can take one or more inputs and
generate corresponding output AccelArray(s) or a scalar
value. ParallelJS also requires the output data type speci-
fied explicitly for each construct (single precision float type
by default). The construct can take any regular user-defined
JavaScript function as one of their arguments. When exe-
cuted, the construct applies the user-defined function to the
input according to the operation specified by the construct.

Table 1 lists all the utility constructs supported by Par-
allelJS. Some constructs have aliases for the sake of con-
venience. Developers that want to add additional parallel
operations can add new methods to the object par$.

In order to support parallel execution on GPUs, ParallelJS
has the following requirements for the user-defined functions
when used as an argument of the utility constructs:

Element-wise. The input arguments of the function cor-
respond to one element of each input AccelArray of the
construct. The constructs apply the element-wise function
for each element in the input AccelArray(s). For some
constructs such as par$.map, the function may also read
elements of the whole input AccelArray using computed
indices. While the function can read any location in the ar-
ray, it is limited to write to only one place in its output array.
For construct reduce, the function only defines the opera-
tion used for reduction (e.g., addition of two input elements)
but does not generate any new element in the output array.
When implemented on GPUs, the element-wise function will
be mapped to operations of each GPU thread.

Side-effect Free. The function should be side-effect free,
i.e., they cannot change any global state by writing into
global variables or function arguments. This is important
since ParallelJS should still preserve the original stability of
JavaScript when accelerating it through GPUs, which means
the result should be deterministic. The side effect-free func-
tions guarantee that when called in parallel, they never cause
race conditions.

No Order Restriction. The function should not have
computation order restrictions so that they can be called in

any order without changing the final result. This is impor-
tant for parallel execution.

Syntax Requirement. The function can use arbitrary
syntax when executed on CPU. However, when running on
GPU, only a subset of the regular JavaScript syntax are sup-
ported, including JavaScript primitive data types number
and boolean, basic control flow such as if/else, for/while
loop. Complex JavaScript object, recursive control flow, clo-
sure functions are not supported. If the function uses syntax
that is not recognized by GPU implementation, code is di-
verted to the CPU.

Scope Restriction. The function uses strict lexical scop-
ing by not referring to any non-function identifiers that are
defined outside the function body. However, the function
can take a context object as its argument such that it con-
tains all the identifiers from outside scope that are referred
by the function body using this annotation. ParallelJS
requires context objects can only have number, boolean,
regular JavaScript typed arrays and AccelArray as the
members.

Listing 1 gives an example of the par$.map construct
which takes a simple JavaScript addition function. Line 3
defines a context object with one outside scope identifier
length whose value is 100. Line 4 shows the element-wise
function fn as the argument of construct map. It takes
three arguments: a as the single input element, index as
the index for this input element and array as the whole
input AccelArray. Line 5 refers to the identifier length
in context object by using this annotation prefix. Line
6 returns the output single element as the result of ad-
dition of the input single element and the next element of
the input AccelArray, i.e. array[index+1]. Line 10
shows invocation of par$.map with arguments input, fn,
context and generates the AccelArray output. Note
that here the par$.map construct uses default data type
par$.float32.

1 var arr = [...]; //A JavaScript array
2 var input = par$.AccelArray(arr, par$.float32);
3 var context = {length:100};
4 function fn(a, index, array) {
5 if(index < this.length - 1) {
6 return a + array[index + 1];
7 } else {
8 return a;}
9 }

10 output = par$.map(input, fn, context);

Listing 1: Example code of ParallelJS par$.map

While targeting for GPU, ParallelJS provides a higher
programming level abstraction than the traditional GPGPU

programming languages such as OpenCL and CUDA. It does
not expose any Bulk-Synchronize Parallel concepts such as
Thread, CTA or Grid to the programmers. The memory hi-
erarchy (global, shared and local memory) is hidden in the
implementation details and transparent to the users. Fur-
thermore, the algorithm scheme for each utility construct
are low-level details that the programmers are not expected
to deal with. Therefore, ParallelJS programs are typically
far smaller then CUDA codes. Together with the flexible
execution model on both CPUs and GPUs, ParalellJS pro-
vide performance portability while programmers work on
the high-level parallel constructs.

