

1

Cooperative Boosting: Needy Versus Greedy Power Management

Indrani Paul ⃰ † Srilatha Manne ⃰ Manish Arora ⃰ ‡ W. Lloyd Bircher⃰ Sudhakar Yalamanchili†

ABSTRACT
This paper examines the interaction between thermal

management techniques and power boosting in a state-of-the-art

heterogeneous processor consisting of a set of CPU and GPU

cores. We show that for classes of applications that utilize both the

CPU and the GPU, modern boost algorithms that greedily seek to

convert thermal headroom into performance can interact with

thermal coupling effects between the CPU and the GPU to degrade

performance. We first examine the causes of this behavior and

explain the interaction between thermal coupling, performance

coupling, and workload behavior. Then we propose a dynamic

power-management approach called cooperative boosting (CB) to

allocate power dynamically between CPU and GPU in a manner

that balances thermal coupling against the needs of performance

coupling to optimize performance under a given thermal

constraint. Through real hardware-based measurements, we

evaluate CB against a state-of-the-practice boost algorithm and

show that overall application performance and power savings

increase by 10% and 8% (up to 52% and 34%), respectively,

resulting in average energy efficiency improvement of 25% (up to

76%) over a wide range of benchmarks.

Categories and Subject Descriptors

C.1.4 [Processor Architectures]: Parallel Architectures; C.4

[Performance of Systems]: Design studies

General Terms

Measurement, Performance, Design, Management

Keywords

Thermal management, power management, GPU computing

1 INTRODUCTION
Modern, high-performance client processors are composed of

heterogeneous cores that are managed to create a compelling user

experience. Power management is a critical piece of the user

experience, with the goal to allocate power adaptively across cores

to produce the best performance outcome within a fixed processor

power and thermal envelope.

The maximum power for a processor (i.e., the thermal design point

(TDP)) is set based on running a heavy workload under worst-case

conditions [36]. It is an upper bound for the sustainable power

draw of the core and is used to determine the cooling system

required. Under normal operating conditions, however, not all

components are active at the same time or to the same extent,

leaving thermal headroom in the system. Power-management

technology such as Intel's Turbo Boost [36] and AMD's Turbo

CORE [33] take advantage of the thermal headroom to increase the

active cores' frequencies until either the maximum performance

state or the thermal limit is reached.

A common state-of-the-practice is to boost the frequencies of

CPU or GPU cores greedily to utilize all of the available thermal

headroom for improving performance. These boost algorithms seek

fairness through allocation of power across cores in proportion to

expected performance benefits. This works well for many

applications in which the type of computation dictates the

component that requires boosting. For graphics applications, the

GPU is the obvious choice, as is the CPU for many control-

divergent, general-purpose applications. However, for applications

those require cooperative execution of both CPU and GPU cores,

these boost algorithms can break down and degrade – rather than

improve performance. This occurs for two reasons: performance

coupling and thermal coupling.

Performance coupling refers to control and data dependencies

between computations executing on CPU and GPU cores. For

example, for peak GPU utilization, the CPU must provide data to

the GPU at a certain rate to sustain GPU performance.

Performance coupling between CPU and GPU cores is accentuated

by the tighter physical coupling due to on-die integration and

emergence of applications that attempt a more balanced use of the

CPU and the GPU [43]. Thermal coupling refers to the heat

exchange that occurs when the CPU and GPU cores share the same

die. For example, heat from the CPU cores can accelerate the

temperature rise of the GPU. This can cause premature throttling

of the GPU cores and loss of performance, whereas the absence of

thermal coupling may have permitted the GPU to execute at a

higher frequency and, hence, performance. Power-management

techniques, such as boost algorithms, must balance the needs of

performance coupling between CPU and GPU cores against the

negative impact of thermal coupling to deploy power effectively

across the CPUs and the GPU.

In this paper, we examine the nuances of thermal coupling and

performance coupling and how to balance the two to maximize

performance. The apparent solution of throttling the CPU cores to

mitigate thermal coupling effects can become counterproductive if

the CPU units become too slow to utilize the GPU fully. Further,

emerging applications are more likely to utilize both the CPU and

the GPU as first-class computational engines, increasing the

importance of power-management solutions that balance

performance and thermal coupling effects.

This paper makes the following contributions:

 Demonstrates the impact of thermal and performance

coupling on system performance using hardware

measurements and analysis from a state-of-the-art

heterogeneous client system;

Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISCA’13, Tel Aviv, Israel.

Copyright 2013 ACM 978-1-4503-2079-5/13/06 …$15.00.

*Advanced Micro Devices, Inc.

srilatha.manne@amd.com
lloyd.bircher@amd.com

†Georgia Institute of Technology

indrani@ece.gatech.edu
sudha@ece.gatech.edu

‡
University of California, San

Diego

marora@eng.ucsd.edu

mailto:srilatha.manne@amd.com
mailto:lloyd.bircher@amd.com
mailto:indrani@ece.gatech.edu
mailto:sudha@ece.gatech.edu
mailto:marora@eng.ucsd.edu

2

 Proposes a cooperative boosting (CB) algorithm for the

coordinated management of power states on the CPU and

GPU to optimize performance; and,

 Provides a detailed, measurement-based analysis of the

performance of CB in comparison to a state-of-the-practice

boost algorithm for exploiting thermal headroom across a

range of benchmark applications.

In the rest of the paper, Section 2 discusses existing power-

management architectures. Section 3 explains the thermal and

performance coupling phenomena and their interactions motivating

the dynamic CB algorithm described in Section 4. In Sections 5

and 6, we present the experimental set-up and our results, while

Sections 7 and 8 present related work and our conclusions.

