
Coordinated Energy Management in Heterogeneous
Processors

Indrani Paul*† Vignesh Ravi* Srilatha Manne* Manish Arora*‡ Sudhakar Yalamanchili†

*Advanced Micro Devices, Inc.

vignesh.ravi@amd.com
srilatha.manne@amd.com

†Georgia Institute of Technology
indrani.paul@amd.com

sudha@gatech.edu

‡University of California, San Diego

marora@eng.ucsd.edu

ABSTRACT

This paper examines energy management in a heterogeneous

processor consisting of an integrated CPU-GPU for high-

performance computing (HPC) applications. Energy management

for HPC applications is challenged by their uncompromising

performance requirements and complicated by the need for

coordinating energy management across distinct core types – a

new and less understood problem.

We examine the intra-node CPU-GPU frequency sensitivity of

HPC applications on tightly coupled CPU-GPU architectures as

the first step in understanding power and performance

optimization for a heterogeneous multi-node HPC system. The

insights from this analysis form the basis of a coordinated energy

management scheme, called DynaCo, for integrated CPU-GPU

architectures. We implement DynaCo on a modern heterogeneous

processor and compare its performance to a state-of-the-art

power- and performance-management algorithm. DynaCo

improves measured average energy-delay squared (ED^2) product

by up to 30% with less than 2% average performance loss across

several exascale and other HPC workloads.

Categories and Subject Descriptors

C.1.4 [Processor Architectures]: Parallel Architectures; C.4

[Performance of Systems]: Design studies

General Terms

Management, Measurement, Performance, Design

Keywords

Energy management, High-performance computing

1. INTRODUCTION
Efficient energy management is central to the effective

operation of modern processors in platforms from mobile to data

centers and high-performance computing (HPC) machines.

However, HPC systems are unique in their uncompromising

emphasis on performance. For example, the national roadmap for

HPC now has the goal of establishing systems capable of

sustained exaflop (1018 flops/sec.) performance. However, the

road to exascale is burdened by significant challenges in the

power and energy costs incurred by such machines.

Many current HPC systems use general-purpose, multi-core

processors such as Xeon from Intel and AMD Opteron™ that are

equipped with several power-saving features, including dynamic

voltage and frequency scaling (DVFS). More recently, driven in

part by demand for energy efficiency, we have seen the

emergence of such processors with attached graphics processing

units (GPUs) acting as accelerators. As of November 2012, four

of the top ten and 62 of the top 500 supercomputers on the

Top500 list were powered by accelerators [42][43].

This trend towards heterogeneous processors is continuing with

tightly coupled accelerated processing unit (APU) designs in

which the CPU and the GPU are integrated on the die and share

on-die resources such as the memory hierarchy and interconnect.

The companion emergence of programming models such as

CUDA, OpenACC, and OpenCL is making such processors viable

for HPC. However, the tighter integration of CPUs and GPUs

results in greater performance dependencies between the CPU and

the GPU. For example, CPU and GPU memory accesses interact

in the memory hierarchy, and may interfere, while they share a

chip-level power budget and thermal capacity. Therefore,

effective performance management and energy management must

be coordinated carefully between the CPU and the GPU [29].

Figure 1 illustrates an HPC application running on an AMD A-

Series APU heterogeneous processor, formerly code-named

"Trinity." The figure shows fine-grain communication between

the CPU and the GPU on an OpenCL variant of Lulesh with 100

node elements per dimension [19]. The x-axis shows time (in

milliseconds) and the y-axis shows the CPU utilization as

measured by IPC for the multi-threaded CPU, and the GPU

utilization as measured by active clock cycles for the data-parallel

GPU. The application is in the start-up phase up to 3200 ms, and

the CPU is the primary active component. Subsequently, the CPU

primarily plays an assist role delivering data to the GPU for

computation leading to low CPU activity (IPC) and high GPU

activity. However, there is constant communication between the

CPU and the GPU and the performance required from each is a

function of the kernel being run. For instance, the

CalcFBHourGlass kernel has a higher GPU utilization than the

other 20+ miscellaneous kernels in the application. The

computational demands of the CPU and the GPU vary across

program phases, as does the intensity of their interactions. Power

and energy management techniques must be made cognizant of

these interactions to minimize performance degradation with

improvements in energy efficiency.

While there has been a significant body of work in dynamic

voltage frequency scaling (DVFS) for energy management in

single- and multi-core homogeneous architectures, heterogeneous

architectures embody several characteristics that render direct

application of these techniques ineffective. Performance-coupling

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from
Permissions@acm.org.

SC13 November 17-21, 2013, Denver, CO, USA

Copyright 2013 ACM 978-1-4503-2378-9/13/11...$15.00.
http://dx.doi.org/10.1145/2503210.2503227

mailto:vignesh.ravi@amd.com
mailto:srilatha.manne@amd.com
mailto:indrani.paul@amd.
mailto:sudha@gatech.edu
file:///C:/ipaul/research/Power_Sharing/marora@eng.ucsd.edu

Figure 1: Example phase behavior in an exascale proxy application (Lulesh).

between the CPU and the GPU produce dependencies between

their respective DVFS states. However, unlike multi-core

homogenous architectures in which all cores are identical and the

majority of threads are identical, the CPU and GPU differ in both

architecture and execution model. While the former supports

asynchronous execution of (relatively) coarse-grain threads, the

latter implements a model orchestrating the synchronous

execution of thousands of thread blocks or wavefronts,

comprising tens to hundreds of fine-grain threads. Consequently,

their energy and power behaviors are quite distinct. Further, while

the CPU-GPU behaviors are directly coupled through the

programming model, their executions indirectly interact via

interference and competition for shared on-chip resources. To be

effective, algorithms that determine the DVFS states of the CPU

and the GPU must be cognizant of these effects, their

interrelationships, and their combined effect on performance.

Our ultimate goal is to optimize energy efficiency and

performance in a multi-node HPC system consisting of tightly

coupled heterogeneous node architectures. We view the path to

this goal as a two-step process: The first step analyzes and

optimizes intra-node power and performance, and the second step

optimizes these metrics in a multi-node system. This work focuses

on maximizing energy efficiency for HPC applications with

minimal to no compromise in performance in a tightly coupled

heterogeneous node architecture. Specifically, this paper makes

the following contributions:

 We empirically characterize the frequency sensitivity of proxy

applications developed to represent exascale applications. The

analysis exposes several opportunities for improving energy

efficiency without degrading the performance of the

application.

 We identify a key set of CPU and GPU run-time parameters

that reflects the frequency sensitivity of the application and use

regression techniques to construct an analytic model of

frequency sensitivity.

 We propose DynaCo – a coordinated, dynamic energy-

management algorithm using online frequency-sensitivity

analysis to coordinate the DVFS states of the CPU and the

GPU. DynaCo is implemented on a state-of-the-art

heterogeneous processor.

 Using measurements on real hardware, we compare DynaCo to

a commercial, state-of-the-practice power- and performance-

management algorithm for several OpenCL exascale proxy

applications and other HPC applications, demonstrating that

significant improvements in energy efficiency are feasible

without sacrificing performance.

The following section provides background information.

Section 3 presents an analysis of the frequency sensitivity of HPC

applications. We use the insights from that analysis to develop a

model of frequency sensitivity that forms the basis of the energy-

management algorithm described in Section 4. Sections 5 and 6

describe the implementation and experimental results. Sections 7

and 8 present related work and our conclusions.

2. BACKGROUND
Figure 2 shows the floor plan of the AMD A-Series

heterogeneous APU used in the rest of the paper. It contains two

out-of-order dual-core CPU compute units (CUs, also referred to

as Piledriver modules) and a GPU. The cores in a CU share the

front-end and floating-point units and a 2MB L2 cache. The CPUs

share a power plane and the GPU is on a separate power plane.