5. IMPLEMENTATION
This section discusses the major components of imple-

menting the ParallelJS framework. ParallelJS has imple-
mentation for the par$ library both on the CPU and the
GPU to enable portability. While mainly targeted for het-
erogeneous systems, programs written in ParallelJS can be
executed on systems with or without CUDA-enabled GPUs.
Furthermore, if ParallelJS programs fail running on GPUs
due to unsupported syntax (e.g. not satisfying the require-
ment for the user-defined function as described in section 4)
or runtime errors, they can be diverted to the CPU and
report any errors from there.

Just as in regular JavaScript, the CPU implementations
of ParallelJS utility constructs are sequential. Every con-
struct is implemented as a loop in which the user-defined
function applies to each element in each iteration. For ex-
ample, par$.map construct takes one element from the in-
put AccelArray indexed by the iteration number, feeds it
into the element-wise function, generates one element and
writes it to the output AccelArray at the same index.

On the other hand, in the GPU implementations, the con-
structs passes through a series of compilation stages that
progressively lowers them into PTX kernels that are exe-
cuted in parallel by an implementation of the runtime on
the GPU. The rest of the section describes the compiler and
runtime systems involved in this procedure.

5.1 Compiler

1 arguments[0]: a
2 arguments[1]: index
3 arguments[2]: array
4 body[0]:
5 BlockStatement:
6 IfStatement:
7 test: BinaryExpression:
8 left: index
9 right: BinaryExpression:

10 left: MemberExpression:
11 object: ThisExpression
12 property: length
13 right: 1
14 consequent: ReturnStatement:
15 argument: BinaryEpxression:
16 left: a
17 right: MemberExpression:
18 object: array
19 property: BinaryExpression:
20 left: index
21 right: 1
22 alternate: ReturnStatement:
23 argument: a

Listing 2: ParallelJS AST example

Parsing.
The parser of ParallelJS is based on the open source project

Esprima [7]. It parses the user-defined function and gener-
ates an Abstract Syntax Tree (AST). The AST is stored
as a JavaScript object whose children members are also
JavaScript objects corresponding to statements or nodes.

Listing 2 shows the AST for the user-defined function fn
in Listing 1 line 4-9. The AST begins with three func-
tion arguments, followed by a single function body. Each
line from 5-23 is an object representing either a statement
(e.g. IfStatement in line 6) or a node in a statement
(e.g. test, consequence and alternate nodes for the
IfStatement in line 7, line 14 and line 22 respectively).
The node itself can be another statement (e.g. the test
node in line 7 as BinaryExpression). The identifiers or
literals referred to in the function body are leaves of the AST
(e.g. index in line 8).

Type Inference.
The type inference stage uses the type information of the

function input arguments and the identifier in the context
objects as the starting point and propagates the type in-
formation to each statement to infer types for all the local
variables and expressions. Since this stage is performed on-
line, the types of all function inputs are known, which allows
the system to avoid the iterative Hindley-Milner [8] [15] al-
gorithm. Instead, the system iterates over the set of state-
ments in the function that assign to local variables and then
with all local variables typed, it does a single iteration to
find types for all expressions. Recall that the input argu-
ments of the constructs are always AccelArrays with their
type information explicitly stored. Therefore, the type in-
formation of the function input arguments can be directly
obtained from the input arguments of the construct. Sim-
ilarly, the type information of the output argument is also
available through the data type argument of the constructs.
Numbers in the context object as well as the literals in the
function body will be given a type according to the values.

The type inference procedure can be illustrated in an
example for the BinaryExpression in Listing 2 line 9.
The identifier length in line 12 is an integer for its value
is 100. The property node in line 12 propagates to the
MemberExpression in line 10 so that the left node of
the BinaryExpression in line 9 gets the integer type. The
right node in line 13 is a literal 1 which is an integer. There-
fore, the type inference concludes the BinaryExpression
has integer type.

It should be noted that the nodes of an expression can
have different types (e.g., BinaryExpression has an inte-
ger left node but a float right node). The type inference
will use the data type with maximum precision in this case
for the expression type (e.g., float should be the type of
BinaryExpression for the above example).

Code Generation.
Code generation takes the typed AST as well as the utility

construct name to generate LLVM IR, the format of which
is compatible with the NVVM compiler requirement. The
procedure consists of four steps:

Step 1: Add kernel header and meta data. The kernel
header and meta data include some key words to define a
GPU kernel in the LLVM IR so that they can be recognized
by the NVVM compiler. Listing 3 line 1 and line 17-19 shows

an example of kernel header and meta data for the kernel
map.