2 BACKGROUND
Heterogeneous processors such as Sandy Bridge from Intel®

[28][36] and the Trinity accelerated processing unit (APU) from

AMD® [33] (Figure 1) consist of one or more CPU cores in

combination with many GPU cores. Both systems feature several

heterogeneous cores in close proximity.

Figure 1: Die shot of AMD Trinity APU [33].

2.1 Power Management
Although the CPUs and the GPU are on independent power planes,

they share the same die and system power supply, and hence share

the same power and thermal headroom. These heterogeneous

processors use a sophisticated power-monitoring and management

technology, referred to as Turbo Boost on Sandy Bridge and AMD

Turbo CORE on Trinity, to determine the dynamic voltage and

frequency scaling (DVFS) states for the CPU and GPU to optimize

performance given power and thermal constraints. These

technologies use some combination of measured and approximated

power and/or temperature values to monitor and guide the power-

management algorithm.

The maximum software-visible voltage and frequency for the

processor is defined using a combination of heavy activity and

worst-case operating conditions. This corresponds to the thermal

design point (TDP) power. However, across time-varying

workloads it is common for the processor to operate well below the

TDP power and, therefore, well below the peak temperature

allowed. The difference between the current and peak temperatures

is the thermal headroom. Thermal headroom can be utilized by

permitting the CPU and/or the GPU components to exceed the

maximum frequency and TDP power for short periods. Power-

management algorithms differ in how the timing, extent, and

duration of the boosted operation are determined. However,

regardless of the specific implementation, it is safe to say that both

Sandy Bridge and Trinity processors dynamically manage power

allocation across the CPUs and the GPU under a pre-set thermal

limit. For the rest of the paper, we use the Trinity processor as our

test bed for analyzing and optimizing power-management

techniques in heterogeneous systems. However, similar concepts

and methodologies are applicable to other heterogeneous

processors using thermal-based power management.

2.2 Trinity Accelerated Processing Unit
The Trinity APU in Figure 1 contains two PileDriver modules or

compute units (CUs), AMD Radeon™ GPU cores, and other logic

components such as a NorthBridge and a Unified Video Decoder

(UVD). Each CU is composed of two out-of-order cores that share

the front-end and floating-point units. In addition, each CU is

paired with a 2MB L2 cache that is shared between the cores. The

GPU consists of 384 AMD Radeon cores, each capable of one

single-precision fused multiply-add computation (FMAC)

operation per cycle. The GPU is organized as six SIMD units, each

containing 16 processing units that are four-way VLIW. The

memory controller is shared between the CPU and the GPU.

Table 1 shows all possible DVFS states for the CPU cores in the

A8-4555M Trinity APU. On Trinity, DVFS states can be assigned

per CU; however, because the CUs share a voltage plane, the

voltage across all CUs is set by the maximum-frequency CU. P0

through P4 are software-visible DVFS states that are referred to as

performance states, or P-states, and are managed either by the OS

through the Advanced Configuration and Power Interface (ACPI)

specification [1] or the hardware. Pb0 and Pb1 are boost states only

visible to and managed by the hardware – in other words, entrance

to and exit from Pb0 and Pb1 are managed only by hardware.

The GPU has an independent power plane whose voltage and

frequency are controlled independently. However, unlike the CPU,

the GPU does not have DVFS states visible to software. Entrance

to and exit from these states are managed entirely in hardware.

Throughout the rest of the paper we refer to these hardware-

managed GPU DVFS states as GPU-high (highest frequency),

GPU-med (medium frequency) and GPU-low (lowest frequency).

Table 1: HW- and SW-managed DVFS states for the CPU

compute units on the Trinity APU.

 P-state Voltage (V) Freq (MHz)

HW

Only

Pb0 1 2400

Pb1 0.875 1800

SW-
visible

P0 0.825 1600

P1 0.812 1400

P2 0.787 1300

P3 0.762 1100

P4 0.75 900

AMD's Turbo CORE technology uses the bidirectional

application power management, or BAPM, algorithm [8][33] to

manage to thermal limits. BAPM controls the power allocated to

each thermal entity (TE) in the processor. TEs are defined to be

any sub-component of the processor that interfaces with BAPM to

report its power consumption and receive its power limits. Once

BAPM has assigned power limits, each TE manages its own

frequency and voltage to fit within that limit. For the Trinity

system evaluated in this paper, BAPM interfaces with the two CPU

compute units (CU0 and CU1) and the GPU. At regular time

intervals, the BAPM algorithm does the following:

1) Calculates a digital estimate of power consumption for each

TE;

2) Converts the power estimates into temperature estimates for

each TE; and,

CU1

L2

GPU

L2

CU0

3

3) Assigns new power limits to each TE based on the

temperature estimates.

To estimate the temperature across the die, the chip is divided

into regions in which local power and thermal properties are

calculated and transfer coefficients (represented as an RC network)

are utilized to compute heat transfer among the thermal regions,

substrate, and package. Temperatures within each region are

computed using numerical methods.

The BAPM algorithm is optimized for a fair and balanced

sharing of power between the TEs. When thermal headroom is

available, BAPM proportionally allocates power to each TE using

a pre-set static distribution weight derived using empirical analysis

reflecting the individual thermal properties of each TE (i.e., its

thermal behavior for a given power). Such static allocation is an

effective choice in the absence of dynamic feedback from

application execution. When the core reaches its thermal limit,

BAPM reduces the allocation of power to all TEs in the system.