The GPU consists of 384 AMD Radeon™ cores, each capable of

one single-precision fused multiply-add computation (FMAC)

operation per cycle (the methodology and techniques in this paper

are equally applicable to processors that support double-

precision). The GPU is organized as six SIMD units, each

containing 16 processing units that are each four-way VLIW. The

memory controller is shared between the CPU and the GPU. More

details on the AMD A-Series processor can be found in [27].

Figure 2: Die shot of AMD A-Series APU [27].

Table 1 shows all possible DVFS states for the CPU cores in

the AMD A-Series A10-5800k. Here, DVFS states can be

assigned per CU; however, because the CUs share a voltage plane,

the voltage across all CUs is set by the maximum-frequency CU.

P0 through P5 are software-visible DVFS states that are referred

to as performance states, or P-states, and are managed either by

the OS through the Advanced Configuration and Power Interface

(ACPI) specification [1] or by the hardware. Pb0 and Pb1 are

called the boost states and are visible only to, and managed by, the

hardware. Entrance to and exit from the boost states are managed

exclusively by hardware when the CPU is at P0; hence, P0 is

usually called the base state. P1 through P5 are increasingly

lower-power P-states. The GPU has an independent power plane

whose voltage and frequency are controlled independently. Unlike

the CPU, the GPU does not have architecturally visible P-states.

Throughout the rest of the paper, we will refer to the GPU DVFS

states as GPU-high (highest frequency), GPU-med (medium

frequency), and GPU-low (lowest frequency).

Table 1: CPU DVFS states for AMD A-Series APU.

 P-state Volt. (V) Freq (MHz)

HW-

only

Pb0 1.475 4200

Pb1 1.45 4000

SW-

visible

P0 1.363 3800

P1 1.288 3400

P2 1.2 2900

P3 1.075 2400

P4 0.963 1900

P5 0.925 1400

The AMD A-Series APU uses a sophisticated power-

monitoring and -management technology referred to as AMD

Turbo CORE to optimize performance for a given power and

thermal constraint. This technology uses approximated power and

temperature values to monitor and guide the power-management

algorithms. AMD Turbo CORE uses the bidirectional application

power management (BAPM) algorithm to control the power

allocated to each compute entity in the processor [27]. Each

compute entity interfaces with BAPM to report its power

consumption, and BAPM determines its power limits based on the

available thermal headroom. At regular time intervals, the BAPM

algorithm does the following:

1) Calculates a digital estimate of power consumption for each

CU and GPU.

2) Converts the power estimates into temperature estimates for

each component.

3) Assigns new power limits to each entity.

Once BAPM has assigned power limits, each CU and GPU

manages its own frequencies and voltages to fit in the assigned

limit (i.e., local to a unit, the hardware will employ DVFS to keep

the power dissipation in the assigned limit). The BAPM algorithm

sets power limits based on thermal constraints and greedily boosts

the power states to maximize use of the thermal capacity. If the

processor never reaches maximum temperature, then power is

allocated to the processor until the maximum CPU and GPU

frequencies are reached.

The BAPM algorithm is optimized to maximize performance

with a fair and balanced sharing of power between on-chip

entities. BAPM allocates power to each entity using a pre-set

static distribution weight that is derived using empirical analysis.

Such static allocation is the best choice in the absence of dynamic

feedback from the application. As a general-purpose state-of-the-

practice controller, BAPM is designed to provide reasonable

performance improvements without any significant outliers.

3. MOTIVATION AND OPPORTUNITIES
Figure 3 shows the peak temperature normalized to the

maximum junction temperature allowed for each CU and the GPU

for miniMD as the application runs on a 100W TDP processor.

Processors with such a thermal design power package are

commonly found in HPC clusters [40]. Although temperature

tracks power and inversely tracks performance, it never reaches

the peak thermal limits. This means that the performance of the

CUs and the GPU are not constrained by temperature, and

therefore they generally run at their maximum frequency.

However, just because they can run at their maximum frequency

does not mean that they should; there has to be a reasonable return

in performance for the increase in frequency and higher power.

We characterize this return on performance with the notion of

frequency sensitivity – a measure of the improvement in

performance for a unit increase in frequency. Frequency

sensitivity is a time-varying function of the workload on a target

processor. In general, the frequency-performance function is

unknown. Thus, the idea is to measure the frequency sensitivity of

an application periodically and determine whether it is productive

(efficient) to change the frequency. While Rountree et al. [34]

developed a frequency-sensitivity predictor for homogeneous

CPUs, the problem in APUs is more complex due to shared

resources and subtle CPU-GPU interactions.

Figure 3: Thermal profile of miniMD running on GPU.

The rest of this section identifies and categorizes behaviors that

have a substantive impact on frequency sensitivity of the

components. All results are based on hardware measurements on

an AMD A-Series APU (experimental set-up described in Section

5). This understanding is used in Section 4 to develop a model of

frequency sensitivity for tightly coupled heterogeneous processors

and to use the model to guide DVFS decisions.

3.1 Shared Resource Interference
The memory hierarchy is a key determinant of performance,

and the CPU and the GPU share the Northbridge and memory

controllers. The extent of interference at these points (which is

time-varying) has a significant impact on the effectiveness of

DVFS for the CPU or the GPU.

Figure 4 (left bar) breaks down the CPU and GPU memory

access rates, normalized to peak-DDR bandwidth with 75% bus

efficiency, of one of the main computation kernels (neighbor) in

miniMD [8]. The kernel is run iteratively in the application for the

entire steady-state duration. Figure 4 (right bar) breaks down the

average CPU DVFS state residency for the active CPU time under

BAPM, which shows that the kernel DVFS residency is entirely in

the hardware managed CPU boost states.

We observe that this kernel saturates the overall shared-

memory bandwidth primarily due to the high rate of memory

references from the GPU. The CPU portion of memory demand,

which is captured by looking at last-level cache L2 miss rates, is

relatively insignificant. Further (not shown), the CPU IPC of this

kernel is higher than a typical memory-bound application.

Power- and performance-management schemes that determine

the CPU DVFS state in isolation of shared resources might

0.4

0.5

0.6

0.7

0.8

0.9

1

1

1
3

2
5

3
7

4
9

6
1

7
3

8
5

9
7

1
0
9

1
2
1

1
3
3

1
4
5

1
5
7

1
6
9

R
el

a
ti

v
e

p
ea

k

te
m

p
er

a
tu

r
e

(C
)

->

Time (seconds) ->

CPU CU0 CPU CU1 GPU

conclude that the CPU voltage-frequency can be boosted within

thermal limits to improve performance. This is, in fact, what the

BAPM algorithm does. However, the application performance is

memory bandwidth-limited due to the GPU memory demands, so

scaling up the CPU voltage-frequency has little performance

benefit and will degrade energy efficiency (discussed in Section

3.3). The lesson here is that we need online measurements of

chip-scale global interactions to make good decisions regarding

the CPU or the GPU DVFS state.

Figure 4: Break-down of memory interference between CPU

and GPU and corresponding CPU DVFS residency.

3.2 Computation and Control Divergence
GPUs are exceptional execution engines for data-parallel

workloads with little control divergence. However, performance

efficiency degrades significantly with increasing control

divergence. That does not imply that lower-frequency states

should be used for control divergent applications. Consider the

Breadth-first Search (BFS) graph application from the Rodinia

benchmark suite [9]. Figure 5 illustrates GPU frequency

sensitivity for BFS (left bar). Execution times are measured at the

lowest and highest frequencies. We compute frequency sensitivity

as the ratio of the difference in execution times to the difference in

frequencies. The figure also shows the GPU ALU compute

utilization (right bar). While GPU ALU utilization and

computation are fairly low, GPU frequency sensitivity is quite

high. This is due to the high control flow-divergent behavior of

the kernels in BFS, which leads to low utilization. However,

higher-frequency operation leads to faster re-convergence, and

thus shorter execution time.