Step 2: Generate kernel arguments. The kernel arguments
include all the AccelArray(s) in the input, output, con-
text object and the numbers, booleans, regular arrays in
the context object. Arrays and AccelArrays are repre-
sented by data pointers while numbers and booleans are
scalar identifiers. Listing 3 line 2-4 shows the three kernel
arguments for the map example in Listing 1: output and
input corresponding to the output and input AccelArrays,
length corresponding to the identifier in context object.

1 define void @ map(
2 float *output,
3 float *input,
4 i32 length) {
5 %tid = ...compute tid...
6 %aptr = getelementptr float* %input, %tid
7 %a = load float* %aptr
8
9 %r1 = add i32 %tid, 1

10 %r2 = getelementptr float* %input, %r1
11 %r3 = load float% %r2
12 %out = fadd %a, %r3
13
14 %outptr = getelementpr float* %output, %tid
15 store %out, float* %outptr
16 }
17 nvvm.annotations = !{!1}
18 !1 = metadata !{void(...)*@map, metadata
19 !"kernel", i32 1}

Listing 3: Example of LLVM IR generated for map by
ParallelJS code generator

Step 3: Generate LLVM instructions for data preparation
and finalization. In this step, the code generator generates
the instructions for reading the input data and writing the
output data according to the utility construct invoked. For
example, for the map construct, the input data should be
one element from the input array indexed by the thread id
and the output element should be stored in the output array
indexed by the thread id. Listing 3 line 5-7 and line 14-15
show the input loading and output storing. Ellipses (...)
in line 5 indicate the computation of global thread id us-
ing thread/block/grid ids depending on the shape of input
AccelArray. ParallelJS requires the shape of all the input
AccelArrays to be identical, so the thread id generated
here can be universal for all the inputs.

1 define void @ reduce(...) {
2 ... ;compute tid
3
4 ;load data from shared memory
5 %s= load float addrspace(3)* %saddr
6
7 ... ;computation for reduction
8
9 ;store result to shared memory

10 store %out, float addrspace(3)* %saddr
11 }

Listing 4: Example of LLVM IR generated for reduce
by ParallelJS code generator, where addrspace(3)
represents shared memory space in LLVM IR

The algorithm skeletons used for each construct are based
on the state-of-art implementation. ParallelJS maintains a
set of LLVM IR code for each construct. The implementa-

tions can be architecture-dependent to achieve performance
portability, which means adaptive decision of kernel configu-
ration such as Grid/CTA size, local/shared/global memory
usage. For example, construct reduce uses shared memory
to store the temporary computation result in its CTA-wise
logN stages as shown in Listing 4. This kernel will also
be generated multiple times to handle the inter-CTA logN
parallel stages.

Step 4: Generate LLVM instructions from each statement.
This step walks through the typed AST, examines each
statement or node and generates LLVM IR instruction(s)
for them. Data type casting instructions are inserted if nec-
essary. External functions will be mapped to LLVM IR in-
trinsics. ParallelJS supports limited external functions such
as mathematics/logic operations (e.g. trigonometric func-
tions).

Line 9-12 of Listing 3 shows the LLVM IR instruction
generated for line 6 in Listing 1. The return statement is
replaced by storing the result into %out.

NVVM Compiler.
The last stage of the ParallelJS compiler uses the NVVM

compiler to compile LLVM IR to PTX kernel(s). The NVVM
compiler is shipped as a library which defines a set of C APIs
that are directly invoked by ParallelJS framework in its run-
time systems.

5.2 Runtime
The runtime executes PTX kernels on the GPU and man-

ages the input/output data exchange between the CPU and
GPU. The runtime system is written in C/C++ along with
CUDA driver APIs and shipped as a dynamic library. Paral-
lelJS invokes the runtime library directly from the JavaScript
program, which requires the setup of a secure interface be-
tween them. We use the privileged JavaScript interface pro-
vided by the Firefox browser extension. For other browser
or applications, the idea should be the same although the
interface implementation could be different.

