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ABSTRACT 

This paper examines energy management in a heterogeneous 

processor consisting of an integrated CPU-GPU for high-

performance computing (HPC) applications. Energy management 

for HPC applications is challenged by their uncompromising 

performance requirements and complicated by the need for 

coordinating energy management across distinct core types – a 

new and less understood problem. 

We examine the intra-node CPU-GPU frequency sensitivity of 

HPC applications on tightly coupled CPU-GPU architectures as 

the first step in understanding power and performance 

optimization for a heterogeneous multi-node HPC system. The 

insights from this analysis form the basis of a coordinated energy 

management scheme, called DynaCo, for integrated CPU-GPU 

architectures. We implement DynaCo on a modern heterogeneous 

processor and compare its performance to a state-of-the-art 

power- and performance-management algorithm. DynaCo 

improves measured average energy-delay squared (ED^2) product 

by up to 30% with less than 2% average performance loss across 

several exascale and other HPC workloads. 

Categories and Subject Descriptors 

C.1.4 [Processor Architectures]: Parallel Architectures; C.4 

[Performance of Systems]: Design studies 

General Terms 

Management, Measurement, Performance, Design 

Keywords 

Energy management, High-performance computing 

 

1. INTRODUCTION 
Efficient energy management is central to the effective 

operation of modern processors in platforms from mobile to data 

centers and high-performance computing (HPC) machines. 

However, HPC systems are unique in their uncompromising 

emphasis on performance. For example, the national roadmap for 

HPC now has the goal of establishing systems capable of 

sustained exaflop (1018 flops/sec.) performance. However, the 

road to exascale is burdened by significant challenges in the 

power and energy costs incurred by such machines. 

Many current HPC systems use general-purpose, multi-core 

processors such as Xeon from Intel and AMD Opteron™ that are 

equipped with several power-saving features, including dynamic 

voltage and frequency scaling (DVFS). More recently, driven in 

part by demand for energy efficiency, we have seen the 

emergence of such processors with attached graphics processing 

units (GPUs) acting as accelerators. As of November 2012, four 

of the top ten and 62 of the top 500 supercomputers on the 

Top500 list were powered by accelerators [42][43]. 

This trend towards heterogeneous processors is continuing with 

tightly coupled accelerated processing unit (APU) designs in 

which the CPU and the GPU are integrated on the die and share 

on-die resources such as the memory hierarchy and interconnect. 

The companion emergence of programming models such as 

CUDA, OpenACC, and OpenCL is making such processors viable 

for HPC. However, the tighter integration of CPUs and GPUs 

results in greater performance dependencies between the CPU and 

the GPU. For example, CPU and GPU memory accesses interact 

in the memory hierarchy, and may interfere, while they share a 

chip-level power budget and thermal capacity. Therefore, 

effective performance management and energy management must 

be coordinated carefully between the CPU and the GPU [29]. 

Figure 1 illustrates an HPC application running on an AMD A-

Series APU heterogeneous processor, formerly code-named 

"Trinity." The figure shows fine-grain communication between 

the CPU and the GPU on an OpenCL variant of Lulesh with 100 

node elements per dimension [19]. The x-axis shows time (in 

milliseconds) and the y-axis shows the CPU utilization as 

measured by IPC for the multi-threaded CPU, and the GPU 

utilization as measured by active clock cycles for the data-parallel 

GPU. The application is in the start-up phase up to 3200 ms, and 

the CPU is the primary active component. Subsequently, the CPU 

primarily plays an assist role delivering data to the GPU for 

computation leading to low CPU activity (IPC) and high GPU 

activity. However, there is constant communication between the 

CPU and the GPU and the performance required from each is a 

function of the kernel being run. For instance, the 

CalcFBHourGlass kernel has a higher GPU utilization than the 

other 20+ miscellaneous kernels in the application. The 

computational demands of the CPU and the GPU vary across 

program phases, as does the intensity of their interactions. Power 

and energy management techniques must be made cognizant of 

these interactions to minimize performance degradation with 

improvements in energy efficiency. 

While there has been a significant body of work in dynamic 

voltage frequency scaling (DVFS) for energy management in 

single- and multi-core homogeneous architectures, heterogeneous 

architectures embody several characteristics that render direct 

application of these techniques ineffective. Performance-coupling 
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Figure 1:  Example phase behavior in an exascale proxy application (Lulesh). 

between the CPU and the GPU produce dependencies between 

their respective DVFS states. However, unlike multi-core 

homogenous architectures in which all cores are identical and the 

majority of threads are identical, the CPU and GPU differ in both 

architecture and execution model. While the former supports 

asynchronous execution of (relatively) coarse-grain threads, the 

latter implements a model orchestrating the synchronous 

execution of thousands of thread blocks or wavefronts, 

comprising tens to hundreds of fine-grain threads. Consequently, 

their energy and power behaviors are quite distinct. Further, while 

the CPU-GPU behaviors are directly coupled through the 

programming model, their executions indirectly interact via 

interference and competition for shared on-chip resources. To be 

effective, algorithms that determine the DVFS states of the CPU 

and the GPU must be cognizant of these effects, their 

interrelationships, and their combined effect on performance. 

Our ultimate goal is to optimize energy efficiency and 

performance in a multi-node HPC system consisting of tightly 

coupled heterogeneous node architectures. We view the path to 

this goal as a two-step process: The first step analyzes and 

optimizes intra-node power and performance, and the second step 

optimizes these metrics in a multi-node system. This work focuses 

on maximizing energy efficiency for HPC applications with 

minimal to no compromise in performance in a tightly coupled 

heterogeneous node architecture. Specifically, this paper makes 

the following contributions: 

 

 We empirically characterize the frequency sensitivity of proxy 

applications developed to represent exascale applications. The 

analysis exposes several opportunities for improving energy 

efficiency without degrading the performance of the 

application. 

 We identify a key set of CPU and GPU run-time parameters 

that reflects the frequency sensitivity of the application and use 

regression techniques to construct an analytic model of 

frequency sensitivity. 

 We propose DynaCo – a coordinated, dynamic energy-

management algorithm using online frequency-sensitivity 

analysis to coordinate the DVFS states of the CPU and the 

GPU. DynaCo is implemented on a state-of-the-art 

heterogeneous processor. 

 Using measurements on real hardware, we compare DynaCo to 

a commercial, state-of-the-practice power- and performance-

management algorithm for several OpenCL exascale proxy 

applications and other HPC applications, demonstrating that 

significant improvements in energy efficiency are feasible 

without sacrificing performance. 

The following section provides background information. 