BAPM is designed to provide reasonable performance

improvements without any significant outliers for today's

applications.

3 POWER, THERMALS, AND PERFORMANCE
Managing power in a heterogeneous system is a complex task

given the variability in power and performance within each TE.

This section presents an analysis of the relationship between power

and heat in the CPU and GPU and its impact on performance. The

section concludes by showing the need for cooperative boosting

between the CPU and GPU.

3.1 Motivation
To motivate the rest of the discussion, we present an example of

the impact of thermal coupling. Figure 2 illustrates thermal

coupling using an AMD A8-4555M Trinity APU comprised of two

dual-core CPU compute units (CU0 and CU1) and one six-SIMD

unit GPU (Figure 1). The x-axis shows time. The left-side y-axis

shows measured power relative to time zero using the techniques

described in Section 5. The right-side y-axis shows the peak die

temperature relative to the maximum junction temperature.

Initially, the GPU operates at its highest frequency and the CUs

are fixed at a low-frequency, low-power state. After the GPU heats

up and stabilizes, at around 230 seconds, we enable the BAPM

algorithm to control power allocation. Because there is significant

thermal headroom available, BAPM allocates additional power to

CU0 and CU1 and they enter a higher-power DVFS state. Not only

do the CUs increase their power dissipation, but due to thermal

coupling and the impact of heat on leakage power, the GPU power

also rises. The increase in system power causes an increase in peak

temperature and eventually triggers temperature-based throttling of

both the CUs and the GPU at around 267 seconds to maintain a

steady-state peak junction temperature. This results in a net

performance loss for all components.

This behavior can be attributed to thermal coupling effects

between the TEs. As the GPU warms up (see Figure 2), CU1 has a

stronger thermal coupling to the GPU due to its proximity to the

GPU (Figure 1), and so its power is initially higher than that of

CU0 although they are both relatively low. When they switch to a

higher-performing DVFS state, at around 230 seconds, the power

in both CUs increases, but thermal effects cause CU0 power to

exceed CU1 power. CU0 is on the edge of the die, and its heat is

trapped between the edge of the silicon and CU1. The GPU acts as

a thermal sink for CU1 due to its larger die area and more

distributed heat and, as a result, lower temperature. However, once

steady state is reached (more than 267 seconds), CU0 and CU1

temperatures stabilize to roughly equal values.

We conducted two additional experiments to support the

preceding discussion on thermal coupling between the CUs and the

GPU. In the first experiment, we boosted the CUs to run at a

higher power while the GPU executed the same workload at a

constant voltage and frequency. We observed the GPU temperature

was 6oC higher once the CUs were boosted, indicating thermal

coupling between CU1 and the GPU.

In the second experiment, we performed temperature

measurements with a high-power, two-thread CPU application. We

first pinned the threads to CU0, then pinned them to CU1. The

GPU is idle and power is managed by BAPM. When the

application ran on CU0, we observed the peak die temperature was

higher than when the application ran on CU1, indicating worse

heat flow from the CU next to the edge of the die. Further, the

GPU and idle CU temperatures rose by 13oC when one of the CUs

was active with all others idle, indicating heat transfer effects.

Figure 2: Example of the impact of thermal coupling.

3.2 Thermal Signatures and Thermal Coupling
Section 3.1 discussed the heat transfer properties of the TEs on the

die. This section details the differences in the thermal

characteristics of CPUs and GPUs and how they affect

performance-coupled applications.

The thermal signature of a TE reflects its ability to translate

power to temperature. It is measured by the distribution of power

density across the occupied area. In this sense, the thermal

signature of a GPU is quite different from that of a CPU – the latter

is more "thermally dense". In Figure 3, we show on the left side a

simulated heat map of the Trinity system when running a CPU-

centric, L1 cache-resident, high-power workload with an idle GPU.

The simulated heat map was constructed by feeding measured

power levels and power density while running the workload into a

thermal grid model. The right side shows a heat map for HotSpot

[10], a GPU-centric workload with the serial portion being

executed on the CPU. The thermal maps show the steady-state

thermal fields produced with the BAPM algorithm across the two

CPU CUs, the GPU, and the NorthBridge as labeled in the figure.

Tjmax refers to the maximum junction temperature allowed by the

die. The temperature distributions in Figure 3 are steady-state

distributions and therefore correspond to the region of Figure 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5

1

1.5

2

2.5

3

3.5

1

2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1

1
8

1

2
0

1

2
2

1

2
4

1

2
6

1

2
8

1

3
0

1

3
2

1

3
4

1

P
e

ak
 D

ie
 T

e
m

p
e

ra
tu

re

C
P

U
 &

 G
P

U
 R

e
la

ti
ve

 P
o

w
e

r

Time (seconds) ->

GPU Pow CPU CU0 Pow

CPU CU1 Pow PeakDieTemp

CPU power is limited, GPU
running at max DVFS state

Thermal
coupling

Temp
throttling

4

Figure 3: Thermal densities under CPU-centric (left) and GPU-centric (right) workloads.

after 267 seconds (i.e., after the BAPM algorithm throttled the

CPUs and GPU once they reached peak junction temperature).

The thermal characteristics of the workloads vary significantly.

The CPU-centric workload shows high heat density in the CPU

CUs while the GPU-centric workload shows a wider and flatter

temperature distribution across the GPU. The computational area

of the CPU, which is where most of the power is consumed, is

much smaller than the computational area of the GPU. The

complex, out-of-order CPU structures combined with their

relatively small areas lead to higher thermal density for the same

power and, thus, higher temperatures [22]. The GPU, on the other

hand, performs computation across many simple in-order SIMD

units that encompass a large area, leading to a lower thermal

density for the same amount of power.