Figure 5: GPU frequency sensitivity to control divergence.

Conventional cores that extract instruction-level parallelism

from a single thread correctly associate low IPC with low

frequency sensitivity. The converse is true here due to the bulk-

synchronous parallel-processing nature of GPU kernels. Control

flow serializes the execution of threads in a thread block. The

correct analogy with traditional core execution is the observation

that higher-frequency operation will speed the serial sections of

code and, therefore, the application as a whole. In this case, the

greater the serial fraction or divergence, the greater the speed-up.

The lesson here is that control flow-divergence measures should

be captured in the compute behavior when determining frequency

sensitivity.

3.3 Performance-coupling and Kernel

Sensitivity
Each application has phases that vary in their frequency

sensitivity due to the type of their activity rates and the degree of

performance-coupling between CPU and GPU. This is true also of

HPC applications. While computations are offloaded to the GPU,

there are control and data dependencies between computations

executing on the CPU and the GPU cores. For example, for peak

GPU utilization, the CPU must deliver data to the GPU at a

certain rate; otherwise, the GPU will starve, resulting in a

reduction in overall performance. Such performance-coupling

between the CPU and the GPU cores is accentuated by the tighter

physical coupling due to on-die integration and the emergence of

applications that attempt a more balanced use of the CPU and the

GPU. Hence, any cooperative energy-management technique must

balance such interactions against energy/power savings.

Figure 6: Percent increase in kernel run-time due GPU DVFS

changes relative to the baseline (BAPM).

Figure 7: Percent increase in kernel run-time due CPU DVFS

changes relative to the baseline (BAPM).

Here we evaluate the opportunities to save energy of an

exascale proxy application from the Mantevo suite called miniMD

[8]. In particular, we characterize the frequency and resource

sensitivity at the kernel granularity for both the CPU and the

GPU. We have observed this behavior in other HPC applications

as well; however, due to space limitations, we present only

0.00

0.20

0.40

0.60

0.80

1.00

Mem_BW_breakdown CPU_DVFS_residency

N
o
rm

a
li

ze
d

 M
et

ri
c

->

GPU_Mem_BW/Pb1 CPU_Mem_BW/Pb0

0.00

0.20

0.40

0.60

0.80

GPU_freq_sensitivity(meas) GPU_ALUBusy%

P
er

ce
n

ta
g

e
m

et
ri

c
->

0%

20%

40%

60%

80%

100%

120%

140%

160%

Total Force Neighbour Comm Other

%
 i

n
cr

ea
se

 i
n

 r
u

n
-t

im
e

GPU DVFS per kernel ->

DVFS-high DVFS-med DVFS-low

0%

10%

20%

30%

40%

50%

Total Force Neighbor Comm Other

%
 i

n
cr

ea
se

 i
n

 r
u

n
-t

im
e

CPU DVFS per kernel->

P0 P1 P2 P3 P4

Table 2: Sensitivity analysis of various performance metrics.

Metric Description

Correlation

Coefficient to

GPU FS (meas)

Correlation

Coefficient to

CPU FS (meas)

WeightedALUBusy ALUBusy weighted by GPUClockBusy. 0.85 -0.62

ALUInsts PTI Compute instructions per thousand instructions. 0.78 -0.54

ALUBusy The percentage of GPUTime ALU instructions are processed. 0.76 -0.54

ALUFetchRatio
The ratio of ALU to fetch instructions. If the number of fetch

instructions is 0, then 1 will be used instead. 0.57 -0.31

L2 cache miss/cycle Level 2 cache miss rate to main memory for CPU. 0.13 -0.41

ALUPacking The ALU vector packing efficiency (in percentage). 0.11 -0.22

GPUClockBusy
GPU utilization: Ratio of time when at least one of the SIMD

units in the GPU is active compared to total execution time. 0.06 -0.13

FetchUnitBusy The percentage of GPUTime the fetch unit is active. -0.28 -0.01

FetchUnitStalled The % of GPUTime main memory fetch/load unit is stalled. -0.49 -0.15

WriteUnitStalled The % of GPUTime main memory write/store unit is stalled. -0.51 0.12

Writes to memory PTI Main memory writes per thousand instructions. -0.60 -0.28

Fetch from memory PTI Main memory reads per thousand instructions. -0.62 -0.23

Global_MemUtil
Aggregated CPU-GPU memory bandwidth consumed during

theoretical peak bandwidth. -0.63 -0.56

ClockWeightedUPC
Retired micro-operations (includes all processor activity) per

cycle weighted by each core's active clocks. -0.83 0.70

miniMD results here. Figure 6 illustrates the GPU frequency

sensitivity for the main miniMD kernels by measuring the impact

of frequency on the speed-up of each kernel. The x-axis records

the GPU DVFS states for each kernel. The y-axis shows the

increase in run-time from the baseline BAPM case as GPU

frequency is reduced. Because we are not thermally limited, the

baseline algorithm runs the GPU at the highest frequency.

We can observe many interesting behaviors in the Figure 6

graph, with the key insight being that different kernels in miniMD

have different resource requirements and their relative

sensitivities to GPU frequency reflect those needs. One of the

main computation kernels, Force, scales very well with GPU

frequency and performs the best at the highest-frequency GPU

DVFS state. This is because of the heavy compute-bound nature

of the kernel. The Neighbor kernel shows high sensitivity to GPU

frequency when going from low to medium frequency; however,

Neighbor sees little to no performance benefit at the highest GPU

frequency because the Neighbor kernel becomes memory

bandwidth-limited at the highest GPU frequency. Communication

and other fine-grained, relatively short kernels labeled Other seem

to be less sensitive to GPU frequency. There is a 6% increase in

total run-time at the medium GPU DVFS state, with the Force

kernel being the main contributor to the slow-down.

Consider the frequency sensitivity of the CPU for each of the

miniMD kernels (recall the performance-coupling between the

CPU and the GPU) illustrated in Figure 7. The Force and

Neighbor kernels do not scale well with CPU frequency. The

memory-bounded behavior of Neighbor makes it insensitive to

CPU frequency with minimal performance loss at the lower CPU

DVFS state of P4. The GPU compute-intensive nature of Force

makes it less dependent on CPU frequency; however, decreasing

CPU frequency beyond P2 starts starving the GPU. On the other

hand, fine-grained, shorter kernels such as Communication and

others have higher data dependencies on the CPU and are tightly

performance-coupled. Launch overhead, combined with the

relatively small kernel timings compared to the actual execution

time, make these kernels more tightly performance-coupled to

CPU frequency and less GPU frequency-sensitive. The lesson

here is that the frequency-sensitivity metric in an APU needs to

account for performance-coupling effects.

3.4 Summary
The preceding analysis shows that HPC applications exhibit

varying degrees of CPU and GPU frequency sensitivity for a

variety of subtle and non-obvious reasons. Overall, the results in

this section clearly point towards the need for a set of metrics for

energy management that can predict CPU-GPU frequency

sensitivity in a tightly coupled heterogeneous architecture. Using

these metrics, we envision extending BAPM with frequency-

sensitivity information to augment its functionality. We describe

the model, its application, and results with measurements on real

hardware in the following sections.

4. RUN-TIME SYSTEM FOR ENERGY

MANAGEMENT
The first step is to develop a predictor for the frequency

sensitivity of an application. Specifically, at any point in time we

need to be able to predict the performance sensitivities of the

application to the frequency of the CPU and the GPU, which may

be different. As we observed in Section 3, this sensitivity analysis

must account for indirect interactions between the CPUs and the

GPU in the memory system and their coupled performance.