Section 3 presents an analysis of the frequency sensitivity of HPC 

applications. We use the insights from that analysis to develop a 

model of frequency sensitivity that forms the basis of the energy-

management algorithm described in Section 4. Sections 5 and 6 

describe the implementation and experimental results. Sections 7 

and 8 present related work and our conclusions. 

2. BACKGROUND 
Figure 2 shows the floor plan of the AMD A-Series 

heterogeneous APU used in the rest of the paper. It contains two 

out-of-order dual-core CPU compute units (CUs, also referred to 

as Piledriver modules) and a GPU. The cores in a CU share the 

front-end and floating-point units and a 2MB L2 cache. The CPUs 

share a power plane and the GPU is on a separate power plane. 

The GPU consists of 384 AMD Radeon™ cores, each capable of 

one single-precision fused multiply-add computation (FMAC) 

operation per cycle (the methodology and techniques in this paper 

are equally applicable to processors that support double-

precision). The GPU is organized as six SIMD units, each 

containing 16 processing units that are each four-way VLIW. The 

memory controller is shared between the CPU and the GPU. More 

details on the AMD A-Series processor can be found in [27]. 

 

 
Figure 2: Die shot of AMD A-Series APU [27]. 

 

Table 1 shows all possible DVFS states for the CPU cores in 

the AMD A-Series A10-5800k. Here, DVFS states can be 

assigned per CU; however, because the CUs share a voltage plane, 

the voltage across all CUs is set by the maximum-frequency CU. 

P0 through P5 are software-visible DVFS states that are referred 

to as performance states, or P-states, and are managed either by 

the OS through the Advanced Configuration and Power Interface 

(ACPI) specification [1] or by the hardware. Pb0 and Pb1 are 



called the boost states and are visible only to, and managed by, the 

hardware. Entrance to and exit from the boost states are managed 

exclusively by hardware when the CPU is at P0; hence, P0 is 

usually called the base state. P1 through P5 are increasingly 

lower-power P-states. The GPU has an independent power plane 

whose voltage and frequency are controlled independently. Unlike 

the CPU, the GPU does not have architecturally visible P-states. 

Throughout the rest of the paper, we will refer to the GPU DVFS 

states as GPU-high (highest frequency), GPU-med (medium 

frequency), and GPU-low (lowest frequency). 

 

Table 1: CPU DVFS states for AMD A-Series APU. 

 P-state Volt. (V) Freq (MHz) 

HW-

only 

Pb0 1.475 4200 

Pb1 1.45 4000 

SW-

visible 
 

P0 1.363 3800 

P1 1.288 3400 

P2 1.2 2900 

P3 1.075 2400 

P4 0.963 1900 

P5 0.925 1400 

 

The AMD A-Series APU uses a sophisticated power-

monitoring and -management technology referred to as AMD 

Turbo CORE to optimize performance for a given power and 

thermal constraint. This technology uses approximated power and 

temperature values to monitor and guide the power-management 

algorithms. AMD Turbo CORE uses the bidirectional application 

power management (BAPM) algorithm to control the power 

allocated to each compute entity in the processor [27]. Each 

compute entity interfaces with BAPM to report its power 

consumption, and BAPM determines its power limits based on the 

available thermal headroom. At regular time intervals, the BAPM 

algorithm does the following: 

1) Calculates a digital estimate of power consumption for each 

CU and GPU. 

2) Converts the power estimates into temperature estimates for 

each component. 

3) Assigns new power limits to each entity. 

Once BAPM has assigned power limits, each CU and GPU 

manages its own frequencies and voltages to fit in the assigned 

limit (i.e., local to a unit, the hardware will employ DVFS to keep 

the power dissipation in the assigned limit). The BAPM algorithm 

sets power limits based on thermal constraints and greedily boosts 

the power states to maximize use of the thermal capacity. If the 

processor never reaches maximum temperature, then power is 

allocated to the processor until the maximum CPU and GPU 

frequencies are reached. 

The BAPM algorithm is optimized to maximize performance 

with a fair and balanced sharing of power between on-chip 

entities. BAPM allocates power to each entity using a pre-set 

static distribution weight that is derived using empirical analysis. 

Such static allocation is the best choice in the absence of dynamic 

feedback from the application. As a general-purpose state-of-the-

practice controller, BAPM is designed to provide reasonable 

performance improvements without any significant outliers. 

3. MOTIVATION AND OPPORTUNITIES 
Figure 3 shows the peak temperature normalized to the 

maximum junction temperature allowed for each CU and the GPU 

for miniMD as the application runs on a 100W TDP processor. 

Processors with such a thermal design power package are 

commonly found in HPC clusters [40]. Although temperature 

tracks power and inversely tracks performance, it never reaches 

the peak thermal limits. This means that the performance of the 

CUs and the GPU are not constrained by temperature, and 

therefore they generally run at their maximum frequency. 

However, just because they can run at their maximum frequency 

does not mean that they should; there has to be a reasonable return 

in performance for the increase in frequency and higher power. 

We characterize this return on performance with the notion of 

frequency sensitivity – a measure of the improvement in 

performance for a unit increase in frequency. Frequency 

sensitivity is a time-varying function of the workload on a target 

processor. In general, the frequency-performance function is 

unknown. Thus, the idea is to measure the frequency sensitivity of 

an application periodically and determine whether it is productive 

(efficient) to change the frequency. While Rountree et al. [34] 

developed a frequency-sensitivity predictor for homogeneous 

CPUs, the problem in APUs is more complex due to shared 

resources and subtle CPU-GPU interactions. 

 

 
Figure 3: Thermal profile of miniMD running on GPU. 

 

The rest of this section identifies and categorizes behaviors that 

have a substantive impact on frequency sensitivity of the 

components. All results are based on hardware measurements on 

an AMD A-Series APU (experimental set-up described in Section 

5). This understanding is used in Section 4 to develop a model of 

frequency sensitivity for tightly coupled heterogeneous processors 

and to use the model to guide DVFS decisions. 

3.1 Shared Resource Interference 
The memory hierarchy is a key determinant of performance, 

and the CPU and the GPU share the Northbridge and memory 

controllers. The extent of interference at these points (which is 

time-varying) has a significant impact on the effectiveness of 

DVFS for the CPU or the GPU. 

Figure 4 (left bar) breaks down the CPU and GPU memory 

access rates, normalized to peak-DDR bandwidth with 75% bus 

efficiency, of one of the main computation kernels (neighbor) in 

miniMD [8]. The kernel is run iteratively in the application for the 

entire steady-state duration. Figure 4 (right bar) breaks down the 

average CPU DVFS state residency for the active CPU time under 

BAPM, which shows that the kernel DVFS residency is entirely in 

the hardware managed CPU boost states. 

