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Outline 

n New Rules: Consequences of Data Movement 

n New Rules: Adaptation to Physical Phenomena 
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Scaling Computing Performance 
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Cray Titan: Heterogeneous Computing 

Thermal Limits 

Energy Limits 

Data Movement Costs 
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Moore’s Law 
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From wikipedia.org 

•  Performance scaled with 
number of transistors 

•  Dennard scaling: power 
scaled with feature size 

Goal: Sustain 
Performance Scaling 

From R. Dennard, et al., “Design of ion-implanted MOSFETs with very small physical dimensions,” IEEE Journal of Solid State Circuits, vol. 
SC-9, no. 5, pp. 256-268, Oct. 1974. 
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Post Dennard Architecture Performance Scaling  
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W. J. Dally, Keynote IITC 2012 

 Data_movement_cost 

Three operands x 64 bits/operand 

Energy = #bits× dist −mm× energy− bit −mm
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Power Delivery Cooling 

Moving 1-bit of data 1mm at 22nm1 = ~1 pj 

1HIPEAC Roadmap 2012 – 2012-9-hipeacvision.pdf 
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Scaling Performance: Cost of Data Movement 
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Embedded Platforms  

Goal: 1-100 GOps/w Goal: 20MW/Exaflop 

Big Science: To Exascale 

•  Sustain performance scaling through massive concurrency 

•  Data movement becomes more expensive than 
computation 

Courtesy: Sandia National Labs :R.  Murphy.  

Cost of Data Movement 
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Microbump array (25 µm diameter, 50 µm pitch) Fine-pitch wires (2 µm width, 4 µm pitch) 

Bandwidth and Energy Tapers for Dense Interconnections 

(Modified, from Polka et al, Intel Technology Journal) 

Courtesy: Professor M. Bakir (ECE) 
Georgia Tech 
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Data Movement Energy Costs 

n Modern Architectures are designed to optimize compute 
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Energy = #bits× dist −mm× energy− bit −mm

Algorithms/Applications Architecture Technology 

You can hide latency but you cannot hide energy!  
Or can you? 
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Programming Models and Data Movement 
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Refactor Systems 
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Xeon Phi 

Hybrid Memory Cube 

n Interleaving computer, communication, and storage 

n Beware the bisection bandwidth trap 

n Minimize data movement à Processor in Memory? 

n Programming models 

Network 

     
     

Many Core Processor 

Memory  

Memory  

Memory  

Memory  
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Post Dennard Architecture Performance Scaling  

Perf ops
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W. J. Dally, Keynote IITC 2012 

Operator_cost + Data_movement_cost 

Three operands x 64 bits/operand 
Specialization à heterogeneity and 

asymmetry 

Energy = #bits× dist −mm× energy− bit −mm
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Outline 

n New Rules: Consequences of Data Movement 

n New Rules: Adaptation to Physical Phenomena 

12 



4/25/13 

7 

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY 

It’s a Physical World: Co-Optimization is Key 
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Silicon	 Coolant	

Channel Len 

Wall Len 

Chip Width 

Next 
Generation 
Applications 

Multi-scale 
Physical 

Phenomena 

Architecture 
& Package 
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Degradation Variation 
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Peak temperature and MTTF analysis from J. Srinivasan et al., 
“Lifetime Reliability: Toward An Architectural Solution,” Micro 2005. 

64-core asymmetric chip multiprocessor 
layout and failure probability distribution 

x10-10 In-order core Out-of-order core 

25% peak-to-peak difference of failure distribution across the processor die; 
induced by architectural asymmetry, thermal coupling, power management, 

and workload characteristics 

Single-core processor lifetime reliability Multicore processor lifetime reliability 
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Thermal Coupling 

15 
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n Thermal coupling between CPU and GPU accelerates 
temperature rise 

n Performance coupling between CPU and GPU impacts power 
management! 

AMD Trinity APU 

Paul, Manne, Bircher, Arora, Yalamanchili (ISCA 2013) 

Interconnect and Memory! 
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Thermal Coupling 
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n Thermal impact? 
n Power management? 
n Asymmetric network bandwidth demand? 

64 CPU cores, 6144 CPU cores  
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Adaptation to the Physics   
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T1 T2 T3 

Worst case design point 

Transparent microarchitecture 
adaptation 

Cooperative HW/SW adaptation 
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Time 

Time Varying Workload 

Global 
Modulator

Power Source

Digital Block1Local 
Modulator

Power
Gate

Digital Block2Local 
Modulator

Power
Gate

Digital Block3Local 
Modulator

Power
Gate

global voltage noise

local voltage noise

PLL
CKPLL

CKG

system 
clock

CKL1

CKL2

CKL3

local voltage noise

local voltage noise

local 
clock

local 
clock

local 
clock

Modulate the arrival time of clock at the flip-flops to track 
the variation in the critical path delay of a logic block 

Adaptive Clocking 

Thermal Capacity 

Courtesy S. Mukhopadhyay 
Adaptive Microarchitecture 
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Data Movement Energy Costs 
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Energy = #bits× dist −mm× energy− bit −mm

Algorithms/Applications Architecture Technology 
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Emerging Electrical Switches & Interconnects 

Source DrainGate
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•  A	  host	  of	  novel	  devices	  and	  
interconnects	  are	  being	  pursued.	  	  

•  Various	  devices	  offer	  vastly	  
different	  characteristics	  in	  terms	  of	  
output	  current,	  input	  capacitance,	  
subthreshold	  swing,	  etc.	  	  

•  Emerging	  interconnects	  such	  as	  
CNT	  and	  graphene	  may	  offer	  lower	  
interconnect	  capacitances	  but	  are	  
mostly	  more	  resistive.	  	  

•  The	  speed,	  energy	  and	  EDP	  
advantages	  offered	  by	  novel	  
interconnects	  will	  highly	  depend	  on	  
the	  transistors	  used.	  	  

FinFET 

CNFET 

T-FET 

Prof. A Naemi, ECE, GT 
http://users.ece.gatech.edu/~azad/ 
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Interconnect EDP Comparisons (16nm ITRS Node)  

For	  low	  power	  devices	  such	  as	  TFETs,	  interconnect	  capacitance	  is	  the	  most	  
important	  parameter	  since	  interconnect	  resistance	  is	  dominated	  by	  transistors.	  	  

	  
For	  high	  performance	  devices,	  resistance	  and	  capacitance	  are	  equally	  important.	  	  
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Prof. A Naemi, ECE, GT 
http://users.ece.gatech.edu/~azad/ 
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Research Needs: Co-Design 
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Novel 
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Thermal 
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Prog. 
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μarchitecture 

Algorithms 

n Look for system level multipliers of communication 
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Energy = #bits× dist −mm× energy− bit −mm
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Architecture  

Applications 

System 
Software 
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Technology 

Thank You	

Questions?	

	


Scaling Rules 
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