Figure 2 illustrates the interface between JavaScript and
the runtime library. LLVM IR, input and context object
that resides on the regular JavaScript side pass to runtime
through Privileged JavaScript. Firefox uses Document Ob-
ject Model (DOM) event object to send and receive the
passed data. The DOM event is created in the regular
JavaScript and dispatched with its event name. On the
privileged JavaScript side, there is an event listener that can
take this DOM event and invoke corresponding procedures
in the runtime library. Similarly, when the runtime pro-
cedures terminate, the privileged JavaScript can send back
event to regular JavaScript indicating output data are ready
to retrieve. It should be noted that the NVVM compiler is
also invoked by the runtime library through the privileged
JavaScript interface.

Data Management.
The implementation of the runtime system uses a flat

array to represent the data stored in par$.AccelArray.
ParallelJS transfers the pointer of the AccelArray data
array to the runtime which is then copied to GPU mem-
ory. For number and boolean values, the corresponding
values are set to kernel arguments directly. After kernel ex-
ecution, runtime copies the output data from GPU back to
the par$.AccelArray.

LLVM IR

Input, Context
Firefox

Extension
Runtime
Library

NVVM Library

CUDA DriverOutput

Regular
JavaScript

Privileged
JavaScript

Dynamic C Library

Figure 2: Runtime Interface Overview

ParallelJS uses a data management system that minimizes
the data transfer between the GPU and CPU. The system
copies the data in an AccelArray to the other side only if
there is a requirement to access the data in that side. For ex-
ample, if a ParallelJS program calls two back-to-back map
constructs but only reads the output of the second map,
the result of the first map can reside in the GPU without
transferring back to the CPU. The data management system
is also designed to collaborate with the JavaScript garbage
collector to reuse the system memory efficiently. Once the
garbage collector releases an AccelArray, the correspond-
ing data stored on the GPU will be released accordingly or
reused by a new AccelArray.

Kernel Execution and Code Cache.
PTX kernels generated by the ParallelJS compiler execute

on GPUs by calling CUDA driver APIs, including arguments
setup, kernel configuration and kernel launching. ParallelJS
maintains all the kernel handlers for each PTX kernel gen-
erated. These kernel handlers are used in a code cache to
enable faster compilation and kernel reuse. When a con-
struct with a user-defined function is executed, its name, the
user-defined function code and input/output/context vari-
able types are stored as a hash code. The hash code is
mapped to a PTX kernel handler in the runtime. Any future
invocation of the same construct with the same hash code
does not require any compilation but can use the stored
kernel handler instead. This will significantly reduce the
compilation time especially for programs in which the same
set of operations are called within a loop.

6. EXPERIMENTS AND EVALUATION
We execute the ParallelJS infrastructure on a heteroge-

neous system with both a CPU and GPU. We choose a
high-end desktop and a low-end business class laptop as the
experimental environment specified in Table 2. The experi-
ments are performed on Windows OS as it has a better sup-
port for the Mozilla Firefox privileged JavaScript interface.
The CPU implementation of the ParallelJS utility constructs
are evaluated on both Chrome and Firefox browsers with
the stock JavaScript engines while the GPU implementa-
tion is only evaluated on Firefox for its support of privileged
JavaScript to invoke an external C library. We also compare
the code generated from ParallelJS with native CUDA code
written for the example program as well as those shipped as
libraries (e.g. CUB library from NVIDIA [14]).

6.1 Example Programs
We investigate the performance of ParallelJS code in sev-

eral example programs. The core computation part of the

Laptop Desktop
GPU
GPU (NVIDIA) GTX 525M Geforce Titan
Architecture Fermi Kepler GK110
Cores 96 2688
Device Memory 1024 MB 6144 MB
Clock Freq. 600MHz 837MHz
CPU
CPU Intel i7-2630QM Intel i7-4771
Clock Freq. 2.0GHz 3.5GHz
System Memory 6GB 32GB
OS Windows 8
Browser Mozilla Firefox 22.0

Google Chrome 31.0
CUDA and NVVM 5.5

Table 2: Experimental environment.

original JavaScript code is rewritten using the ParallelJS
utility constructs.

Boids. The boids example simulates the flocking behav-
ior of birds in lock step. The birds are moving in the space
such that they avoid any collision with other flockmates
while steering towards the average position of local flock-
mates. The original JavaScript implementation uses a loop
in which the position of each flockmate is computed accord-
ing to the rules. A switch variable can be turned on or off
by a mouse to control whether the flockmates either attract
or repel each other.