We observe that this kernel saturates the overall shared-

memory bandwidth primarily due to the high rate of memory 

references from the GPU. The CPU portion of memory demand, 

which is captured by looking at last-level cache L2 miss rates, is 

relatively insignificant. Further (not shown), the CPU IPC of this 

kernel is higher than a typical memory-bound application. 

Power- and performance-management schemes that determine 

the CPU DVFS state in isolation of shared resources might 
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conclude that the CPU voltage-frequency can be boosted within 

thermal limits to improve performance. This is, in fact, what the 

BAPM algorithm does. However, the application performance is 

memory bandwidth-limited due to the GPU memory demands, so 

scaling up the CPU voltage-frequency has little performance 

benefit and will degrade energy efficiency (discussed in Section 

3.3). The lesson here is that we need online measurements of 

chip-scale global interactions to make good decisions regarding 

the CPU or the GPU DVFS state. 

 

 
Figure 4: Break-down of memory interference between CPU 

and GPU and corresponding CPU DVFS residency. 

3.2 Computation and Control Divergence 
GPUs are exceptional execution engines for data-parallel 

workloads with little control divergence. However, performance 

efficiency degrades significantly with increasing control 

divergence. That does not imply that lower-frequency states 

should be used for control divergent applications. Consider the 

Breadth-first Search (BFS) graph application from the Rodinia 

benchmark suite [9]. Figure 5 illustrates GPU frequency 

sensitivity for BFS (left bar). Execution times are measured at the 

lowest and highest frequencies. We compute frequency sensitivity 

as the ratio of the difference in execution times to the difference in 

frequencies. The figure also shows the GPU ALU compute 

utilization (right bar). While GPU ALU utilization and 

computation are fairly low, GPU frequency sensitivity is quite 

high. This is due to the high control flow-divergent behavior of 

the kernels in BFS, which leads to low utilization. However, 

higher-frequency operation leads to faster re-convergence, and 

thus shorter execution time. 

 

 
Figure 5: GPU frequency sensitivity to control divergence. 

 

Conventional cores that extract instruction-level parallelism 

from a single thread correctly associate low IPC with low 

frequency sensitivity. The converse is true here due to the bulk-

synchronous parallel-processing nature of GPU kernels. Control 

flow serializes the execution of threads in a thread block. The 

correct analogy with traditional core execution is the observation 

that higher-frequency operation will speed the serial sections of 

code and, therefore, the application as a whole. In this case, the 

greater the serial fraction or divergence, the greater the speed-up. 

The lesson here is that control flow-divergence measures should 

be captured in the compute behavior when determining frequency 

sensitivity. 

3.3 Performance-coupling and Kernel 

Sensitivity  
Each application has phases that vary in their frequency 

sensitivity due to the type of their activity rates and the degree of 

performance-coupling between CPU and GPU. This is true also of 

HPC applications. While computations are offloaded to the GPU, 

there are control and data dependencies between computations 

executing on the CPU and the GPU cores. For example, for peak 

GPU utilization, the CPU must deliver data to the GPU at a 

certain rate; otherwise, the GPU will starve, resulting in a 

reduction in overall performance. Such performance-coupling 

between the CPU and the GPU cores is accentuated by the tighter 

physical coupling due to on-die integration and the emergence of 

applications that attempt a more balanced use of the CPU and the 

GPU. Hence, any cooperative energy-management technique must 

balance such interactions against energy/power savings. 

 

 
Figure 6: Percent increase in kernel run-time due GPU DVFS 

changes relative to the baseline (BAPM). 

 

 
Figure 7: Percent increase in kernel run-time due CPU DVFS 

changes relative to the baseline (BAPM). 

 

Here we evaluate the opportunities to save energy of an 

exascale proxy application from the Mantevo suite called miniMD 

[8]. In particular, we characterize the frequency and resource 

sensitivity at the kernel granularity for both the CPU and the 

GPU. We have observed this behavior in other HPC applications 

as well; however, due to space limitations, we present only 
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Table 2: Sensitivity analysis of various performance metrics. 

Metric Description 

Correlation 

Coefficient to 

GPU FS (meas) 

Correlation 

Coefficient  to 

CPU FS (meas) 

WeightedALUBusy ALUBusy weighted by GPUClockBusy. 0.85 -0.62 

ALUInsts PTI Compute instructions per thousand instructions. 0.78 -0.54 

ALUBusy The percentage of GPUTime ALU instructions are processed.  0.76 -0.54 

ALUFetchRatio 
The ratio of ALU to fetch instructions. If the number of fetch 

instructions is 0, then 1 will be used instead.  0.57 -0.31 

L2 cache miss/cycle Level 2 cache miss rate to main memory for CPU. 0.13 -0.41 

ALUPacking The ALU vector packing efficiency (in percentage). 0.11 -0.22 

GPUClockBusy 
GPU utilization: Ratio of time when at least one of the SIMD 

units in the GPU is active compared to total execution time.  0.06 -0.13 

FetchUnitBusy The percentage of GPUTime the fetch unit is active.  -0.28 -0.01 

FetchUnitStalled The % of GPUTime main memory fetch/load unit is stalled.  -0.49 -0.15 

WriteUnitStalled The % of GPUTime main memory write/store unit is stalled.  -0.51 0.12 

Writes to memory PTI Main memory writes per thousand instructions. -0.60 -0.28 

Fetch from memory PTI Main memory reads per thousand instructions. -0.62 -0.23 

Global_MemUtil 
Aggregated CPU-GPU memory bandwidth consumed during 

theoretical peak bandwidth. -0.63 -0.56 

ClockWeightedUPC 
Retired micro-operations (includes all processor activity) per 

cycle weighted by each core's active clocks. -0.83 0.70 

 

miniMD results here. Figure 6 illustrates the GPU frequency 

sensitivity for the main miniMD kernels by measuring the impact 

of frequency on the speed-up of each kernel. The x-axis records 

the GPU DVFS states for each kernel. The y-axis shows the 

increase in run-time from the baseline BAPM case as GPU 

frequency is reduced. Because we are not thermally limited, the 

baseline algorithm runs the GPU at the highest frequency. 

We can observe many interesting behaviors in the Figure 6 

graph, with the key insight being that different kernels in miniMD 

have different resource requirements and their relative 

sensitivities to GPU frequency reflect those needs. One of the 

main computation kernels, Force, scales very well with GPU 

frequency and performs the best at the highest-frequency GPU 

DVFS state. This is because of the heavy compute-bound nature 

of the kernel. The Neighbor kernel shows high sensitivity to GPU 

frequency when going from low to medium frequency; however, 

Neighbor sees little to no performance benefit at the highest GPU 

frequency because the Neighbor kernel becomes memory 

bandwidth-limited at the highest GPU frequency. Communication 

and other fine-grained, relatively short kernels labeled Other seem 

to be less sensitive to GPU frequency. There is a 6% increase in 

total run-time at the medium GPU DVFS state, with the Force 

kernel being the main contributor to the slow-down. 

