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Outline 

n New Rules: Consequences of Data Movement 

n New Rules: Adaptation to Physical Phenomena 
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Scaling Computing Performance 
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Cray Titan: Heterogeneous Computing 

Thermal Limits 

Energy Limits 

Data Movement Costs 
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Moore’s Law 
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From wikipedia.org 

•  Performance scaled with 
number of transistors 

•  Dennard scaling: power 
scaled with feature size 

Goal: Sustain 
Performance Scaling 

From R. Dennard, et al., “Design of ion-implanted MOSFETs with very small physical dimensions,” IEEE Journal of Solid State Circuits, vol. 
SC-9, no. 5, pp. 256-268, Oct. 1974. 
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Post Dennard Architecture Performance Scaling  
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W. J. Dally, Keynote IITC 2012 

 Data_movement_cost 

Three operands x 64 bits/operand 

Energy = #bits× dist −mm× energy− bit −mm
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Power Delivery Cooling 

Moving 1-bit of data 1mm at 22nm1 = ~1 pj 

1HIPEAC Roadmap 2012 – 2012-9-hipeacvision.pdf 
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Scaling Performance: Cost of Data Movement 
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Embedded Platforms  

Goal: 1-100 GOps/w Goal: 20MW/Exaflop 

Big Science: To Exascale 

•  Sustain performance scaling through massive concurrency 

•  Data movement becomes more expensive than 
computation 

Courtesy: Sandia National Labs :R.  Murphy.  

Cost of Data Movement 
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Microbump array (25 µm diameter, 50 µm pitch) Fine-pitch wires (2 µm width, 4 µm pitch) 

Bandwidth and Energy Tapers for Dense Interconnections 

(Modified, from Polka et al, Intel Technology Journal) 

Courtesy: Professor M. Bakir (ECE) 
Georgia Tech 
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Data Movement Energy Costs 

n Modern Architectures are designed to optimize compute 

8 

Energy = #bits× dist −mm× energy− bit −mm

Algorithms/Applications Architecture Technology 

You can hide latency but you cannot hide energy!  
Or can you? 
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Programming Models and Data Movement 

9 

7.89	
  

1.42	
   1.58	
   1.11	
  
2.45	
  

0	
  

2	
  

4	
  

6	
  

8	
  

10	
  

a	
   b	
   c	
   d	
   e	
  

Sp
ee
du

p	
  

Average 2.89x speedup 

M

N

T	


SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY 

Refactor Systems 
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Xeon Phi 

Hybrid Memory Cube 

n Interleaving computer, communication, and storage 

n Beware the bisection bandwidth trap 

n Minimize data movement à Processor in Memory? 

n Programming models 

Network 

     
     

Many Core Processor 

Memory  

Memory  

Memory  

Memory  
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Post Dennard Architecture Performance Scaling  

Perf ops
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W. J. Dally, Keynote IITC 2012 

Operator_cost + Data_movement_cost 

Three operands x 64 bits/operand 
Specialization à heterogeneity and 

asymmetry 

Energy = #bits× dist −mm× energy− bit −mm
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Outline 

n New Rules: Consequences of Data Movement 

n New Rules: Adaptation to Physical Phenomena 
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It’s a Physical World: Co-Optimization is Key 
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Silicon	
 Coolant	


Channel Len 

Wall Len 

Chip Width 

Next 
Generation 
Applications 

Multi-scale 
Physical 

Phenomena 

Architecture 
& Package 
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Degradation Variation 
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Peak temperature and MTTF analysis from J. Srinivasan et al., 
“Lifetime Reliability: Toward An Architectural Solution,” Micro 2005. 

64-core asymmetric chip multiprocessor 
layout and failure probability distribution 

x10-10 In-order core Out-of-order core 

25% peak-to-peak difference of failure distribution across the processor die; 
induced by architectural asymmetry, thermal coupling, power management, 

and workload characteristics 

Single-core processor lifetime reliability Multicore processor lifetime reliability 
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Thermal Coupling 
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GPU 

n Thermal coupling between CPU and GPU accelerates 
temperature rise 

n Performance coupling between CPU and GPU impacts power 
management! 

AMD Trinity APU 

Paul, Manne, Bircher, Arora, Yalamanchili (ISCA 2013) 

Interconnect and Memory! 
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Thermal Coupling 
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n Thermal impact? 
n Power management? 
n Asymmetric network bandwidth demand? 

64 CPU cores, 6144 CPU cores  
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Adaptation to the Physics   
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T1 T2 T3 

Worst case design point 

Transparent microarchitecture 
adaptation 

Cooperative HW/SW adaptation 
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Time 

Time Varying Workload 

Global 
Modulator

Power Source

Digital Block1Local 
Modulator

Power
Gate

Digital Block2Local 
Modulator

Power
Gate

Digital Block3Local 
Modulator

Power
Gate

global voltage noise

local voltage noise

PLL
CKPLL

CKG

system 
clock

CKL1

CKL2

CKL3

local voltage noise

local voltage noise

local 
clock

local 
clock

local 
clock

Modulate the arrival time of clock at the flip-flops to track 
the variation in the critical path delay of a logic block 

Adaptive Clocking 

Thermal Capacity 

Courtesy S. Mukhopadhyay 
Adaptive Microarchitecture 
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Data Movement Energy Costs 
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Energy = #bits× dist −mm× energy− bit −mm

Algorithms/Applications Architecture Technology 
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Emerging Electrical Switches & Interconnects 
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•  A	
  host	
  of	
  novel	
  devices	
  and	
  
interconnects	
  are	
  being	
  pursued.	
  	
  

•  Various	
  devices	
  offer	
  vastly	
  
different	
  characteristics	
  in	
  terms	
  of	
  
output	
  current,	
  input	
  capacitance,	
  
subthreshold	
  swing,	
  etc.	
  	
  

•  Emerging	
  interconnects	
  such	
  as	
  
CNT	
  and	
  graphene	
  may	
  offer	
  lower	
  
interconnect	
  capacitances	
  but	
  are	
  
mostly	
  more	
  resistive.	
  	
  

•  The	
  speed,	
  energy	
  and	
  EDP	
  
advantages	
  offered	
  by	
  novel	
  
interconnects	
  will	
  highly	
  depend	
  on	
  
the	
  transistors	
  used.	
  	
  

FinFET 

CNFET 

T-FET 

Prof. A Naemi, ECE, GT 
http://users.ece.gatech.edu/~azad/ 
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Interconnect EDP Comparisons (16nm ITRS Node)  

For	
  low	
  power	
  devices	
  such	
  as	
  TFETs,	
  interconnect	
  capacitance	
  is	
  the	
  most	
  
important	
  parameter	
  since	
  interconnect	
  resistance	
  is	
  dominated	
  by	
  transistors.	
  	
  

	
  
For	
  high	
  performance	
  devices,	
  resistance	
  and	
  capacitance	
  are	
  equally	
  important.	
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Prof. A Naemi, ECE, GT 
http://users.ece.gatech.edu/~azad/ 
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Research Needs: Co-Design 
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Novel 
Cooling 

Technology 

Thermal 
Field 

Modeling 

Prog. 
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Power 
Management 

μarchitecture 

Algorithms 

n Look for system level multipliers of communication 
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Architecture  

Applications 

System 
Software 
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Technology 

Thank You	


Questions?	
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