The second step is to encapsulate this into an energy-

management algorithm that periodically computes the frequency

sensitivity and, in response, adjusts the DVFS states of the CPU

cores and the GPU. In this section, we derive a frequency-

sensitivity predictor in heterogeneous processors and use it to

construct a run-time energy-management scheme. Our goal is to

develop a simple and practical predictor that can be implemented

efficiently in a dynamic run-time algorithm with minimal

hardware overhead and complexity.

4.1 Frequency Sensitivity Correlation
We developed frequency-sensitivity predictors to capture the

dominant behaviors described in Section 3 for the GPU and the

CPU.

First, we selected performance counters that are indicators of

frequency sensitivity. Modern processors provide hundreds of

detectable performance counters, which makes the selection quite

challenging [7]. We used three exascale proxy applications

(miniMD, miniFE, and Lulesh), consisting of many different

kernels [8][14][19]. We also utilized six scientific applications

from the Rodinia benchmark suite: Needleman-Wunsch, HotSpot,

LU Decomposition (LUD), Speckle-reducing Anisotropic

Diffusion (SRAD), Computational Fluid Dynamics (CFD), and

BFS [9][10]. The chosen applications have a wide range of

characteristics such as coarse- and fine-grained kernels, compute-

and memory-boundedness, different degrees of CPU-GPU

performance-coupling, and divergent control flow.

Using an application analysis and profiling tool called

CodeXL, we measured the execution times and the corresponding

values of a set of performance counters/metrics at kernel

boundaries over a range of CPU and GPU frequencies [41]. We

initially attempted to find correlation across multiple sample

points in a single application trace but found that minor

discrepancies in phase alignment with performance metric traces

can cause large variations in correlation. Hence, we looked for

alignment only at the kernel granularity in an application. We

performed a correlation analysis between each performance

counter/metric and the CPU or GPU frequency sensitivity,

measured as the ratio of the difference in execution times to the

corresponding differences in frequency. We computed the

correlation coefficients using linear regression (shown in Table 2).

These performance counters/metrics were derived from a set of

more than 40 hardware performance counters in the CPU, GPU,

and Northbridge selected based on the insights gained from

Section 3. Coefficient values greater than 0.5 or less than -0.5 are

considered a strong positive or negative correlation, respectively

[5]. These values are highlighted in Table 2.

Second, we calculated overall GPU or CPU frequency

sensitivity based on the following analysis. As expected,

ClockWeightedUPC shows high correlation for CPU frequency

sensitivity, as does GPU ALU activity and ALUBusy for the

GPU. This captures the compute behavior of an application in

either type of core. However, to capture the compute behavior for

normal operations as well as control-divergent applications, we

weighed the ALUBusy metric with GPUClockBusy (note the

improvement in correlation between line 3 and line 1 in Table 2).

As Figure 5 shows, graph algorithms have a high degree of

control-flow divergence; thus, some SIMD engines are idle and

waiting for a thread to finish executing before all threads can re-

converge and proceed. This produces poor ALU throughput,

making it appear that the GPU is lightly utilized. However, when

ALUBusy is weighted with the actual GPU clock activity, we get

a higher rate of ALU activity for the active period and better

correlation. Similar accounting has been done for CPUs; however,

unlike the CPU, which is latency sensitive, the GPU's massively

parallel bulk-synchronous computation creates a complex inter-

relationship between control behavior and power [5].

GPU frequency sensitivity shows a strong negative correlation

to CPU UPC. Similarly, CPU frequency sensitivity shows a strong

negative correlation to GPU ALUBusy. This is because of the

data and execution dependencies between the GPU and CPU. As

the computation becomes more balanced and distributed between

the CPU and GPU, we expect the correlation coefficients to

change. However, CPU and GPU performance still will be closely

coupled in their interactions and dependencies. Therefore, a GPU

frequency-sensitivity predictor needs to account for CPU UPC as

a way to measure its performance-coupling. Similarly, CPU

frequency sensitivity in a heterogeneous architecture needs to

account for GPU ALU activity.

We found a better correlation between frequency sensitivity

and aggregated memory bandwidth (Global_MemUtil) compared

to the localized memory access metrics such as L2 cache miss in

the CPU or memory fetch/write stalls in the GPU. This is largely

because of the disparity in memory-bandwidth demand between

the CPU and the GPU while accessing a shared resource, as

shown in Figure 4.

Based on the preceding analysis, we summarized a key set of

performance metrics below to use in our run-time energy-

management scheme to determine frequency sensitivities in a

performance-coupled heterogeneous architecture. We determined

CPU and GPU frequency sensitivities as weighted linear

regression functions of these combined metrics to capture

performance-coupling, core compute behavior, and global

memory interference. The correlation coefficient using this

combination of metrics improved to 0.97.

where

 () ()
 ()

 ([] [])

 []

Although the set of applications analyzed here uses an offload

model for computation, in which kernels run on the GPU with

periodic synchronization points between CPU and GPU, we do

not expect the performance metrics (WeightedALUBusy,

Global_MemUtil, and ClockWeightedUPC) to change with more

concurrent computation across CPU-GPU; however, the weights

associated with the metrics in the linear regression equation may

change to reflect even tighter performance-coupling between CPU

and GPU. In future we plan on examining the impact of

concurrent CPU-GPU execution on power-management

algorithms.

4.2 DynaCo: Coordinated Dynamic Energy

Management Scheme
We propose a run-time energy-management scheme called

DynaCo based on the online measurement of the frequency

sensitivity described in Section 4.1. DynaCo is implemented as a

system software policy layered on top of the baseline AMD A-

Series power-management system (BAPM).

The energy-management algorithm is partitioned into a

monitoring block that samples the performance counters every 10

ms to coincide with the operating system timer tick for

minimizing overheads, and a decision block that computes

frequency sensitivities using measurements described at the end of

Section 4.1. The CPU and GPU DVFS states are then configured.

In general, DynaCo periodically determines whether the CPU and

the GPU frequencies are high or low. In each case, the energy

management algorithm embodies the following logic:

1) High GPU sensitivity, Low CPU sensitivity: Shift power to

the GPU (i.e., boost the GPU to maximize performance).

Figure 8: DynaCo-1levelTh pseudo-code.

Figure 9: DynaCo-multilevelTh pseudo-code.

2) High GPU sensitivity, High CPU sensitivity: Distribute

power proportionally based on their relative sensitivities.

3) Low GPU sensitivity, High CPU sensitivity: Shift power to

the CPU (i.e., boost the CPU to maximize performance).

4) Low GPU sensitivity, low CPU sensitivity: Reduce power

of both the CPU and the GPU by using low-power states.

 Because HPC applications are mostly uncompromising with

respect to performance loss, we propose two energy-management

algorithms – one more aggressive than the other in attempting to

reduce power but with potentially higher performance

degradation. In the less aggressive variant, DynaCo-1levelTh

(Figure 8), we limit the lowest-frequency P-state to P2; the CPU is

not permitted to go to a lower-frequency state. Thus, in this case,

there is potential to lose some power-saving opportunity. In the

more aggressive version, DynaCo-multilevelTh (Figure 9), the

CPU is allowed to use all of the low-power P-states during low-

sensitivity phases by analyzing gradients in memory access rates.

In both versions, the GPU is handled similarly and allowed to use

all DVFS states. In Figure 9, we show DynaCo-multilevelTh for

only the portions in which it is different from DynaCo-11evelTh.

For our analysis, the GPU-high and -med thresholds for GPU

WeightedALUBusy were set to 80% and 30%, respectively, based

on GPU utilization and variations in workload intensity of

graphics and HPC benchmarks; UPC_threshold was set to 0.4

based on empirical observations across a wide range of workload

characteristics in this architecture. The CPU and GPU DVFS

settings are described in Section 2. Pmin is the lowest available

CPU P-state.