Consider the frequency sensitivity of the CPU for each of the 

miniMD kernels (recall the performance-coupling between the 

CPU and the GPU) illustrated in Figure 7. The Force and 

Neighbor kernels do not scale well with CPU frequency. The 

memory-bounded behavior of Neighbor makes it insensitive to 

CPU frequency with minimal performance loss at the lower CPU 

DVFS state of P4. The GPU compute-intensive nature of Force 

makes it less dependent on CPU frequency; however, decreasing 

CPU frequency beyond P2 starts starving the GPU. On the other 

hand, fine-grained, shorter kernels such as Communication and 

others have higher data dependencies on the CPU and are tightly 

performance-coupled. Launch overhead, combined with the 

relatively small kernel timings compared to the actual execution 

time, make these kernels more tightly performance-coupled to 

CPU frequency and less GPU frequency-sensitive. The lesson 

here is that the frequency-sensitivity metric in an APU needs to 

account for performance-coupling effects. 

3.4 Summary 
The preceding analysis shows that HPC applications exhibit 

varying degrees of CPU and GPU frequency sensitivity for a 

variety of subtle and non-obvious reasons. Overall, the results in 

this section clearly point towards the need for a set of metrics for 

energy management that can predict CPU-GPU frequency 

sensitivity in a tightly coupled heterogeneous architecture. Using 

these metrics, we envision extending BAPM with frequency-

sensitivity information to augment its functionality. We describe 

the model, its application, and results with measurements on real 

hardware in the following sections. 

4. RUN-TIME SYSTEM FOR ENERGY 

MANAGEMENT 
The first step is to develop a predictor for the frequency 

sensitivity of an application. Specifically, at any point in time we 

need to be able to predict the performance sensitivities of the 

application to the frequency of the CPU and the GPU, which may 

be different. As we observed in Section 3, this sensitivity analysis 

must account for indirect interactions between the CPUs and the 

GPU in the memory system and their coupled performance. 

The second step is to encapsulate this into an energy-

management algorithm that periodically computes the frequency 

sensitivity and, in response, adjusts the DVFS states of the CPU 

cores and the GPU. In this section, we derive a frequency-

sensitivity predictor in heterogeneous processors and use it to 

construct a run-time energy-management scheme. Our goal is to 

develop a simple and practical predictor that can be implemented 

efficiently in a dynamic run-time algorithm with minimal 

hardware overhead and complexity. 

4.1 Frequency Sensitivity Correlation 
We developed frequency-sensitivity predictors to capture the 

dominant behaviors described in Section 3 for the GPU and the 

CPU. 



First, we selected performance counters that are indicators of 

frequency sensitivity. Modern processors provide hundreds of 

detectable performance counters, which makes the selection quite 

challenging [7]. We used three exascale proxy applications 

(miniMD, miniFE, and Lulesh), consisting of many different 

kernels [8][14][19]. We also utilized six scientific applications 

from the Rodinia benchmark suite: Needleman-Wunsch, HotSpot, 

LU Decomposition (LUD), Speckle-reducing Anisotropic 

Diffusion (SRAD), Computational Fluid Dynamics (CFD), and 

BFS [9][10]. The chosen applications have a wide range of 

characteristics such as coarse- and fine-grained kernels, compute-  

and memory-boundedness, different degrees of CPU-GPU 

performance-coupling, and divergent control flow. 

Using an application analysis and profiling tool called 

CodeXL, we measured the execution times and the corresponding 

values of a set of performance counters/metrics at kernel 

boundaries over a range of CPU and GPU frequencies [41]. We 

initially attempted to find correlation across multiple sample 

points in a single application trace but found that minor 

discrepancies in phase alignment with performance metric traces 

can cause large variations in correlation. Hence, we looked for 

alignment only at the kernel granularity in an application. We 

performed a correlation analysis between each performance 

counter/metric and the CPU or GPU frequency sensitivity, 

measured as the ratio of the difference in execution times to the 

corresponding differences in frequency. We computed the 

correlation coefficients using linear regression (shown in Table 2). 

These performance counters/metrics were derived from a set of 

more than 40 hardware performance counters in the CPU, GPU, 

and Northbridge selected based on the insights gained from 

Section 3. Coefficient values greater than 0.5 or less than -0.5 are 

considered a strong positive or negative correlation, respectively 

[5]. These values are highlighted in Table 2. 

Second, we calculated overall GPU or CPU frequency 

sensitivity based on the following analysis. As expected, 

ClockWeightedUPC shows high correlation for CPU frequency 

sensitivity, as does GPU ALU activity and ALUBusy for the 

GPU. This captures the compute behavior of an application in 

either type of core. However, to capture the compute behavior for 

normal operations as well as control-divergent applications, we 

weighed the ALUBusy metric with GPUClockBusy (note the 

improvement in correlation between line 3 and line 1 in Table 2). 

As Figure 5 shows, graph algorithms have a high degree of 

control-flow divergence; thus, some SIMD engines are idle and 

waiting for a thread to finish executing before all threads can re-

converge and proceed. This produces poor ALU throughput, 

making it appear that the GPU is lightly utilized. However, when 

ALUBusy is weighted with the actual GPU clock activity, we get 

a higher rate of ALU activity for the active period and better 

correlation. Similar accounting has been done for CPUs; however, 

unlike the CPU, which is latency sensitive, the GPU's massively 

parallel bulk-synchronous computation creates a complex inter-

relationship between control behavior and power [5]. 

GPU frequency sensitivity shows a strong negative correlation 

to CPU UPC. Similarly, CPU frequency sensitivity shows a strong 

negative correlation to GPU ALUBusy. This is because of the 

data and execution dependencies between the GPU and CPU. As 

the computation becomes more balanced and distributed between 

the CPU and GPU, we expect the correlation coefficients to 

change. However, CPU and GPU performance still will be closely 

coupled in their interactions and dependencies. Therefore, a GPU 

frequency-sensitivity predictor needs to account for CPU UPC as 

a way to measure its performance-coupling. Similarly, CPU 

frequency sensitivity in a heterogeneous architecture needs to 

account for GPU ALU activity. 