There are two consequences to the higher thermal density in the

CPU. The first is that the CPU consumes its available thermal

headroom more rapidly than the GPU. In our analysis, we observed

that the CPU heats up approximately 4X faster that the GPU. As a

result, the GPU can sustain a higher power boost than the CPU for

a longer period before locally reaching the thermal limit. In some

cases, this results in sustained power dissipation that is higher than

the TDP power. For example, in the simulations shown in Figure 3,

the TDP of the APU complex is 19W; the total power for the CPU-

centric workload is 18.8W, while the total power for the GPU-

centric workload is 19.7W for the same thermal limit.

The second consequence of the higher thermal density in the

CPU is the destructive effect of thermal pollution on other

components on the die. The rate and extent of thermal pollution

depends on the thermal signatures of the entities. The distinct

thermal signatures lead to a larger thermal gradient between the

CPU and GPU when the CPU is active than when the GPU is

active. Heat from the CPU spreads, heating neighboring

components, increasing leakage, and accelerating temperature rise.

The thermal coupling effects can be seen in Figure 2 and Figure 3.

In a thermally coupled system, the TEs do not influence each

other as long as they are all running well below the thermal limit.

Power management employs boost algorithms to improve

performance by pushing the processor to operate near the thermal

limit, reallocating power across the CPU and GPU. As shown in

Figure 2, boosting based on available thermal headroom can

sometimes be detrimental to the application performance. The

complexity of the power-management task is exacerbated in

heterogeneous systems because application performance relies on

components with widely varying thermal signatures and coupling.

3.3 Performance Coupling
For many applications, the type of computation dictates the

component to be used. For graphics applications, the GPU is the

obvious choice, as is the CPU for many control-divergent, general-

purpose applications. However, for compute offload applications,

both the CPU and the GPU are possible candidates for different

portions of the computation or data processing. For such

applications, the CPU and the GPU are performance-coupled. For

example, a slow CPU can starve the GPU of data, leading to

underutilization of the GPU. Therefore, we must balance the

requirements of performance coupling with the realities of thermal

coupling to produce the best overall outcome.

This section explores the performance-coupled nature of offload

applications by demonstrating the sensitivity of performance to the

CPU performance states. In the following experiments, we

statically fix the highest-performing (i.e. frequency) CPU P-state

permitted by the power-management algorithm, which we denote

Figure 4: Impact of CPU P-state limit on performance,

GPU residency, and GPU utilization.

0.3

0.5

0.7

0.9

1.1

1.3

0%

20%

40%

60%

80%

100%

N
o

rm
al

iz
e

d
 m

e
tr

ic

%
 D

V
FS

 r
e

si
d

e
n

cy

(a) Binary Search

GPU-low GPU-med GPU-high

Speedup GPU Util

0.8

0.9

1

1.1

1.2

1.3

0%

20%

40%

60%

80%

100%

N
o

rm
al

iz
e

d
 m

e
tr

ic

%
 D

V
FS

 r
e

si
d

e
n

cy

(b) HotSpot

0.8

0.9

1.0

1.1

1.2

1.3

0%

20%

40%

60%

80%

100%

N
o

rm
al

iz
e

d
 m

e
tr

ic

%
 D

V
FS

 r
e

si
d

e
n

cy

(c) Needle

5

as the P-state limit. The local CPU power controller may change

the P-state to a lower-performing P-state based on thermals, but it

cannot exceed the P-state limit. Figure 4 presents the impact of

CPU P-state limits for Binary Search, HotSpot, and Needle.

In Figure 4, the x-axis is labeled with the CPU P-state limit for

that experiment. In addition, we show results for the baseline,

which refers to the default Trinity power-management system

(Section 2.2). Limiting to Pb0 means all P-states are available to

the power-management controller, which is the same as the

baseline case and hence not shown separately. The left-side y-axis

refers to the stacked bar charts, and it shows the percent of time the

GPU spends active in low-, medium-, and high-DVFS states. The

right-side y-axis shows speed-up and GPU utilization normalized

to the baseline results. We define GPU utilization as the ratio of

time when at least one of the SIMD units in the GPU is active

versus the total execution time. These data were collected on the

Trinity system hardware described in Section 5.

(a) Binary Search

(b) Hotspot

(c) Needle

Figure 5: P-state limit effects on GPU memory bandwidth.

For Binary Search and HotSpot, as the CPU maximum

frequency decreases (moving to the right), the application

transitions from being thermally coupled to being performance-

coupled. As the frequency decreases from Pb1 to P2, the GPU

spends a larger portion of time in its higher-frequency performance

states, indicated by GPU-high. In addition, speed-up increases,

indicating that the GPU is utilizing the extra thermal headroom to

improve performance. However, as the CPU frequency decreases

beyond P2, we see a marked reduction in overall performance

because performance coupling begins to dominate. GPU utilization

decreases beyond P2, indicating that the GPU is being starved by

the slower CPU. In the case of HotSpot, the thermal headroom

permits the GPU to continue operating at its highest-performance

state when active. However, for Binary Search, the local GPU

power controller reduces the GPU frequency because of a

significant drop in GPU utilization. For Needle, the GPU is

thermally limited by the CPU across all P-state limits. Performance

improves by 27% when the CPU operates at its lowest-

performance P-state. However, performance coupling becomes

more dominant at a CPU P-state limit of P4 because GPU

utilization starts to decrease.