 The key observation is that when there is significant

coupling/interaction between the CPU and the GPU, having the

lowest CPU P-states can lead to significant power savings but

significant performance degradation. At lower levels of coupling,

significant power savings can occur with little performance

degradation. The choice of algorithm depends on the degree of

coupling, which can be time-varying. For example, if an HPC

application has little communication overhead between the CPU

and GPU, such as a compute-offload application in which serial

fraction of the code is insignificant compared to the total

execution time, both DynaCo schemes may provide similar

performance but DynaCo-multilevelTh will provide better power

and energy savings.

5. EXPERIMENTAL SET-UP
We used the AMD1 A10-5800 desktop APU with 100W TDP

as the baseline for all our experiments and analysis. Base CPU

frequency is 3.8GHz, with boost frequency up to 4.2GHz. The

GPU frequency is 800MHz for the highest DVFS boost state [39].

1 AMD, the AMD Arrow logo, AMD Opteron, AMD Radeon

and combinations thereof are trademarks of Advanced Micro
Devices, Inc.
2 Linux is the registered trademark of Linus Torvalds.

Algorithm 1: Dynamic scheme (DynaCo-1levelTh)

1. 1: while TRUE do

 2: if (Global_MemUtil >= DDR_bus_efficiency) then

 3: /* Case: Memory is bottleneck */

 4: SetGPUFreqState(GPU-med);

 5: SetCPUFreqState(CPU-low-power_P2);

 6: end if

 7: else /* Case: Memory is not bottleneck */

 8: if(ClockWeightedUPC >= UPC_Threshold) then

 9: /* CPU frequency sensitive, consider GPU sensitivity */

10: if (WeightedALUBusy>= HIGH) then

11: SetGPUFreqState(GPU-high);

12: SetCPUFreqState(CPU-base);

13: else

14: if (MEDIUM<= WeightedALUBusy<HIGH) then

15: SetGPUFreqState(GPU-med);

16: SetCPUFreqState(CPU-boost);

17: else

18: SetGPUFreqState(GPU-low);

19: SetCPUFreqState(CPU-boost);

20: end if

21: else

22: if(ClockWeightedUPC < IPC_Threshold) then

23:/* CPU frequency insensitive, consider GPU sensitivity

*/

24: SetCPUFreqState(CPU-low-power_P2);

25: if (WeightedALUBusy>= HIGH) then

26: SetGPUFreqState(GPU-high);

27: else

28: if (MEDIUM<= WeightedALUBusy<HIGH) then

20: SetGPUFreqState(GPU-med);

30: else

31: SetGPUFreqState(GPU-low);

32: end if

33: end if

34: end if

35: Sleep.time(SAMPLING_INTERVAL);

36: end while

Algorithm 2: Dynamic scheme (DynaCo-multilevelTh)

2. 1: while TRUE do

----lines 2 through 21 in Algorithm 1---------------

22: if(ClockWeightedUPC < UPC_Threshold) then

23: /* CPU frequency insensitive, consider GPU

sensitivity */
24: if (WeightedALUBusy>= HIGH) then

25: SetGPUFreqState(GPU-high);

26: else

27: if (MEDIUM<= WeightedALUBusy<HIGH) then

28: SetGPUFreqState(GPU-med);

29: else

30: SetGPUFreqState(GPU-low);

31: end if

32: SetCPUFreqState(CPU-low-power_Pstate);

33: Compute_ MemAccessRate_gradient();

34: if (gradient>=Mem_threshold) then

35: if(CPU-low-power_Pstate<=Pmin) then

36: CPU-low-power _Pstate++;

37: end if

38: else

39: if (CPU-low-power >CPU-base+1) then

40: CPU-low-power _Pstate--;

41: end if

42: end if

43: end if

44: end if

45: Sleep.time(SAMPLING_INTERVAL);

46: end while

We used four 2-GB DDR3-1600 DIMMs with two DIMMs per

channel. Hardware performance counters for CPU and GPU were

monitored using CPU and GPU performance counter libraries

running in Red Hat Linux2 OS. We set specific CPU DVFS states

using model-specific registers as described in [7]; to set a specific

GPU DVFS state, we send memory-mapped messages through the

GPU driver layer to the power-management firmware.

Although our DynaCo scheme can be implemented in any layer

such as hardware, power-management firmware, or system

software, we implemented it as a run-time system software policy

by layering it on top of the baseline AMD A-Series power-

management system. For CPU and GPU power and temperature,

we used the digital estimates provided by the power-management

firmware running in the AMD A-Series processor, the accuracies

for which are detailed in [27]. For all schemes, we ran the

applications for several iterations to reach a thermally stable

steady state. We took an average across those multiple iterations

to eliminate run-to-run variance in our hardware measurements.

Table 3: Application datasets.

Application Problem Size

miniMD 32 x 32 x 32 elements

miniFE 100 x 100 x 100 elements

Lulesh 100 x 100 x 100 elements

Sort 2,097,152 elements

Stencil2D 4,096 x 4,096 elements

S3D SHOC default for integrated GPU

BFS 1,000,000 nodes

We selected the applications used in our experiments based on

their relevance to future high-performance scientific computing.

We evaluated seven OpenCL applications in this paper: miniMD,

miniFE, Lulesh, S3D, Sort, Stencil2D, and BFS. MiniMD,

miniFE, and Lulesh are proxy applications representative of HPC

scientific application characteristics in the exascale time-frame.

We also evaluated a sub-set of benchmarks (S3D, Sort, Stencil2D,

BFS) from the Scalable Heterogeneous Computing (SHOC)

benchmark suite [13] that represents a large portion of scientific

code found in HPC applications. We analyzed all applications on

a single node to explore energy-saving opportunities using our

run-time schemes. These applications and the associated datasets

are described in Table 3.

MiniMD is a molecular dynamics code derived from its parent

code, LAMMPS [8]. It has two main computational kernels. The

first is the L – J potential function, or force kernel, and the second

is the neighbor-binning algorithm, or neighbor kernel. Other

kernels include communication kernel atom_comm and

miscellaneous small kernels to integrate the atom forces and build

the neighbor's list for each atom based on proximity and other

variables.

MiniFE provides an implementation of a finite-element method

[14]. It provides a conjugate gradient (CG) linear system solver

with Jacobi preconditioning. The three main kernels in the CG

solver are matvec, which does matrix vector operations; dot,

which performs the dot product of two matrices; and waxpy,

which does the weighted sum of two vectors.

Lulesh [19] approaches the hydrodynamics problem using

Lagrangian numerical methods. The two main computation

kernels in Lulesh are CalcHourGlassForces and

CalcFBHourGlassForces.

SHOC consists of a collection of complex scientific

applications and common kernels encapsulated into benchmarks

that represent a majority of the numerical operations found in

HPC. We use Sort; which sorts an array of key-value pairs using a

radix sort algorithm; Stencil2D, which uses a nine-point stencil

operation applied to a 2D dataset; S3D, which is a turbulent

combustion simulation; and BFS, which is a graph traversal

problem.

We report performance, power, and energy efficiency (energy-

delay^2 product) for the two variants of DynaCo algorithm. We

picked ED^2 because it has been widely used in HPC analysis

[21] and it captures the importance of both power and

performance, the latter being critical for HPC. The power and

energy results include CPU, GPU, memory controller power, and

a fixed IO-phy power budget. All results were obtained from real

hardware and are normalized to the baseline BAPM discussed in

Section 2. All averages represent geometric mean across the

applications.

6. RESULTS
This section describes the results from the two DynaCo

schemes in the AMD A-Series APU and compares them with the

state-of-the-practice power-management algorithm BAPM. We

also compare our DynaCo schemes with an ideal static scheme

that picks the best DVFS state for each kernel as determined

through offline profiling and analysis by performing an entire

state-space search. Offline techniques provide a good basis for

comparison to evaluate the effectiveness of run-time techniques

but are impractical as power-management strategies.