We found a better correlation between frequency sensitivity 

and aggregated memory bandwidth (Global_MemUtil) compared 

to the localized memory access metrics such as L2 cache miss in 

the CPU or memory fetch/write stalls in the GPU. This is largely 

because of the disparity in memory-bandwidth demand between 

the CPU and the GPU while accessing a shared resource, as 

shown in Figure 4. 

Based on the preceding analysis, we summarized a key set of 

performance metrics below to use in our run-time energy-

management scheme to determine frequency sensitivities in a 

performance-coupled heterogeneous architecture. We determined 

CPU and GPU frequency sensitivities as weighted linear 

regression functions of these combined metrics to capture 

performance-coupling, core compute behavior, and global 

memory interference. The correlation coefficient using this 

combination of metrics improved to 0.97. 
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Although the set of applications analyzed here uses an offload 

model for computation, in which kernels run on the GPU with 

periodic synchronization points between CPU and GPU, we do 

not expect the performance metrics (WeightedALUBusy, 

Global_MemUtil, and ClockWeightedUPC) to change with more 

concurrent computation across CPU-GPU; however, the weights 

associated with the metrics in the linear regression equation may 

change to reflect even tighter performance-coupling between CPU 

and GPU. In future we plan on examining the impact of 

concurrent CPU-GPU execution on power-management 

algorithms. 

4.2 DynaCo: Coordinated Dynamic Energy 

Management Scheme 
We propose a run-time energy-management scheme called 

DynaCo based on the online measurement of the frequency 

sensitivity described in Section 4.1. DynaCo is implemented as a 

system software policy layered on top of the baseline AMD A-

Series power-management system (BAPM). 

The energy-management algorithm is partitioned into a 

monitoring block that samples the performance counters every 10 

ms to coincide with the operating system timer tick for 

minimizing overheads, and a decision block that computes 

frequency sensitivities using measurements described at the end of 

Section 4.1. The CPU and GPU DVFS states are then configured. 

In general, DynaCo periodically determines whether the CPU and 

the GPU frequencies are high or low. In each case, the energy 

management algorithm embodies the following logic: 

 

1) High GPU sensitivity, Low CPU sensitivity: Shift power to 

the GPU (i.e., boost the GPU to maximize performance). 



Figure 8: DynaCo-1levelTh pseudo-code. 

 
Figure 9: DynaCo-multilevelTh pseudo-code. 

 

2) High GPU sensitivity, High CPU sensitivity: Distribute 

power proportionally based on their relative sensitivities. 

3) Low GPU sensitivity, High CPU sensitivity: Shift power to 

the CPU (i.e., boost the CPU to maximize performance). 

4) Low GPU sensitivity, low CPU sensitivity: Reduce power 

of both the CPU and the GPU by using low-power states. 

 Because HPC applications are mostly uncompromising with 

respect to performance loss, we propose two energy-management 

algorithms – one more aggressive than the other in attempting to 

reduce power but with potentially higher performance 

degradation. In the less aggressive variant, DynaCo-1levelTh 

(Figure 8), we limit the lowest-frequency P-state to P2; the CPU is 

not permitted to go to a lower-frequency state. Thus, in this case, 

there is potential to lose some power-saving opportunity. In the 

more aggressive version, DynaCo-multilevelTh (Figure 9), the 

CPU is allowed to use all of the low-power P-states during low-

sensitivity phases by analyzing gradients in memory access rates. 

In both versions, the GPU is handled similarly and allowed to use 

all DVFS states. In Figure 9, we show DynaCo-multilevelTh for 

only the portions in which it is different from DynaCo-11evelTh. 

For our analysis, the GPU-high and -med thresholds for GPU 

WeightedALUBusy were set to 80% and 30%, respectively, based 

on GPU utilization and variations in workload intensity of 

graphics and HPC benchmarks; UPC_threshold was set to 0.4 

based on empirical observations across a wide range of workload 

characteristics in this architecture. The CPU and GPU DVFS 

settings are described in Section 2. Pmin is the lowest available 

CPU P-state. 

 The key observation is that when there is significant 

coupling/interaction between the CPU and the GPU, having the 

lowest CPU P-states can lead to significant power savings but 

significant performance degradation. At lower levels of coupling, 

significant power savings can occur with little performance 

degradation. The choice of algorithm depends on the degree of 

coupling, which can be time-varying. For example, if an HPC 

application has little communication overhead between the CPU 

and GPU, such as a compute-offload application in which serial 

fraction of the code is insignificant compared to the total 

execution time, both DynaCo schemes may provide similar 

performance but DynaCo-multilevelTh will provide better power 

and energy savings. 

5. EXPERIMENTAL SET-UP 
We used the AMD1 A10-5800 desktop APU with 100W TDP 

as the baseline for all our experiments and analysis. Base CPU 

frequency is 3.8GHz, with boost frequency up to 4.2GHz. The 

GPU frequency is 800MHz for the highest DVFS boost state [39]. 

                                                                 

1 AMD, the AMD Arrow logo, AMD Opteron, AMD Radeon 

and combinations thereof are trademarks of Advanced Micro 
Devices, Inc. 
2 Linux is the registered trademark of Linus Torvalds. 

Algorithm 1:  Dynamic scheme (DynaCo-1levelTh) 

1.   1: while TRUE do 

  2:   if (Global_MemUtil >= DDR_bus_efficiency) then 

  3:  /* Case: Memory is bottleneck */ 

  4:    SetGPUFreqState(GPU-med); 

  5:  SetCPUFreqState(CPU-low-power_P2); 

  6:   end if 

  7:   else           /* Case: Memory is not bottleneck */ 

  8:       if(ClockWeightedUPC >= UPC_Threshold) then   

  9: /* CPU frequency sensitive, consider GPU sensitivity */ 

10:         if (WeightedALUBusy>= HIGH) then 

11:                    SetGPUFreqState(GPU-high); 

12:          SetCPUFreqState(CPU-base); 

13:         else 

14:         if (MEDIUM<= WeightedALUBusy<HIGH) then 

15:                    SetGPUFreqState(GPU-med); 

16:          SetCPUFreqState(CPU-boost); 

17:         else 

18:                    SetGPUFreqState(GPU-low); 

19:          SetCPUFreqState(CPU-boost); 

20:         end if 

21:       else 

22:       if(ClockWeightedUPC < IPC_Threshold) then 

23:/* CPU frequency insensitive, consider GPU sensitivity 

*/ 

24:              SetCPUFreqState(CPU-low-power_P2); 

25:         if (WeightedALUBusy>= HIGH) then 

26:           SetGPUFreqState(GPU-high); 

27:         else 

28:         if (MEDIUM<= WeightedALUBusy<HIGH) then 

20:                     SetGPUFreqState(GPU-med); 

30:         else 

31:                    SetGPUFreqState(GPU-low); 

