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Scaling Computing Performance

Thermal Limits
Data Movement Costs

Energy Limits
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Moore’s Law

Microprocessor Transistor Counts 1971-2011 & Moore’s Law
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. . Power dissipation per circuit V/ 1Kk2
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Table I: Scaling Results for Circuit Performance (from Dennard)

From R. Dennard, et al., “Design of ion-implanted MOSFETs with very small physical dimensions,” IEEE Journal of Solid State Circuits, vol.
SC-9, no. 5, pp. 256-268, Oct. 1974.
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Post Dennard Architecture Performance Scaling

Perf| 222 = Power(W)x Efficiency .Oﬂ
S joule
\ﬂ_l

Cooling

Power Delivery

W. J. Dally, Keynote IITC 2012

\Data_movement_ cost:

Y

Three operands x 64 bits/operand

|

Energy = # bits x dist — mm x energy — bit — mm

IHIPEAC Roadmap 2012 — 2012-9-hipeacvision.pdf
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Moving 1-bit of data 1mm at 22nm! = ~1 pj

Scaling Performance: Cost of Data Movement

Big Science: To Exascale

Embedded Platforms
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Courtesy: Sandia National Labs :R. Murphy.

- Sustain performance scaling through massive concurrency

. Data movement becomes more expensive than
computation
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Bandwidth and Energy Tapers for Dense Interconnections

Courtesy: Professor M. Bakir (ECE)

Silicon interposer Georgia TeC h

crU
Silicon interposer
[ Board ]

Die MCP
[SMemory ]

cPL

Substrate
Embedded

P
2D Planar MCP

/ BW = 200 GB/s-1 TB/s
=tig l BW = 100-200 GB/s
[Memory |

(Modified, from Polka et al, Intel Technology Journal)
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Data Movement Energy Costs

Energy = # bits x \dist —mm x energy - bit — mm

N T

Algorithms/Applications Architecture Technology

You can hide latency but you cannot hide energy!
Or can you?

mModern Architectures are designed to optimize compute
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[
Programming Models and Data MoveMment

Walmart

amazoncom
N

and you're done’”

Average 2.89x speedup

2.45
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Refactor Systems

MEITIOI¥
Xeon Phi

Network

[ !ﬂaﬁ: Eore.Pr%ce.sso.r

mInterleaving computer, communication, and storage

Hybrid Memory Cube

mBeware the bisection bandwidth trap
mMinimize data movement - Processor in Memory?
m Programming models
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Post Dennard Architecture Performance Scaling

) joule
W. J. Dally, Keynote IITC 2012 '

Perf oPt Power(W)xEﬁ‘iciency ops

‘Operator_cost‘ + pata_movement_ cost

Y

v Three operands x 64 bits/operand
Specialization - heterogeneity and
asymmetry
Energy = # bits x dist — mm x energy — bit — mm
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It's a Physical World: Co-Optimization is Key

Multi-resolution
Large Graphs

Next
Generation
Applications

Channel Len

Multi-scale

8 Wall Len

Physical

Phenomena Chip Width
TsVs = Silicon = Coolant
\ Wide Data Path
High-Speed Link ==

Architecture

& Package
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Degradation Variation

Single-core processor lifetime reliability Multicore processor lifetime reliability

In-order core Out-of-order core
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Peak temperature and MTTF analysis from J. Srinivasan et al., 64-core asymmetric chip multiprocessor
“Lifetime Reliability: Toward An Architectural Solution,” Micro 2005. layout and failure probability distribution

25% peak-to-peak difference of failure distribution across the processor die;
induced by architectural asymmetry, thermal coupling, power management,
and workload characteristics
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[
Thermal Coupling

Paul, Manne, Bircher, Arora, Yalamanchili (ISCA 2013)
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Time (seconds) ->

AMD Trinity APU

s Thermal coupling between CPU and GPU accelerates
temperature rise

m Performance coupling between CPU and GPU impacts power
management! > Interconnect and Memory!
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[
Thermal Coupling

= = GPUPow CPU CUO Pow
CPUCU1Pow ~ eeeee PeakDieTemp
CPU power is limited, GPU running at max ~ Thermal Temp throttling
DVES state coupling
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64 CPU cores, 6144 CPU cores T et TS

s Thermal impact?
s Power management?
s Asymmetric network bandwidth demand?
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Adaptation to the Physics

Time Varying Workload

Instructions/cycle

Time

Adaptive Microarchitecture

Thermal Capacity

Adaptive Clocking

C ive HW/SW [ —>

Power Source
~N——

Courtesy S. Mukhopadhyay
local voltage noise
Gate —
— L
Local CKuy .4
Modulator |H.| Digital Block1 |

global voltage noise

s
Global CKs
Modulator

Transparent microarchitecture
adaptation

Delay Variation

Worst case design point

T T, T
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Data Movement Energy Costs

clock

Iucal voltage noise

Local C Ku
Modulator local Digtal Block2 |

clock

|m| voltage noise

Lacal CKu
Modulator local Digital Blocks |

clock

Modulate the arrival time of clock at the flip-flops to track
the variation in the critical path delay of a logic block

CASL

Energy = # bits x dist — mm % energy - bit — mm

N

Algorithms/Applications Architecture
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Emerging Electrical Switches & Interconnects

FinFET < Prof. A Naemi, ECE, GT
<4 http://users.ece.gatech.edu/~azad/
Gate
Source Drain
’ > A host of novel devices and
. interconnects are being pursued.

d * Various devices offer vastly
different characteristics in terms of
output current, input capacitance,
subthreshold swing, etc.

Substrate Gaely

CNFET
Source
* Emerging interconnects such as
CNT and graphene may offer lower
interconnect capacitances but are
mostly more resistive.

1

e < Thick

Oxide Oxide
Substrate

T-FET

* The speed, energy and EDP
advantages offered by novel
interconnects will highly depend on
the transistors used.

Source Channel

CASL 1
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Interconnect EDP Comparisons (16nm ITRS Node)

Prof. A Naemi, ECE, GT
http://users.ece.gatech.edu/~azad/

FinFET with various interconnects TFET with various interconnects
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For low power devices such as TFETs, interconnect capacitance is the most
important parameter since interconnect resistance is dominated by transistors.

For high performance devices, resistance and capacitance are equally important.
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Research Needs: Co-Design

Thermal
Field
Modeling
Prog. Power
Models Management

Energy = # bits x dist — mm x energy — bit — mm

s Joule

mLook for system level multipliers of communication
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System
Software

Technology

Scaling Rules —)

Thank You
Questions?

Applications

Architecture

Acknowledgements — CASL Students: Haicheng Wu, William Song,

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

11