6.1 Performance, Power, and Energy
Figure 10 shows the performance impact of DynaCo-1levelTh,

DynaCo-multilevelTh, and ideal static schemes compared to the

baseline for all six HPC applications. The y-axis represents the

increase in run-time compared to a baseline value of 1.0, and

lower is better. We see an average run-time increase of 0.78%

across all the applications using DynaCo-1levelTh, with up to

2.58% maximum slow-down in the case of miniMD.

DynaCo-multilevelTh sees an average run-time increase of

1.61% across the same set of applications, with a worst-case slow-

down of 4.19%. The ideal static scheme measures an average

slow-down of 1.65%, with the worst case being 5.2% in miniMD.

This illustrates the efficacy of the run-time schemes in optimizing

energy efficiency under strict performance constraints. Ideal static

picks the best CPU and GPU DVFS states at a kernel-level

granularity, and it is unable to detect fine-grained phase changes

in a kernel. Hence, it penalizes short, high-frequency sensitive

phases in a kernel that overall has low sensitivity.

As expected, we see much tighter performance control with

DynaCo-1levelTh compared to DynaCo-multilevelTh and ideal

static because it does not utilize the lowest-frequency states of the

CPU. Because it always fixes the low-power P-state for CPU to

P2 during phases of low CPU frequency sensitivity, it also

removes the slight variability in performance over time when the

algorithm is adapting dynamically to find the best low-power P-

state. On the other hand, DynaCo-multilevelTh provides better

energy efficiency gains, as we will see next, with slightly more

performance degradation but still within reasonable bounds of

HPC constraints [21]. We attribute the relatively higher

performance loss in miniMD to the impact of variability in kernel

phases shorter than our 10-ms sampling interval limitation.

The more aggressive DynaCo-multilevelTh outperforms ideal

static in miniFE and miniMD because a run-time adaptive scheme

is able to take advantage of the phase behavior in a kernel,

whereas the static scheme based on profiling makes power-state

decisions only at kernel-level granularity. Figure 11 shows an

example phase behavior of the matvec kernel in miniFE for a

single iteration. The y-axis shows GPU utilization and normalized

memory-bandwidth utilization compared to the practical peak-

DDR bandwidth. Matvec does sparse matrix-vector product and,

in general, is heavily memory bandwidth-limited due to the large

number of indirect memory references and register spills to global

memory in the code. However, about 19% of the time it is

compute-intensive without saturating memory bandwidth. This

behavior is observed in every invocation of matvec in miniFE, a

significant fraction of the application's total run-time. During this

19% compute-intensive phase, DynaCo boosts the GPU to its

highest DVFS state while the profiling-based ideal static scheme

fixes the GPU frequency to GPU-med due to this kernel's overall

low GPU frequency sensitivity.

In Figure 12 we evaluate the ED^2 gains using DynaCo during

the entire run-time of the application. All data are normalized to a

baseline of 1.0 and lower is better. Average energy efficiency

improves by 24% using DynaCo-1levelTh compared to the

baseline, with up to 32% savings in Sort and S3D. DynaCo-

multilevelTh sees an average improvement of 30%, with up to

47% savings in S3D. Ideal static achieves an energy-efficiency

gain of 35%. We observe that 70-80% of the savings came from

CPU scaling and the remainder came from GPU scaling.

The amount of energy-efficiency gain in S3D is slightly higher

than the rest of the benchmarks. S3D is a compute-intensive

application. However, when we run multiple iterations of this

benchmark from the SHOC suite, the compute-intensive active

phases appear to last for a small fraction of the total time it takes

to compile and launch the application kernels. This causes only

small periods of activity on the GPU followed by long idle

periods. During this idle period, the GPU is power-gated for all

three schemes as well as the baseline. However, the CPU is busy

compiling and preparing the work to launch the kernels. Portions

of this phase do not contribute to the overall performance of the

application. Boost algorithms, such as the BAPM algorithm used

for the baseline, allocate the highest CPU frequencies during this

phase when power and thermal headroom is available. However,

in our run-time and ideal static schemes we are able to utilize the

low frequency P-states during the frequency-insensitive phase.

We also notice that DynaCo-multilevelTh provides better energy

efficiency than ideal static for miniMD due to the higher-

performance slow-down observed with the profile-based scheme.

The power savings achieved with DynaCo are illustrated in

Figure 13. The average power savings are 24% with DynaCo-

1levelTh, 31% with DynaCo-multilevelTh, and 36% with ideal

static. We see that DynaCo-multilevelTh provides greater power

savings compared to DynaCo-1levelTh due to utilization of the

very-low-frequency CPU P-states. While ideal static provides

greater power savings by picking the best DVFS state for each

kernel, it does not provide the same tight performance bounds as

the other two schemes, as shown in Figure 10. In addition, it

requires user intervention and prior offline profiling of all the

kernels in an application across multiple CPU and GPU

frequencies to determine the best state.

6.2 Performance Analysis and Power Shifting
We now analyze the case of power-shifting and power-

reduction scenarios with the two DynaCo schemes for every

application. We present a sub-set of those results here. Figure 14

shows the percentage GPU DVFS residency for each of the three

main kernels of Lulesh as well as the overall application. Because

the GPU DVFS decision between the two DynaCo schemes is

handled similarly from an algorithmic perspective, we show GPU

DVFS residency results for only DynaCo-1levelTh.

Figure 10: Performance impact of DynaCo

Figure 11: Phase variation within MATVEC

0.90
0.92
0.94
0.96
0.98
1.00
1.02
1.04
1.06

In
cr

ea
se

 i
n

 r
u

n
-t

im
e

DynaCo-1levelTh DynaCo-multilevelTh
Ideal-static Baseline

0

0.2

0.4

0.6

0.8

1

1.2

10 30 50 70 90 110 130 150 170 190 210

N
o
rm

a
li

ze
d

 M
et

ri
c

Time (ms)->

GPU Utilization

Global_MemUtil

Figure 12: Energy efficiency with DynaCo

Figure 13: Power savings with DynaCo

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

N
o
rm

a
li

ze
d

 E
D

^
2

 p
ro

d
u

ct
 DynaCo-1levelTh DynaCo-multilevelTh Ideal-static

0%

10%

20%

30%

40%

50%

60%

P
o
w

er

DynaCo-1levelTh DynaCo-multilevelTh Ideal-static

 The CalcHourGlass kernel spends 21% less time in GPU-high,

14% more time in GPU-med, and 8% more time in GPU-low than

the baseline. On further examination, this kernel is memory-

bounded 30% of its run-time; during those times, power is shifted

away from the GPU. Similarly, the entire Lulesh application

spends 9% less time in GPU-high with DynaCo. For the

CalcFBHourGlass kernel, DynaCo performs similarly to the

baseline. This kernel is heavily compute-bound on GPU with high

WeightedALUBusy; hence, DynaCo boosts performance by

selecting the highest-frequency state.

Figure 14: GPU DVFS residency for DynaCo and baseline.

Figure 15: CPU DVFS residency with DynaCo-1levelTh.

Further, in Figure 15 and Figure 16, we see that for all three

kernels we are able to shift power away from CPU significantly

due to poor CPU frequency sensitivity, while the baseline runs the

CPU at the high-frequency boost states due to availability of

power and thermal headroom. Specifically, during the more than

20 Other kernel phases, DynaCo correctly boosts CPU to the

high-frequency P-states as needed due to the high CPU

dependency observed for these miscellaneous fine-grained

kernels, as depicted in the phase behavior shown in Figure 1.

Further, DynaCo-multilevelTh is able to utilize the lower-

frequency CPU P-states P3 and P4 59% of the time.

We also observe that the fine-grain, relatively small kernels

such as IntegrateStress become performance-coupled to the CPU

more quickly than the main Hourglass computation kernels.