32:         end if 

33:       end if 

34:   end if 

35:      Sleep.time(SAMPLING_INTERVAL); 

36: end while     

Algorithm 2:  Dynamic scheme (DynaCo-multilevelTh) 

2.   1: while TRUE do 

----lines 2 through 21 in Algorithm 1--------------- 

22:     if(ClockWeightedUPC <  UPC_Threshold) then 

23: /* CPU frequency insensitive, consider GPU 

sensitivity */ 
24:        if (WeightedALUBusy>= HIGH) then 

25:                    SetGPUFreqState(GPU-high); 

26:        else 

27:         if (MEDIUM<= WeightedALUBusy<HIGH) then 

28:                    SetGPUFreqState(GPU-med); 

29:        else 

30:                    SetGPUFreqState(GPU-low); 

31:        end if 

32:        SetCPUFreqState(CPU-low-power_Pstate); 

33:        Compute_ MemAccessRate_gradient(); 

34:        if (gradient>=Mem_threshold) then 

35:          if(CPU-low-power_Pstate<=Pmin) then 

36:                  CPU-low-power _Pstate++; 

37:          end if 

38:          else 

39:          if (CPU-low-power >CPU-base+1) then 

40:                  CPU-low-power _Pstate--; 

41:          end if 

42:        end if 

43:     end if 

44:   end if 

45:   Sleep.time(SAMPLING_INTERVAL); 

46: end while     



We used four 2-GB DDR3-1600 DIMMs with two DIMMs per 

channel. Hardware performance counters for CPU and GPU were 

monitored using CPU and GPU performance counter libraries 

running in Red Hat Linux2 OS. We set specific CPU DVFS states 

using model-specific registers as described in [7]; to set a specific 

GPU DVFS state, we send memory-mapped messages through the 

GPU driver layer to the power-management firmware. 

Although our DynaCo scheme can be implemented in any layer 

such as hardware, power-management firmware, or system 

software, we implemented it as a run-time system software policy 

by layering it on top of the baseline AMD A-Series power-

management system. For CPU and GPU power and temperature, 

we used the digital estimates provided by the power-management 

firmware running in the AMD A-Series processor, the accuracies 

for which are detailed in [27]. For all schemes, we ran the 

applications for several iterations to reach a thermally stable 

steady state. We took an average across those multiple iterations 

to eliminate run-to-run variance in our hardware measurements. 

 

Table 3: Application datasets. 

Application Problem Size  

miniMD 32 x 32 x 32 elements 

miniFE 100 x 100 x 100 elements 

Lulesh 100 x 100 x 100 elements 

Sort 2,097,152 elements 

Stencil2D 4,096 x 4,096 elements 

S3D SHOC default for integrated GPU 

BFS 1,000,000 nodes 

 

We selected the applications used in our experiments based on 

their relevance to future high-performance scientific computing. 

We evaluated seven OpenCL applications in this paper: miniMD, 

miniFE, Lulesh, S3D, Sort, Stencil2D, and BFS. MiniMD, 

miniFE, and Lulesh are proxy applications representative of HPC 

scientific application characteristics in the exascale time-frame. 

We also evaluated a sub-set of benchmarks (S3D, Sort, Stencil2D, 

BFS) from the Scalable Heterogeneous Computing (SHOC) 

benchmark suite [13] that represents a large portion of scientific 

code found in HPC applications. We analyzed all applications on 

a single node to explore energy-saving opportunities using our 

run-time schemes. These applications and the associated datasets 

are described in Table 3. 

MiniMD is a molecular dynamics code derived from its parent 

code, LAMMPS [8]. It has two main computational kernels. The 

first is the L – J potential function, or force kernel, and the second 

is the neighbor-binning algorithm, or neighbor kernel. Other 

kernels include communication kernel atom_comm and 

miscellaneous small kernels to integrate the atom forces and build 

the neighbor's list for each atom based on proximity and other 

variables. 

MiniFE provides an implementation of a finite-element method 

[14]. It provides a conjugate gradient (CG) linear system solver 

with Jacobi preconditioning. The three main kernels in the CG 

solver are matvec, which does matrix vector operations; dot, 

which performs the dot product of two matrices; and waxpy, 

which does the weighted sum of two vectors. 

Lulesh [19] approaches the hydrodynamics problem using 

Lagrangian numerical methods. The two main computation 

kernels in Lulesh are CalcHourGlassForces and 

CalcFBHourGlassForces. 

SHOC consists of a collection of complex scientific 

applications and common kernels encapsulated into benchmarks 

that represent a majority of the numerical operations found in 

HPC. We use Sort; which sorts an array of key-value pairs using a 

radix sort algorithm; Stencil2D, which uses a nine-point stencil 

operation applied to a 2D dataset; S3D, which is a turbulent 

combustion simulation; and BFS, which is a graph traversal 

problem. 

We report performance, power, and energy efficiency (energy-

delay^2 product) for the two variants of DynaCo algorithm. We 

picked ED^2 because it has been widely used in HPC analysis 

[21] and it captures the importance of both power and 

performance, the latter being critical for HPC. The power and 

energy results include CPU, GPU, memory controller power, and 

a fixed IO-phy power budget. All results were obtained from real 

hardware and are normalized to the baseline BAPM discussed in 

Section 2. All averages represent geometric mean across the 

applications. 

6. RESULTS 
This section describes the results from the two DynaCo 

schemes in the AMD A-Series APU and compares them with the 

state-of-the-practice power-management algorithm BAPM. We 

also compare our DynaCo schemes with an ideal static scheme 

that picks the best DVFS state for each kernel as determined 

through offline profiling and analysis by performing an entire 

state-space search. Offline techniques provide a good basis for 

comparison to evaluate the effectiveness of run-time techniques 

but are impractical as power-management strategies. 

6.1 Performance, Power, and Energy 
Figure 10 shows the performance impact of DynaCo-1levelTh, 

DynaCo-multilevelTh, and ideal static schemes compared to the 

baseline for all six HPC applications. The y-axis represents the 

increase in run-time compared to a baseline value of 1.0, and 

lower is better. We see an average run-time increase of 0.78% 

across all the applications using DynaCo-1levelTh, with up to 

2.58% maximum slow-down in the case of miniMD. 

DynaCo-multilevelTh sees an average run-time increase of 

1.61% across the same set of applications, with a worst-case slow-

down of 4.19%. The ideal static scheme measures an average 

slow-down of 1.65%, with the worst case being 5.2% in miniMD. 