Chain. The chain example simulates a set of springs
which are connected to each other reacting to any mouse
dragging. When parts of the spring network are dragged to a
random point in the screen, the remaining part will react and
adjust their positions according to the forces placed on the
springs. The computation of the spring force includes all the
forces from neighbor nodes adjusted by spring configurations
such as stiffness.

Mandelbrot (Mandel). This example computes the
Mandelbrot set recursively such that in each iteration the
boundary is elaborated to progressively finer detail. The
original JavaScript code uses a loop in which every pixel of
the image is computed according to the Mandelbrot equa-
tion.

Reduce. This is a simple reduction program using ad-
dition as the reduce operation. It uses the par$.reduce
construct.

Single Source Shortest Path (SSSP). The ParallelJS
implementation of SSSP has two steps: 1) it does a backward
walk on the graph, loop over all the predecessors of each node
to find the minimum distance. 2) it checks the number of
the nodes whose values change. The procedure terminates
when there is no change in the graph. This example uses
both the par$.map and par$.reduce construct.

The examples Boids, Chain, Mandel have both a com-
putation part and a visualization part, which is a common
pattern for lots of JavaScript programs on webpages. They
share the similar code structure, which uses an outside loop
for time-step simulation. In each iteration, each node or
pixel compute its new position or value according to some
equation which may or may not involve its neighbor data.
The pattern makes these example good candidate for Paral-
lelJS map construct. The user-defined function of map would
be a computation for each node/pixel.

1 //sequential JavaScript code
2 function seqfn(...) {
3 for(var x = 0; x < width; x++) {
4 for(var y = 0; y < height; y++) {
5 var xy = ...computation of point (x,y)...
6 result[y*width+x] = xy; }
7 }
8 }
9

10 //ParallelJS code
11 function parfn(input, index) {
12 var xy= ...computation of point (x,y)...
13 return xy;
14 }
15 par$.map(input, seqfn, context);

Listing 5: Example JavaScript program written in
ParallelJS using par$.map

Listing 5 shows how the patterns in these three exam-
ple programs are mapped to ParallelJS code. Generally the
computation inside the loops of the sequential code (line 5-
6) will be mapped directly to the body of the user-defined
function (line 12-13). This strategy provides productivity of
ParallelJS so that the JavaScript programmers do not have
to rewrite the program from scratch to get the benefit of
parallel execution.

1 // create a parallel array of size sz
2 var p = new par$.AccelArray(sz,fill);
3
4 // log n binary reduction done in shared memory
5 var f = par$.reduce(p, sum);

Listing 6: Example ParallelJS program Reduce

Listing 6 shows the ParallelJS code for Reduce with the
sum operation. Note that internally par$.reduce is imple-
mented with the logN parallel scheme using shared memory
as computation storage as shown in Listing 4.

Part of the ParallelJS implementation of SSSP is shown
in Listing 7. The par$.map takes mapfn as an argument
which checks the cost of neighbors of every node and find
minimum distance. The par$.reduce gathers changed flag
for every node using addition function. This piece of code
is compared directly with SSSP code written in CUDA [12]
and uses a significant smaller number of lines (40 lines in
JavaScript versus 150 lines in CUDA).

1 while (s){
2 par$.map(inData, outData, mapfn, ctx);
3 ...
4 s = par$.reduce(pChanged, sumfn);
5 }

Listing 7: Part of SSSP code written in ParallelJS

6.2 Evaluation of the GPU Implementation
We evaluate the performance of the GPU implementa-

tion of ParallelJS for the first four example programs on the
desktop/laptop GPUs by comparing the speedup over the
sequential implementation on Intel CPUs. We measure the
execution time of one time-step simulation averaged from
10000 iterations and compute the speedup over the sequen-
tial CPU implementation on Intel Haswell i7-4771. Data
transfer time is included in the total execution time since
the CPU requires to access the output AccelArray after
each iteration. Code cache is enabled so the compilation

0

5

10

15

20

25

30

S
p
e
e
d
u
p

CPU Chrome

CPU Firefox

GPU Desktop

GPU Mobile

Figure 3: Performance of ParallelJS GPU implementation
which shows the speedup of GPU implementation on Desk-
top/Laptop GPUs over the Desktop CPU sequential imple-
mentation. The CPU implementation on Chrome browser
sets the baseline. Number suffix in the x-axis indicates the
input size for each example.

only happens at the first iteration and its timing consump-
tion is excluded. Rendering time is excluded from the mea-
surement. The CPU implementation are measured both
on Chrome and Firefox browsers. The results are shown
in Figure 3 where CPU Chrome is the baseline. The time
measurement here is performed by calling JavaScript timing
function.