Hence, IntegrateStress does not utilize the low-frequency P-states

of P3 and P4 that can cause significant performance loss. Lulesh

provides an example of a case when power can be saved from

both CPU and GPU and boosting to higher frequencies is utilized

when the application phase needs it.

Similarly, for miniMD (figure not shown due to space

constraints), DynaCo correctly estimates the frequency sensitivity

of the different kernels. The heavily compute-intensive nature of

the force kernel causes it to boost to the highest GPU frequency

100% of its run-time, similar to the baseline. On the other hand,

the neighbor kernel has aggregated CPU-GPU memory bandwidth

that is close to the peak bandwidth that the DDR bus can sustain

after accounting for bus efficiency. Hence, we are able to run the

GPU at the medium DVFS frequency without noticeable

performance degradation. Moreover, small kernels in miniMD

such as atom_comm, which rely on the CPU for data transfer and

launch frequently, spend almost 70% of their time in the medium-

and low-frequency GPU DVFS states using DynaCo. During

much of this time, CPU is closely coupled to the GPU and runs at

high-frequency P-states. Contrary to this, the baseline algorithm

runs at maximum CPU and GPU frequencies for all miniMD

kernels due to temperature headroom.

Figure 16: CPU DVFS residency with DynaCo-multilevelTh.

In the graph algorithm BFS, we see that due to control

divergence the GPU has short bursts of computation followed by

phases of low utilization on the GPU. About 25% of the time,

threads are waiting for re-convergence. DynaCo correctly assigns

high GPU frequency to avoid slowing the critical path, but it saves

power from the CPU due to low UPC. The baseline always runs

BFS at the maximum CPU and GPU frequencies due to the

available thermal headroom, causing energy inefficiency.

Due to the lower power consumption, we also see a reduction

in the peak die temperatures using DynaCo. This is due to a

combination of leakage power savings from reduced voltage

operations and dynamic power savings from reduced frequency.

With DynaCo, peak die temperature is, on average, up to 2°C

lower across all the applications. Lower temperatures result in

lower cooling costs, better energy efficiency, and better heat

management.

In summary, we have shown that DynaCo successfully

leverages the metrics discussed in Section 4 to improve the energy

efficiency of HPC application on a heterogeneous processor.

DynaCo is able to produce significant power savings with a small

reduction in performance, resulting in energy efficiencies

comparable to an ideal static management scheme without the

additional overhead of profiling required for the static scheme.

7. RELATED WORK
There is a considerable amount of research in power and

energy management in homogeneous uni- and multi-core

processors using dynamic voltage and frequency scaling. Several

research works have proposed analytical models for DVFS

0%

20%

40%

60%

80%

100%

G
P

U
 D

V
F

S
 r

es
id

en
cy

GPU-high GPU-med GPU-low

CalcFBHourGlass CalcHourGlass IntegrateStress Lulesh

0%

20%

40%

60%

80%

100%

C
P

U
 D

V
F

S
 r

es
id

en
cy

 P2 Base Boost

0%

20%

40%

60%

80%

100%

C
P

U
 D

V
F

S
 r

es
id

en
cy

P4 P3 P2 P1 Base Boost

[37][12][16][20], compiler-driven techniques [38], and control-

theoretic approaches [35]. J. Li et al. [26] proposed a run-time

voltage/frequency and core-scaling scheduling algorithm that

minimizes the power consumption of general-purpose chip multi-

processors within a performance constraint. J. Lee et al. [24]

analyzed throughput improvement of power-constrained multi-

core processors by using power-gating and DVFS techniques.

In the HPC community, Pakin et al. [28] characterized power

usage on production supercomputers using production workloads.

Laros et al. [22] performed extensive large-scale analysis of

power and performance requirements for scientific applications in

supercomputers based on static tuning of applications through

DVFS, core, and bandwidth scaling. Rountree et al. [32] explored

energy-performance trade-offs for HPC applications bottlenecked

by memory and communication. In [33] and [34], Rountree et al.

investigated speeding up the critical path of an application in a

multi-processor cluster using slack-prediction and leading-load

techniques, respectively. In [4], Balaprakash et al. described

exascale workload characteristics and created a statistical model

to extrapolate application characteristics as a function of problem

size. All these efforts focused only on CPU architectures; this

paper focuses on the integrated CPU-GPU architectures that bring

new challenges.

There has been a renewed interest in using machine learning to

construct behavior models for use in run-times, compilers, and

even hardware to make scheduling decisions. Techniques to

automate the construction of models of execution time for GPUs

using basic machine learning are described in [18] and [21]. Other

efforts have constructed models for predicting power and thermal

behaviors from measurements made with performance counters

[6][15]. Such techniques focus on model construction and are

distinct from model application (e.g., in making power-

management decisions). They certainly could be investigated to

improve the models presented here further with the requirement

that simplicity of implementation be met.

Recently, there has been a significant interest in the power

management of GPUs. Lee et al. [25] proposed DVFS techniques

to maximize performance within a power budget for discrete

GPUs. In [15], Hong et al. developed a power and performance

model for a discrete GPU processor. Recent studies [2][3] have

identified throughput-computing performance-coupled

applications as an emergent class of future applications. However,

none of this work focuses on managing energy in tightly coupled

architectures.

A number of papers have examined CPU-GPU heterogeneous

architectures. Research in [11][17][30][31] proposed run-time

systems with scheduling schemes for applications like generalized

reductions, irregular reductions, and MapReduce to improve

performance in CPU-GPU architectures. In [23], Lee et al.

proposed thread-level-parallelism-aware cache management

policies in CPU-GPU processors. Wang et al. [36] proposed

workload-partitioning mechanisms between the CPU and GPU to

utilize the overall chip power budget to improve throughput. In

[29], Paul et al. characterized thermal coupling effects between

CPU and GPU and proposed a solution to balance thermal and

performance-coupling effects dynamically.

Unlike many of the previous studies, our work is to our

knowledge the first to address energy management in integrated

CPU-GPU processors for HPC applications. Furthermore, unlike

much past work in this area, we have implemented our algorithms

on commodity hardware and show measureable performance,

power, and energy benefits compared to a state-of-the-practice

power-management algorithm.

8. CONCLUSIONS
This paper proposed and implemented a set of techniques to

improve the energy efficiency of integrated CPU-GPU processors.

To the best of our knowledge, this is the first such

implementation. We described the unique characteristics of HPC

applications and the opportunities they present to save energy. We

proposed a model to capture the application's frequency sensitivity

in such architectures and used this model as the basis for a

dynamic, coordinated energy-management scheme to improve

energy efficiency at negligible performance loss. The proposed

scheme achieves an average ED^2 benefit of up to 30% compared

to the baseline with less than 2% average performance loss across

a variety of exascale and other HPC applications.

In the future, we plan to expand this work to manage memory

sub-systems directly, explore techniques to balance computation

on both CPU and GPU efficiently for energy, and extend this

node-level analysis to the level of an HPC cluster.

9. ACKNOWLEDGMENTS
The authors gratefully acknowledge the efforts and detailed

comments of the reviewers, which substantially improved the

final manuscript. This research was supported in part by the

Semiconductor Research Corporation under contract 2012-HJ-

2318.

10. REFERENCES
[1] Advanced Configuration and Power Interface (ACPI),

Specification, http://www.acpi.info/spec.htm

[2] M. Arora, S. Nath, S. Mazumdar, S. Baden, D. Tullsen,

"Redefining the Role of the CPU in the Era of CPU-GPU

Integration," IEEE Micro2012.

[3] K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P.

Husbands, K. Keutzer, D.A. Patterson, W.L. Plishker, J.

Shalf, S.W. Williams, K.A. Yelick, "The landscape of

parallel computing research: A view from Berkeley,"

Technical Report UCB/EECS-183, 2006.