This illustrates the efficacy of the run-time schemes in optimizing 

energy efficiency under strict performance constraints. Ideal static 

picks the best CPU and GPU DVFS states at a kernel-level 

granularity, and it is unable to detect fine-grained phase changes 

in a kernel. Hence, it penalizes short, high-frequency sensitive 

phases in a kernel that overall has low sensitivity. 

As expected, we see much tighter performance control with 

DynaCo-1levelTh compared to DynaCo-multilevelTh and ideal 

static because it does not utilize the lowest-frequency states of the 

CPU. Because it always fixes the low-power P-state for CPU to 

P2 during phases of low CPU frequency sensitivity, it also 

removes the slight variability in performance over time when the 

algorithm is adapting dynamically to find the best low-power P-

state. On the other hand, DynaCo-multilevelTh provides better 

energy efficiency gains, as we will see next, with slightly more 

performance degradation but still within reasonable bounds of 

HPC constraints [21]. We attribute the relatively higher 

performance loss in miniMD to the impact of variability in kernel 

phases shorter than our 10-ms sampling interval limitation. 

The more aggressive DynaCo-multilevelTh outperforms ideal 

static in miniFE and miniMD because a run-time adaptive scheme 

is able to take advantage of the phase behavior in a kernel, 

whereas the static scheme based on profiling makes power-state 

decisions only at kernel-level granularity. Figure 11 shows an 

example phase behavior of the matvec kernel in miniFE for a 



single iteration. The y-axis shows GPU utilization and normalized 

memory-bandwidth utilization compared to the practical peak-

DDR bandwidth. Matvec does sparse matrix-vector product and, 

in general, is heavily memory bandwidth-limited due to the large 

number of indirect memory references and register spills to global 

memory in the code. However, about 19% of the time it is 

compute-intensive without saturating memory bandwidth. This 

behavior is observed in every invocation of matvec in miniFE, a 

significant fraction of the application's total run-time. During this 

19% compute-intensive phase, DynaCo boosts the GPU to its 

highest DVFS state while the profiling-based ideal static scheme 

fixes the GPU frequency to GPU-med due to this kernel's overall 

low GPU frequency sensitivity. 

In Figure 12 we evaluate the ED^2 gains using DynaCo during 

the entire run-time of the application. All data are normalized to a 

baseline of 1.0 and lower is better. Average energy efficiency 

improves by 24% using DynaCo-1levelTh compared to the 

baseline, with up to 32% savings in Sort and S3D. DynaCo-

multilevelTh sees an average improvement of 30%, with up to 

47% savings in S3D. Ideal static achieves an energy-efficiency 

gain of 35%. We observe that 70-80% of the savings came from 

CPU scaling and the remainder came from GPU scaling. 

The amount of energy-efficiency gain in S3D is slightly higher 

than the rest of the benchmarks. S3D is a compute-intensive 

application. However, when we run multiple iterations of this 

benchmark from the SHOC suite, the compute-intensive active 

phases appear to last for a small fraction of the total time it takes 

to compile and launch the application kernels. This causes only 

small periods of activity on the GPU followed by long idle 

periods. During this idle period, the GPU is power-gated for all 

three schemes as well as the baseline. However, the CPU is busy 

compiling and preparing the work to launch the kernels. Portions 

of this phase do not contribute to the overall performance of the 

application. Boost algorithms, such as the BAPM algorithm used 

for the baseline, allocate the highest CPU frequencies during this 

phase when power and thermal headroom is available. However, 

in our run-time and ideal static schemes we are able to utilize the 

low frequency P-states during the frequency-insensitive phase. 

We also notice that DynaCo-multilevelTh provides better energy 

efficiency than ideal static for miniMD due to the higher-

performance slow-down observed with the profile-based scheme. 

The power savings achieved with DynaCo are illustrated in 

Figure 13. The average power savings are 24% with DynaCo-

1levelTh, 31% with DynaCo-multilevelTh, and 36% with ideal 

static. We see that DynaCo-multilevelTh provides greater power 

savings compared to DynaCo-1levelTh due to utilization of the 

very-low-frequency CPU P-states. While ideal static provides 

greater power savings by picking the best DVFS state for each 

kernel, it does not provide the same tight performance bounds as 

the other two schemes, as shown in Figure 10. In addition, it 

requires user intervention and prior offline profiling of all the 

kernels in an application across multiple CPU and GPU 

frequencies to determine the best state. 

6.2 Performance Analysis and Power Shifting 
We now analyze the case of power-shifting and power-

reduction scenarios with the two DynaCo schemes for every 

application. We present a sub-set of those results here. Figure 14 

shows the percentage GPU DVFS residency for each of the three 

main kernels of Lulesh as well as the overall application. Because 

the GPU DVFS decision between the two DynaCo schemes is 

handled similarly from an algorithmic perspective, we show GPU 

DVFS residency results for only DynaCo-1levelTh. 

 
 

 

Figure 10: Performance impact of DynaCo  

 

Figure 11: Phase variation within MATVEC 
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Figure 12: Energy efficiency with DynaCo  

 

Figure 13: Power savings with DynaCo 
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 The CalcHourGlass kernel spends 21% less time in GPU-high, 

14% more time in GPU-med, and 8% more time in GPU-low than 

the baseline. On further examination, this kernel is memory-

bounded 30% of its run-time; during those times, power is shifted 

away from the GPU. Similarly, the entire Lulesh application 

spends 9% less time in GPU-high with DynaCo. For the 

CalcFBHourGlass kernel, DynaCo performs similarly to the 

baseline. This kernel is heavily compute-bound on GPU with high 

WeightedALUBusy; hence, DynaCo boosts performance by 

selecting the highest-frequency state. 

 

 
Figure 14: GPU DVFS residency for DynaCo and baseline. 

 

 
Figure 15: CPU DVFS residency with DynaCo-1levelTh. 

 

Further, in Figure 15 and Figure 16, we see that for all three 

kernels we are able to shift power away from CPU significantly 

due to poor CPU frequency sensitivity, while the baseline runs the 

CPU at the high-frequency boost states due to availability of 

power and thermal headroom. Specifically, during the more than 

20 Other kernel phases, DynaCo correctly boosts CPU to the 

high-frequency P-states as needed due to the high CPU 

dependency observed for these miscellaneous fine-grained 

kernels, as depicted in the phase behavior shown in Figure 1. 

Further, DynaCo-multilevelTh is able to utilize the lower-

frequency CPU P-states P3 and P4 59% of the time. 

We also observe that the fine-grain, relatively small kernels 

such as IntegrateStress become performance-coupled to the CPU 

more quickly than the main Hourglass computation kernels. 

Hence, IntegrateStress does not utilize the low-frequency P-states 

of P3 and P4 that can cause significant performance loss. Lulesh 

provides an example of a case when power can be saved from 

both CPU and GPU and boosting to higher frequencies is utilized 

when the application phase needs it.  