The CPU implementation on the Chrome browser and
Firefox browser achieve similar performance across the four
examples with different input sizes. For small input size
(Boids 256, Chain 256 and Reduce 256), the GPU imple-
mentation on both the laptop and the desktop platforms
performs worse than the sequential implementation. The
reason is that for small input sizes, the overhead of com-
piling ParallelJS, communication between CPU and GPU,
as well as kernel launching takes most of the total time.
Speedup can be observed on GPUs for larger input (Boids
1K and 2K, Chain 4K and 16K, Mandelbrot, Reduce 256K
and 32M). The desktop GPU achieves 5.0x to 26.8x speedup
while the laptop GPU achieves 3.8x to 22.7x over the base-
line.

The speedup over the sequential implementation demon-
strates the efficiency of the ParallelJS infrastructure utilizing
the massively-parallel data processor in the heterogeneous
systems. The difference between the speedup on the laptop
GPU and the desktop GPU shows that the latter has much
stronger computation power due to larger number of cores,
advance in architecture and higher clock speed.

To further analyze the performance result, we break down
the compilation time and execution time for one iteration of
Boids 2K on laptop GPU as shown in Table 3. ParallelJS
compilation time includes parsing, type inference and code
generation as described in section 5.1. NVVM compilation
time is spent on invoking the NVVM library to generate
PTX kernels. If code cache is enabled, the time spent on
these two parts only happen at the first iteration where a
new kernel should be generated for the construct. How-
ever, there are still cases that the same construct cannot
be reused and the compilation time consumption can cause
poor overall performance. Therefore, optimization in com-
pilation may still be necessary. The privileged JavaScript
interface cost 1ms which is spent on passing DOM event ob-
ject between regular JavaScript and privileged JavaScript.

Stage Time (ms)

ParallelJS Compilation 13†

NVVM Compilation 14†

Privileged JavaScript interface 1†

Data Transfer between CPU and GPU 1.92‡

Kernel Execution 5.82‡

Table 3: Execution and compilation break down of Boids2K
GPU implementation. † indicates time is measured using
JavaScript timing API and ‡ indicates time is measured us-
ing C API.

0

2

4

6

8

10

12

1
E

+
0

1
E

+
1

1
E

+
2

1
E

+
3

1
E

+
4

1
E

+
5

1
E

+
6

1
E

+
7

1
E

+
8

E
x
e
c
u
ti
o
n

 T
im

e
 (

m
s
)

Input Size

ParallelJS GPU

Native Cuda

Cub

Figure 4: Comparison of the performance of Reduce pro-
gram in ParallelJS, native CUDA and CUB library

The time consumption is independent of the program size.
The data transfer time takes about 22% of the total execu-
tion time. However, this part can be avoided if the CPU
does not require output data access in every time step. In
the first four examples, CPU needs the output data to write
the display frame buffer. In the future, ParallelJS can be
designed such that GPU can directly display data from the
AccelArray which resides on the GPU. In that case, no
data transfer between CPU and GPU is necessary. The
kernel execution composes most of the total execution time
(66.6%), which generally depends on the algorithm used by
the user-defined function and the construct. ParallelJS is de-
signed such that the implementation of the constructs can
be flexible depending on the GPU architecture it targets
for. Therefore, the kernel execution time can be optimal for
different systems.

Figure 4 shows the performance of Reduce example in
ParallelJS versus native CUDA code and CUB library. Sim-
ilarly, the overhead in ParallelJS framework takes up most
of the execution time for small-size inputs, making the per-
formance a lot worse than native CUDA or CUB (10x and
7.6x slow down for 1K input size). For larger input size,
ParallelJS performs similar to but still a little worse than
native CUDA or CUB (1.01x and 1.05x slow down for 32M
input size) due to the extra layer introduced by the frame-
work on top of the CUDA binary. However, the high level
design methodology of ParallelJS enables incredible smaller
code size compared with native CUDA or CUB. This raises
the question of how the current software stack balance the

Graph nodes edges Time (ms) Speedup
USA-Road 1070376 2712798 18685 0.86
r4-2e20 1048576 4194304 1215 0.60
rmat20 1048576 8259994 3645 0.59

Table 4: Performance of SSSP on ParallelJS

tradeoff between productivity versus performance. While
ParallelJS provides high programmability by hiding lots of
GPU details such as Grid/CTA sizes and memory hierarchy,
certain low-level customary can result in better performance.
We are still investigating cases where the proposed frame-
work can perform well or not compared with native GPU
implementations.