[4] P. Balaprakash, D. Buntinas, A. Chan, A. Guha, R. Gupta, S.

Narayanan, A. Chieny, P. Hovland, B. Norris, "An exascale

workload study," SCC 2012.

[5] W.L. Bircher, M. Valluri, J. Law, L.K. John, "Runtime

Identification of Microprocessor Energy Saving

Opportunities," ISLPED 2005.

[6] W.L. Bircher, L.K. John, "Complete System Power

Estimation: A Trickle-Down Approach Based on

Performance Events," ISPASS 2007.

[7] BIOS and Kernel Developer’s Guide:

http://support.amd.com/us/Processor_TechDocs/42300_15h_

Mod_10h-1Fh_BKDG.pdf

[8] W.M. Brown, P. Wang, S.J. Plimpton, A.N. Tharrington,

"Implementing molecular dynamics on hybrid high

performance computers- short range forces," Compute

Physics Communications 2011.

[9] S. Che, M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer, S.-H.

Lee, and K. Skadron, "Rodinia: A benchmark suite for

heterogeneous computing," IISWC 2009.

[10] S. Che, J.W. Sheaffer, M. Boyer, L. Szafaryn, and K.

Skadron, "A characterization of the Rodinia benchmark suite

with comparison to contemporary CMP workloads," IISWC

2010.

[11] L. Chen, X. Huo, G. Agrawal, "Accelerating map-reduce on

a coupled CPU-GPU architecture," SC 2012.

[12] M. Curtis-Maury, A. Shah, F. Blagojevic, D. Nikolopoulos,

B.R. de Supinski, M. Schulz, "Prediction Models for Multi-

http://support.amd.com/us/Processor_TechDocs/42300_15h_Mod_10h-1Fh_BKDG.pdf
http://support.amd.com/us/Processor_TechDocs/42300_15h_Mod_10h-1Fh_BKDG.pdf

dimensional Power-Performance Optimization on Many

Cores,” PACT 2008.

[13] A. Danalis, G. Marin, C. McCurdy, J. Meredith, P. Roth, K.

Spafford, V. Tipparaju, J. S. Vetter, “The scalable

heterogeneous computing (SHOC) benchmarking suite”,
GPGPU 2010

[14] M. Heroux, D. Doerfler, P. Crozier, J. Willenbring, H.C.

Edwards, A. Williams, M. Rajan, E. Keiter, H. Thornquist,

R. Numrich, “Improving performance via mini-applications”,
SAND2009-5574

[15] S. Hong, H. Kim, “An integrated GPU power and
performance model”, ISCA 2010

[16] Z. Hu, D. Brooks, V. Zyuban, P. Bose, “Microarchitecture-

level power-performance simulators: modeling, validation

and impact on design”, MICRO 2003.

[17] X. Huo; V.T. Ravi, G. Agrawal, "Porting irregular reductions
on heterogeneous CPU-GPU configurations," HiPC 2011

[18] W. Jia, K. Shaw, and M. Martonosi, “Stargazer: Automated

Regression-Based GPU Design Space Exploration,” IEEE
ISPASS 2012

[19] I. Karlin, “LULESH programming model and performance
ports overview”, LLNL-TR-608824

[20] S. Kaxiras, M. Martonosi, “Computer Architecture

Techniques for Power Efficiency”, Synthesis Lectures on
Computer Architecture

[21] A. Kerr, E. Anger, G. Hendry, and S. Yalamanchili. “Eiger:

A framework for the automated synthesis of statistical

performance models.” 1st Workshop on Performance

Engineering and Applications (WPEA), held with HiPC

2012

[22] J. H. Laros III, K. T. Pedretti, S. M. Kelly, W. Shu, and C. T.

Vaughan, “Energy based performance tuning for large scale
high performance computing systems,” HPC 2012

[23] J. Lee, H. Kim, “TAP: A TLP-aware cache management

policy for a CPU-GPU heterogeneous architecture”, HPCA
2012

[24] J. Lee, N. Kim, “Optimizing throughput of power- and

thermal-constrained multicore processors using DVFS and
per-core power-gating”, DAC 2009

[25] J. Lee, V. Sathish, M. Schulte, K. Compton, N. Kim,

“Improving Throughput of power-constrained GPUs using
dynamic voltage/frequency and core scaling”, PACT 2011

[26] J. Li, J. Martinez, “Dynamic power-performance adaptation

of parallel computation on chip multiprocessors”, HPCA

2006

[27] S. Nussabaum, AMD, “Trinity” APU, Hotchips 2012

[28] S. Pakin, C. Storlie, M. Lang, R. Fields III, E. Romero, C.

Idler, S. Michalak, H. Greenberg, J. Loncaric, R.

Rheinheimer, G. Grider, J. Wendelberger, “ Power usage of

production supercomputers and production workloads”, SC

2012

[29] I. Paul, S. Manne, M. Arora, W.L. Bircher, S. Yalamanchili,

“Cooperative boosting: needy versus greedy power

management”,ISCA 2013.

[30] V.T. Ravi, W. Ma, D. Chiu, G, Agrawal, “Compiler and

runtime support for enabling generalized reduction

computations on heterogeneous parallel configurations”, ICS

2010

[31] V.T. Ravi, G. Agrawal., "A dynamic scheduling framework
for emerging heterogeneous systems," HiPC 2011

[32] B. Rountree, D.K. Lowenthal, S. Funk, V. Freeh, B.R. de

Supinski, M. Schulz, “Bounding energy consumption in
large-scale MPI programs”, SC 2007

[33] B. Rountree, D.K. Lowenthal, B.R. de Supinski, M. Schulz,

V. Freeh, T. Bletsch, “Adagio: Making DVS Practical for

Complex HPC Applications”, ICS 2009

[34] B. Rountree, D.K. Lowenthal, M. Schulz, B.R. de Supinski,

“Practical performance prediction under dynamic voltage
frequency scaling”, IGCC 2011

[35] A. Varma, B. Ganesh, M. Sen, S. R. Choudhury, L.

Srinivasan, B. L. Jacob. A Control-Theoretic Approach to

Dynamic Voltage”, International Conference on Compilers,

Architectures and Synthesis for Embedded Systems 2003

[36] H. Wang, V. Sathish, R. Singh, M. Schulte, N. Kim,

“Workload and power budget partitioning for single chip
heterogeneous processors”, PACT 2012

[37] Q. Wu, P. Juang, M. Martonosi, D. W. Clark, “Formal

Online Methods for Voltage/Frequency Control in Multiple
Clock Domain Microprocessors”, ASPLOS 2004

[38] Q. Wu, M. Martonosi, D. Clark, V. Reddi, D. Connors, Y.

Wu, J. Lee, D. Brooks, “Dynamic Compiler-Driven Control

for Microprocessor Energy and Performance”, IEEE Micro
2006

[39] http://www.amd.com/us/products/desktop/processors/a-
series/Pages/a-series-model-number-comparison.aspx

[40] http://www.xbitlabs.com/news/other/display/2011110221413

7_AMD_and_Penguin_Build_World_s_First_HPC_Cluster_

Based_on_Fusion_APUs.html

[41] http://developer.amd.com/tools-and-sdks/heterogeneous-
computing/codexl/

[42] http://www.green500.org

[43] http://www.top500.org

http://www.xbitlabs.com/news/other/display/20111102214137_AMD_and_Penguin_Build_World_s_First_HPC_Cluster_Based_on_Fusion_APUs.html
http://www.xbitlabs.com/news/other/display/20111102214137_AMD_and_Penguin_Build_World_s_First_HPC_Cluster_Based_on_Fusion_APUs.html
http://www.xbitlabs.com/news/other/display/20111102214137_AMD_and_Penguin_Build_World_s_First_HPC_Cluster_Based_on_Fusion_APUs.html