As is evident from the preceding analysis, during any time

interval there is an optimal CPU operating frequency (and,

equivalently, P-state) for each application depending on its thermal

and performance coupling characteristics. We refer to this P-state

as the critical P-state and the corresponding frequency as the

critical frequency. We observe that the critical P-state is a time-

varying function of the workload and our goal is to have the CPU

always operating in the critical P-state. Our approach is to first

define a measurable performance metric that is sensitive to the

CPU and GPU frequencies. By tracking the behavior of this metric,

we can determine and set the CPU to its critical P-state

periodically.

Microsoft® Windows® OS Power Management [44] using

ACPI provides a capability for managing the CPU P-state based on

application requirements. However, in experiments with ACPI, the

lower-performing P-states were never utilized. There are a number

of shortcomings here. First, the OS uses the highest utilization

among all cores as the metric to determine the P-state of all cores,

while most of the applications analyzed have varying degrees of

core utilization. Second, it does not consider the performance

requirements of an application, while our analysis shows that

applications experience phases that require higher CPU

performance. Finally, ACPI does not include any concept of

performance coupling or thermal coupling; therefore, it cannot be

used readily to regulate to either requirement.

In this paper, we propose to use the GPU memory access rate

gradient as a proxy for CPU-GPU performance coupling [26].

When the CPU transitions to a lower-performing P-state, the GPU

frequency and the memory access rate increase due to decreasing

thermal coupling effects. However, if the CPU operation drops

below the critical frequency, the GPU is starved by the slower

CPU and the GPU memory access rate drops. This observation can

be used as a starvation hint to transition the CPU to the critical P-

state. In Figure 5, we illustrate the impact of P-state-limiting on

GPU memory bandwidth for Binary Search, HotSpot, and Needle.

Memory bandwidth tracks performance for these three

benchmarks, indicating the applicability of this metric. In addition,

to deal with phase changes in the applications that require high

CPU frequency, we also use retired instructions per clock (IPC) of

the CPU as a measure of the application's sensitivity to CPU

frequency [20].

4 COOPERATIVE BOOSTING
Based on the preceding analysis, we see that the power-

management problem is one of determining the critical P-state –

the state that mitigates the negative effects of thermal coupling

while providing sufficient power for performance-coupled

operation. This section describes our CB algorithm for the dynamic

determination of the critical P-state.

-40%

-30%

-20%

-10%

0%

10%

20%

Pb1 P0 P1 P2 P3 P4

%
 in

cr
e

as
e

 o
ve

r
b

as
e

lin
e

CPU Pstate Limit ->

Mem BW Performance

0%

2%

4%

6%

8%

10%

12%

Pb1 P0 P1 P2 P3 P4

In
cr

e
as

e
 O

ve
r

B
as

e
lin

e

CPU P-state Limit ->

Mem BW Performance

0%

5%

10%

15%

20%

25%

30%

Pb1 P0 P1 P2 P3 P4

In
cr

e
as

e
 O

ve
r

B
as

e
lin

e

CPU P-state Limit ->

Mem BW Performance

6

4.1 Structure
The CB algorithm operates as a decision layer on top of the

baseline Trinity power-management system (from now on referred

to as the baseline). The baseline was designed to optimize the

average case behavior across a wide range of applications with a

fair allocation of power to both the CPU and the GPU by utilizing

all of the available thermal headroom. The CB algorithm enhances

such thermal headroom-based management techniques by tailoring

its behavior to i) the asymmetry of the thermal behavior of the

CPU and GPU and ii) the phase behavior of applications –

specifically, thermal and performance coupling over short

intervals. Such optimization becomes increasingly important as

emergent workloads are making more balanced use of the CPU and

the GPU. The goal of CB is to determine when thermal coupling

effects are detrimental and set the critical P-state limit under such

cases. This is the highest-performing P-state the baseline system is

permitted to use for the CPU. The voltage and frequency for the

GPU is managed by the baseline and is not directly managed by

CB; thus, CB essentially controls the CPU limits under which the

baseline power-management system operates. Figure 6 illustrates

the CB algorithm flow.

CB monitors temperature and performance metrics at intervals

of 10 ms and modifies the CPU P-state limit at intervals of 10 or

500 ms to account for frequent workload phase changes and

relatively slow thermal response times, respectively. Periodic

enforcement of P-state limits at short intervals can cause

dampening of natural workload behavior, whereas long intervals

can cause inaccuracy in measurements. Therefore, we decouple the

monitoring and the control intervals in CB. These intervals are

chosen carefully to account for the long thermal rise times, shorter

performance intervals and workload activities, and overheads of P-

state change. In practice, the intervals can be adjusted based on RC

time constants of the die, floor plan, and process technology. The

critical P-state limit can be computed at any granularity (per core,

per CU, or for the entire CPU). In this paper we apply the same

critical P-state limit to all CPU cores due to a shared voltage plane.

4.2 Algorithm
The CB algorithm operates in three major steps: i) being invoked,

ii) determining and setting the critical P-state limit, and iii)

damping control to prevent oscillations. In the beginning, the

processor starts with the highest-performance-boost P-states for the

CPU CUs and the GPU, and power and temperature are managed

by the baseline. At intervals of 10 ms, we determine if the

processor is thermally limited and if CB should be applied. If so,

power management moves into CB mode.

The second step is determining which CPU P-state limit to

apply. This involves both instrumentation and decision-making.