We evaluate the performance of SSSP by comparing its
ParallelJS implementation with CUDA implementation [12].
We report the speedup over CUDA implementation on sev-
eral graphs with different number of nodes and edges. The
result is shown in Table 4. The performance of SSSP is al-
ways worse than the CUDA version (speedup from 0.59x to
0.86x). The main reason is that ParallelJS uses the back-
ward algorithm instead of the forward algorithm in the orig-
inal CUDA implementation. This is inevitable since in the
original CUDA implementation, atomic operations are used
to find the minimum distance while JavaScript is a deter-
ministic language without any support of atomic operations
and has to use a backward walk on each node to loop over all
the predecessors. This example shows the limit of current
ParallelJS framework compared with the stock programming
language. Some low-level features are not visible to the pro-
grammers in ParallelJS, thereby eliminating the ability of
ParallelJS to support very complex GPU applications effi-
ciently. A second issue is that the lonestar code does all the
work in a single kernel while JavaScript code needs two ker-
nels – one to update the nodes and a second to detect any
node changes. In the future, we may be able to fuse these
kernels together to improve the performance.

6.3 Discussion
The performance of ParallelJS shows that the implemen-

tation on both desktop and laptop GPUs are efficient. The
same infrastructure can be easily moved to future mobile
platforms which are becoming more prevalent for web brows-
ing, hence running JavaScript programs. Since mobile plat-
form might have lower-end GPUs compared to desktops and
laptops, the performance evaluation of ParallelJS on such
platforms are useful and necessary. Based on that, peo-
ple can explore the research topics such as choosing right
constructs to build the web applications for different device
platform.

The fused CPU/GPU [1] has been a recent trend for het-
erogeneous systems. The shared memory hierarchy in these
fused architectures would generate impact on ParallelJS de-
sign methodology especially for the data transfer part. While
a memory management would still be necessary, share mem-
ory between CPU and GPU would certainly reduce the mem-
ory traffic and thereby improve the overall performance. In
this case, an intelligent CPU-GPU co-scheduling method is
necessary to decide where the construct should run.

7. RELATED WORK
Traditional JavaScript is single threaded using asynch-

ronous events that multi-threaded shared memory models

are not robust enough for web programming. While there
is better performance, data races, locks, timing issues, live
locks etc., may lead to cross browser failures and a poor
user experience. A feature called Web Workers [21] is the
only widely adopted parallel model avoids all of this issues
by offloading all long running computations to background
threads with an extremely heavy weight cross thread com-
munication mechanism. The overhead of cross thread com-
munication makes them unsuitable for scalable high perfor-
mance parallel computing.

People have been making effort to improve the JavaScript
performance by utilizing GPUs. The WebCL [9] proposed by
Khronos Group and the JSonGPU framework [20] proposed
by Pitambare et al. are among the earlier researches that
target JavaScript on GPUs. The former defines a JavaScript
binding to the OpenCL standard for heterogeneous parallel
computing. The latter proposes extension to the JavaScript
language such that the programmers can express the BSP
model directly with JavaScript code. While all the above
works are useful and report significant performance over
sequential JavaScript execution, they both expose the de-
tails of the GPU programming concepts to JavaScript by
introducing new syntax and semantics. Therefore, program-
ming with these frameworks requires understanding of the
GPU programming models. Furthermore, one has to inves-
tigate the code for different GPU architectures to achieve
best performance. The proposed ParallelJS framework hides
away all the GPU programming details from the program-
mers and stays at higher level constructs while extending
the JavaScript language, which enables less programming
effort as well as performance portability since the implemen-
tation of constructs can be adapted automatically according
to different architectures the programs execute on. Intel pro-
poses the River Trail [6] framework to execute JavaScript on
multi-threaded CPUs by introducing parallel primitives with
an OpenCL backend. However, RiverTrail does not run on
GPUs and lacks the design perspectives of handling GPU-
specific features such as data transferring between CPU and
GPU.