Similarly, for miniMD (figure not shown due to space 

constraints), DynaCo correctly estimates the frequency sensitivity 

of the different kernels. The heavily compute-intensive nature of 

the force kernel causes it to boost to the highest GPU frequency 

100% of its run-time, similar to the baseline. On the other hand, 

the neighbor kernel has aggregated CPU-GPU memory bandwidth 

that is close to the peak bandwidth that the DDR bus can sustain 

after accounting for bus efficiency. Hence, we are able to run the 

GPU at the medium DVFS frequency without noticeable 

performance degradation. Moreover, small kernels in miniMD 

such as atom_comm, which rely on the CPU for data transfer and 

launch frequently, spend almost 70% of their time in the medium- 

and low-frequency GPU DVFS states using DynaCo. During 

much of this time, CPU is closely coupled to the GPU and runs at 

high-frequency P-states. Contrary to this, the baseline algorithm 

runs at maximum CPU and GPU frequencies for all miniMD 

kernels due to temperature headroom. 

 

 
Figure 16: CPU DVFS residency with DynaCo-multilevelTh. 

 

In the graph algorithm BFS, we see that due to control 

divergence the GPU has short bursts of computation followed by 

phases of low utilization on the GPU. About 25% of the time, 

threads are waiting for re-convergence. DynaCo correctly assigns 

high GPU frequency to avoid slowing the critical path, but it saves 

power from the CPU due to low UPC. The baseline always runs 

BFS at the maximum CPU and GPU frequencies due to the 

available thermal headroom, causing energy inefficiency. 

Due to the lower power consumption, we also see a reduction 

in the peak die temperatures using DynaCo. This is due to a 

combination of leakage power savings from reduced voltage 

operations and dynamic power savings from reduced frequency. 

With DynaCo, peak die temperature is, on average, up to 2°C 

lower across all the applications. Lower temperatures result in 

lower cooling costs, better energy efficiency, and better heat 

management. 

In summary, we have shown that DynaCo successfully 

leverages the metrics discussed in Section 4 to improve the energy 

efficiency of HPC application on a heterogeneous processor. 

DynaCo is able to produce significant power savings with a small 

reduction in performance, resulting in energy efficiencies 

comparable to an ideal static management scheme without the 

additional overhead of profiling required for the static scheme. 

7. RELATED WORK 
There is a considerable amount of research in power and 

energy management in homogeneous uni- and multi-core 

processors using dynamic voltage and frequency scaling. Several 

research works have proposed analytical models for DVFS 
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[37][12][16][20], compiler-driven techniques [38], and control-

theoretic approaches [35]. J. Li et al. [26] proposed a run-time 

voltage/frequency and core-scaling scheduling algorithm that 

minimizes the power consumption of general-purpose chip multi-

processors within a performance constraint. J. Lee et al. [24] 

analyzed throughput improvement of power-constrained multi-

core processors by using power-gating and DVFS techniques. 

In the HPC community, Pakin et al. [28] characterized power 

usage on production supercomputers using production workloads. 

Laros et al. [22] performed extensive large-scale analysis of 

power and performance requirements for scientific applications in 

supercomputers based on static tuning of applications through 

DVFS, core, and bandwidth scaling. Rountree et al. [32] explored 

energy-performance trade-offs for HPC applications bottlenecked 

by memory and communication. In [33] and [34], Rountree et al. 

investigated speeding up the critical path of an application in a 

multi-processor cluster using slack-prediction and leading-load 

techniques, respectively. In [4], Balaprakash et al. described 

exascale workload characteristics and created a statistical model 

to extrapolate application characteristics as a function of problem 

size. All these efforts focused only on CPU architectures; this 

paper focuses on the integrated CPU-GPU architectures that bring 

new challenges. 

There has been a renewed interest in using machine learning to 

construct behavior models for use in run-times, compilers, and 

even hardware to make scheduling decisions. Techniques to 

automate the construction of models of execution time for GPUs 

using basic machine learning are described in [18] and [21]. Other 

efforts have constructed models for predicting power and thermal 

behaviors from measurements made with performance counters 

[6][15]. Such techniques focus on model construction and are 

distinct from model application (e.g., in making power-

management decisions). They certainly could be investigated to 

improve the models presented here further with the requirement 

that simplicity of implementation be met. 

Recently, there has been a significant interest in the power 

management of GPUs. Lee et al. [25] proposed DVFS techniques 

to maximize performance within a power budget for discrete 

GPUs. In [15], Hong et al. developed a power and performance 

model for a discrete GPU processor. Recent studies [2][3] have 

identified throughput-computing performance-coupled 

applications as an emergent class of future applications. However, 

none of this work focuses on managing energy in tightly coupled 

architectures. 

A number of papers have examined CPU-GPU heterogeneous 

architectures. Research in [11][17][30][31] proposed run-time 

systems with scheduling schemes for applications like generalized 

reductions, irregular reductions, and MapReduce to improve 

performance in CPU-GPU architectures. In [23], Lee et al. 

proposed thread-level-parallelism-aware cache management 

policies in CPU-GPU processors. Wang et al. [36] proposed 

workload-partitioning mechanisms between the CPU and GPU to 

utilize the overall chip power budget to improve throughput. In 

[29], Paul et al. characterized thermal coupling effects between 

CPU and GPU and proposed a solution to balance thermal and 

performance-coupling effects dynamically. 

Unlike many of the previous studies, our work is to our 

knowledge the first to address energy management in integrated 

CPU-GPU processors for HPC applications. Furthermore, unlike 

much past work in this area, we have implemented our algorithms 

on commodity hardware and show measureable performance, 

power, and energy benefits compared to a state-of-the-practice 

power-management algorithm. 

 

8. CONCLUSIONS 
This paper proposed and implemented a set of techniques to 

improve the energy efficiency of integrated CPU-GPU processors. 

To the best of our knowledge, this is the first such 

implementation. We described the unique characteristics of HPC 

applications and the opportunities they present to save energy. We 

proposed a model to capture the application's frequency sensitivity 

in such architectures and used this model as the basis for a 

dynamic, coordinated energy-management scheme to improve 

energy efficiency at negligible performance loss. The proposed 

scheme achieves an average ED^2 benefit of up to 30% compared 

to the baseline with less than 2% average performance loss across 

a variety of exascale and other HPC applications. 

In the future, we plan to expand this work to manage memory 

sub-systems directly, explore techniques to balance computation 

on both CPU and GPU efficiently for energy, and extend this 

node-level analysis to the level of an HPC cluster. 
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