CB samples peak die temperature, per-core retired IPC, and

memory bandwidth usage at every 10-ms monitoring interval. Note

that although the algorithm in Figure 6 and the discussion in

Section 3.3 refer to the GPU memory bandwidth, the

implementation of CB uses a combined CPU and GPU bandwidth

due to hardware restrictions that prevent GPU-only bandwidth

measurements while CB is enabled. We found that this did not

hinder the performance of the algorithm due to the overwhelming

dominance of the GPU in memory bandwidth usage.

Each core's IPC is weighted by the number of active clock

cycles seen by the core during the sampling period, and the

aggregate IPC for the CPU is the sum of the weighted IPCs for all

four cores. For memory bandwidth, in addition to monitoring

memory bandwidth at each 10-ms interval, CB also keeps a short-

term and a long-term moving average of memory bandwidth to

track how the bandwidth changes over time. Because P-state

limiting to reduce thermal coupling effects is made at intervals of

500 ms, the short-term average is computed over the last 500-ms

interval while the long-term moving average is computed over the

last five such intervals. Bandwidth gradients are computed by

comparing the short-term moving average with the long-term

moving average.

The CPU P-state limit may be established by observing changes

in the CPU IPC or GPU memory bandwidth (these metrics were

advocated as proxies to detect performance-coupled operation in

Section 3.3). CB utilizes the gradient of memory bandwidth to

determine the critical P-state for the CPU. If the gradients are

positive, then the workload benefits from shifting power to the

GPU. In this case, the algorithm moves the CPU P-state limit to a

lower performance state. The converse occurs when the gradient is

negative. Over time, the controller is trying to move the CPU to the

critical P-state.

If the workload enters a CPU compute-intensive phase, as

indicated by a high-CPU IPC phase, the current P-state limit is

saved and the control part of CB is suspended by disabling P-state

limiting. The check for CPU IPC changes occurs at 10-ms intervals

to capture frequent phase changes and data dependencies. When

the CPU workload exits the compute-intensive phase, CB

operation is resumed at the saved P-state limit. This dampens

multiple transitions through performance states arising from a short

Figure 6: Cooperative boosting algorithm.

Cooperative Boosting Algorithm
At beginning

If (Peak_Temp > Temp_Threshold) {

 EnableCB();

 Prev_PStateLimit=P0;

}

Every 10 ms

for i=0, i<Core_Count; i++ {

 IPC[i] = ReadIPC(i);

 Active_Clks[i] = ReadActiveCoreClock(i);

}

Weighted_IPC = ComputeWeightedIPC(IPC,Active_Clks)

IPC_Gradient = Weighted_IPC – Prev_Weighted_IPC

Prev_Weighted_IPC = Weighted_IPC;

Peak_Temp = ReadPeakTemp();

GPU_Mem_BW = ReadGPUMemBW();Short_Term_BW =

ComputeShortTermBW();

Long_Term_BW = ComputeLongTermBW();

If (CB_Enabled && (IPC_Gradient > =IPC_Threshold)) {

 Prev_PstateLimit = CPU_PStateLimit;

 UnsetPStateLimit();

}

Every 500 ms

If (CB_Enabled && (IPC_Gradient < IPC_Threshold)) {

 CPU_PStateLimit = Prev_PStateLimit;

 BW_Gradient = Short_Term_BW – Long_Term_BW;

 If (BW_Gradient >= BW_Threshold) {

 Last_Good_PState = CPU_PStateLimit;

 CPU_PStateLimit++; /* Until P4 is reached */

 }

 Else {

 CPU_PStateLimit = Last_Good_PState;

 }

}

7

burst of high-power CPU phases that would otherwise re-initialize

the CPU performance state to the highest performance state.

Finally, to prevent oscillation between a pair of P-state limits, we

employ a damping mechanism such that a new P-state limit is

weighted towards the previous P-state limit after more than a

certain number of transitions.

To encompass non-performance-coupled applications that may

have a constant CPU IPC (such as SPEC CPU2006 applications),

we use an absolute average IPC in conjunction with IPC phase

changes for CPU-centric workloads with no activity on the GPU.

Although CPU-centric workloads are not the focus of this paper,

we show that our CB algorithm can sometimes improve the

performance of these applications by limiting the performance

state when the application is memory-bound.

5 EXPERIMENTAL SET-UP
We perform all measurements and analysis on an AMD A8-4555M

Trinity APU with 19W TDP. Base CPU frequency is 1.6 GHz,

with AMD Turbo CORE frequency up to 2.4 GHz. The GPU

frequency is 320 MHz with AMD Turbo CORE frequency of 423

MHz [47]. We use four, 2-GB DDR3-1600 DIMMs. Hardware

performance counters for IPC, memory bandwidth, etc., are

monitored using performance libraries running in Windows OS. A

maximum cap on the CPU P-state limit is implemented using

model-specific registers as described in [8].

We evaluate three different boost algorithms. The baseline is the

BAPM algorithm, which is the state-of-the-practice algorithm in

the Trinity power-management system described in Section 2.2.

The second is the CB algorithm described in Section 4.2. Third, we

evaluate the behavior of a static P-state-limit algorithm in which a

fixed P-state limit is applied throughout the entire run of the

application. This means that the CPU can enter a lower-performing

(but not higher) P-state than the P-state limit. We refer to this as

the static PX limit scheme, where PX is one of the performance

states (e.g., P1, P3, etc.). For CB, P-state limits are applied

according to the algorithm described in Section 4.2. Although CB

can be implemented in any layer such as hardware, power-

management firmware, or system software, we implement CB at

the system software level by layering it on top of the baseline.