As a recent trend of heterogeneous computing, executing
high-level programming languages or domain-specific lan-
guages (DSL) on heterogeneous architectures with GPUs are
drawing great attentions in different research communities.
For example, Wu et al. [22] designed Red Fox compilation
framework that can run relational queries on GPUs. Klöck-
ner et al. develop the PyCuda framework [11] and Catan-
zaro et al. develop the Copperhead framework [3], both for
executing Python script language on GPUs. The former
uses strategy that is very similar to WebCL, which provides
an interface for directly invoking external CUDA code from
Python. The latter compiles a Python program with parallel
primitives to Thrust code [2] and links it against the Thrust
library to run on GPU. Compared with these frameworks,
ParallelJS provides higher programmability by both elimi-
nating CUDA code embedding and automating the decision
for where to run the JavaScript programs (either on CPUs
or GPUs).

8. CONCLUSION
This paper presents the design of a GPU compiler/run-

time framework, ParallelJS, for JavaScript which is com-
monly used for web applications. The paper focuses on
the compilation of commonly used constructs onto GPUs.

Comparison with mainstream host implementations demon-
strates significant computing speedup is feasible. The lan-
guage is progressively parsed and lowered through a series
of IR representations that eventually are mapped to PTX
kernels that are executed by an implementation of the run-
time on a discrete GPU. When compared with a CPU-based
mainstream JavaScript engine, ParallelJS system can be up
to 26.8x faster. We also provide analysis of the perfor-
mance, the lessons learned and future directions.

9. REFERENCES
[1] AMD. Amd fusion family of apus: Enabling a

superior, immersive pc experience. March 2010.

[2] N. Bell and J. Hoberock. Thrust: A 2 6. GPU
Computing Gems Jade Edition, page 359, 2011.

[3] B. Catanzaro, M. Garland, and K. Keutzer.
Copperhead: Compiling an embedded data parallel
language. SIGPLAN Not., 46(8):47–56, Feb. 2011.

[4] D. Flanagan. JavaScript. O’Reilly, 1998.

[5] Google. V8 javascript engine: Introduction. 2010.

[6] S. Herhut, R. L. Hudson, T. Shpeisman, and
J. Sreeram. River trail: A path to parallelism in
javascript. SIGPLAN Not., 48(10):729–744, Oct. 2013.

[7] A. Hidayat. Esprima: Ecmascript parsing
infrastructure for multipurpose analysis.
http://esprima.org/.

[8] R. Hindley. The principal type-scheme of an object in
combinatory logic. Transactions of the american
mathematical society, 146:29–60, 1969.

[9] Khronos. Webcl working draft. 2013.

[10] Khronos Group. The OpenCL Specification, version
2.0. November 2013.

[11] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro,
P. Ivanov, A. Fasih, A. Sarma, D. Nanongkai,
G. Pandurangan, P. Tetali, et al. Pycuda: Gpu
run-time code generation for high-performance
computing. Arxiv preprint arXiv, 911, 2009.

[12] M. Kulkarni, M. Burtscher, C. Casçaval, and
K. Pingali. Lonestar: A suite of parallel irregular
programs. In ISPASS ’09: IEEE International
Symposium on Performance Analysis of Systems and
Software, 2009.

[13] C. Lattner and V. Adve. Llvm: A compilation
framework for lifelong program analysis &
transformation. CGO ’04, pages 75–. IEEE Computer
Society, 2004.

[14] D. Merrill. Nvidia cub library. 2013.

[15] R. Milner. A theory of type polymorphism in
programming. Journal of computer and system
sciences, 17(3):348–375, 1978.

[16] Mozilla. Spidermonkey. 2013.

[17] NVIDIA. Cuda c programming guide, 2012.

[18] NVIDIA. Nvvm ir specification 1.0. 2013.

[19] NVIDIA. Parallel thread execution isa, 2013.

[20] U. Pitambare, A. Chauhan, and S. Malviya.
Just-in-time acceleration of javascript.

[21] W3C. Web workers, 2013.

[22] H. Wu, G. Diamos, T. Sheard, M. Aref, S. Baxter,
M. Garland, and S. Yalamanchili. Red fox: An
execution environment for relational query processing
on gpus. CGO ’14, 2014.