For CPU and GPU power and temperature, we use the digital

estimates provided by the power-management firmware running in

the Trinity system, accuracies for which are described in [33]. For

all schemes, we run the benchmarks for at least a few minutes to

reach a thermally stable steady state. A fixed-time cool-down

period is applied before each run to eliminate any variations in

start temperature. We also run many iterations of the application

and take an average across those to eliminate run-to-run variance

in our hardware measurements.

We use 18 applications, summarized in Table 2. These are a mix

of both state-of-the-art and emergent applications. Eight of them

are from Rodinia (NDL, LUD, HS, SRAD, CFD, BFS, KM, and

BP [10][11]), three are from the AMD APP SDK (BF, MM, and

BS [2]), two are stand-alone (FAH [17] and Viewdle [42]), and

five are from SPEC CPU2006 (Mcf, Lbm, Perl, Pvr, and Gcc [40]).

We selected the applications to represent i) GPU-centric (where

GPU is used as a compute accelerator with CPU feeding the data to

the GPU), ii) CPU-GPU mixed workloads (where computation is

more balanced between CPU and GPU although the fraction of

work division may not be the same), and iii) CPU-centric

workloads (where computation is done only on the CPU and the

GPU is unused). All GPU applications execute one or more

parallel kernels for multiple iterations to reach steady-state

thermals. The SPEC CPU applications are run with four threads,

one on each core.

We report performance, power, and energy efficiency as defined

by the energy-delay2 product (ED2) [21]. We show all values

normalized to the baseline scheme, which is the default Trinity

power-management system. Average total power (CPU and GPU)

and average energy efficiency are also measured over the entire

run-time of an application.

Table 2: Summary of benchmarks.

BM (Description) Problem Size Type

NDL (Needleman-

Wusch [10])

4096x4096 data points,

1K iterations

GPU

LUD (LU decomposition

[11])

512x512, data points,

500 iterations

GPU

HS (HotSpot [10]) 1024x1024 data points,

100K iterations

GPU

SRAD (Image Proc [10]) 502x458,500K iteration GPU

BF (BoxFilter SAT [2]) 1Kx1K input image,

6x6 filter,10K iterations

GPU

MM (Matrix Mult [2]) 2Kx2K, 10K iterations GPU

FAH (Folding at Home

[17])

Synthesis of large

protein: spectrin$

GPU

CFD (Computational

fluid dynamics [10]

200K elements, 20K

iterations

GPU

BFS (Breadth first search

[10])

1M nodes, 1K iterations GPU

BS (Binary Search [2]) 4096 inputs, 256

segments, 1M iterations

GPU

KM (Kmeans [10]) 819200 points, 34

features, 1K iterations

Mixed

BP (BackProp [10]) 252,144 input nodes,

10K iterations

Mixed

Viewdle (Haar facial

recognition [42])

Image 1920x1080, 2K

iterations

Mixed

Mcf (CPU2006 [40]) 4 threads, Ref input CPU

Lbm (CPU2006 [40]) 4 threads, Ref input CPU

Perl (CPU2006 [40]) 4 threads, Ref input CPU

Pvr (CPU2006 [40]) 4 threads, Ref input CPU

Gcc (CPU2006 [40]) 4 threads, Ref input CPU

6 RESULTS
In this section, we present performance, power, and ED2 results for

CB and the static P-state limit algorithm. All results are shown

relative to the baseline BAPM algorithm described in Section 2.2,

and all performance and power numbers are measured results from

running the applications in Table 2 on real hardware.

6.1 Performance
Figure 7 illustrates the speed-up of CB and static schemes. Across

the 18 applications, we see a 10% speed-up with CB, a 3% speed-

up with P0 (the highest-performance software-visible P-state), a

1% speed-up with P2, and a 10% performance loss with P4. For

the performance-coupled workloads (i.e., GPU-centric and CPU-

GPU mixed workloads), the average speed-up with CB is 15%.

The static schemes clearly demonstrate good performance gains

compared to the baseline for certain types of workloads but impose

a high performance penalty for others, motivating the need for

dynamic schemes.

GPU-centric applications such as NDL, LUD, MM, and SRAD

improve in performance compared to the baseline with both CB

and static. In general, these applications have low CPU IPC and

are not very sensitive to CPU performance in the frequency ranges

8

Figure 7: Performance results with static limits and CB.

1.28 1.30

1.10

1.52

1.13
1.08 1.10

1.03 1.00 1.04 1.00 1.00

1.36

0.98 1.00 0.99 1.00 1.04
1.10

0.40

0.60

0.80

1.00

1.20

1.40

1.60
Sp

e
e

d
-u

p

P0 P2 P4 CB Baseline

explored. Both CB and static P4 limiting show comparable gains,

with performance improvement as high as 52% in SRAD. Thermal

coupling dominates these applications at all CPU frequencies

because they have high activity in the GPU and, hence, high power

requirements. The critical P-state for the CPU is at a lower

frequency than the lowest P-state P4 available in our part. These

workloads reach the peak temperature quickly, and high-

performance CPU P-states result in excessive thermal throttling

without a commensurate application performance improvement.

Similar thermal coupling effects occur in applications such as

HS, BS, and FAH. However, here we reach the critical CPU P-

state before the lowest P-state limit of P4. At P2, thermal and

performance coupling effects are balanced and we see the

maximum performance gains. Decreasing CPU frequency beyond

P2 causes performance coupling to dominate over thermal

coupling and degrades performance by 3%, 34%, and 1%,

respectively, for HS, BS, and FAH at P4. CB achieves comparable

results to the critical P-state of P2.

Applications such as KM, BFS, BP, and CFD see minimal to no

benefits compared to the baseline with static or CB schemes. KM,

BFS, and BP never reach the peak junction temperature, and so CB

never invokes P-state limiting. Although KM has high-IPC phases,

it is primarily memory-bound and its performance stays relatively

flat with CPU frequencies. BP has serial phases between parallel

kernels requiring significant CPU-GPU communication. BFS has a

high control flow divergence with low GPU activity. In both BFS

and BP, CB results in the same performance as the baseline,

whereas static P4 limit shows performance degradation up to 3%

due to performance coupling. Although CFD is heavily memory-

bound, it reaches the peak temperature due to high activity and a

relatively high compute-to-memory ratio in the GPU; as a result, it

shows a slight improvement of 3-5% compared to the baseline

scheme using static limiting and CB. Performance gains from

reducing thermal coupling effects flatten out beyond P2 as the

memory-related stall time of the kernel starts to dominate.

In balanced workloads such as Viewdle, a face-recognition

application, both the CPU and the GPU are utilized heavily for

computation. Thermal coupling is dominant at the higher CPU

frequencies, and so static P-state limiting to both P2 and P4

improves performance compared to the baseline. CB, however,

outperforms all static P-state-limiting schemes by dynamically

adjusting to the critical P-state based on application needs.

Viewdle's IPC varies periodically from low to high, and it is

sensitive to CPU frequency during high-IPC phases. CB

dynamically shifts power to the CPU during high-IPC phases and

to the GPU during low-IPC phases, thereby limiting the impact of

thermal coupling while providing the required power for

performance coupling. Section 6.3 provides further insights in

Viewdle's performance. We see similar behavior with BF, which is

an image-filtering application with frequent CPU communication

phases between the horizontal and vertical passes in the image blur

filter. CB performs 13% better than the baseline and 9%-12%

better than any of the static schemes in the case of BF.

Finally, we analyze the performance of CPU-centric, non-

performance-coupled applications such as Perl and Pvr. As we see

in Figure 7 the baseline does very well for these workloads and

static limiting significantly degrades performance. CB largely

performs as well as the baseline, indicating that CB is a well-

rounded approach to multiple usage scenarios. Although analyzing

multiple non-performance-coupled applications (e.g., a CPU-

centric app and a GPU-centric app) running together was not the

focus of our paper, we believe CB will perform as well as or better

than the baseline because CB tries to limit CPU power only when

it is not needed.

6.2 Thermal and Performance Coupling Analysis
In Figure 8 we illustrate how CB mitigates the effects of thermal

coupling in the case of BS. The y-axis indicates the measured peak

temperature normalized to Tjmax. With a static limit of P4, the

application heats the chip to a value less than the peak. CB, on the

other hand, does not initially restrict the baseline algorithm;

instead, it tries to find the critical P-state for CPU once we

approach the peak temperature threshold. As power is shifted from

the CPU to the GPU, peak die temperature decreases because the

GPU is able to sustain a higher power boost for a longer period due

Figure 8: Thermal behavior of Binary Search with CB.

0.6

0.7

0.8

0.9

1

1.1

1

1
0

1

2
0

1

3
0

1

4
0

1

5
0

1

6
0

1

7
0

1

8
0

1

9
0

1

Te
m

p
e

ra
tu

re

Time (seconds) ->

Baseline CB P4

9

Figure 10: Thermal throttling in Needle with CB.

0.8

0.85

0.9

0.95

1

0%

20%

40%

60%

80%

100%

1 51 101 151 201 251 N
o

rm
al

iz
e

d
 t

e
m

p
e

ra
tu

re

%
 D

V
FS

 r
e

si
d

e
n

cy

Time (seconds) ->
(a) Baseline

GPU-low res % GPU-med res %

GPU-high res % Peak Die Temp

0.8

0.85

0.9

0.95

1

0%

20%

40%

60%

80%

100%

1 51 101 151 201 251

N
o

rm
al

iz
e

d
 t

e
m

p
e

ra
tu

re

%
 D

V
FS

 r
e

si
d

e
n

cy

Time (seconds) ->
(b) CB

to its lower thermal density, as described in Section 3.2. Further,

the effects of thermal coupling become less dominant because the

CPU is running at a lower P-state. As a result, the GPU residency

in the high-performance state increases significantly compared to

the baseline, thereby improving application performance.

Moreover, the short variations in temperature result from the fact

that CB constantly adjusts the critical P-state based on workload

phases. This helps balance performance and thermal coupling

effects.

Figure 9: Viewdle performance analysis with CB.

Figure 9 provides further insights into the performance of

Viewdle in terms of instructions per second (IPS), memory

bandwidth, and speed-up. As we apply CPU P-state limiting with

lower-performing P-states, CPU IPS understandably drops.

However, the GPU IPS continues to increase, and so does memory

bandwidth due to the GPU's ability to sustain higher frequencies

because of the reduction in thermal coupling. For P-state limiting

beyond P3, both GPU throughput and memory bandwidth drop due

to performance coupling effects. However, with CB, the CPU P-

state limit is managed dynamically to balance performance and

thermal coupling effects: GPU throughput and speed-up increase

by 42% and 36%, respectively, compared to the baseline.
In Figure 10, we illustrate how CB mitigates the effects of

thermal coupling when running Needle. The left-side y-axis shows

GPU residencies in the different performance states. The right-side

y-axis shows the measured peak temperature normalized to Tjmax.

In the baseline case (Figure 10(a)), we see a considerable amount

of residencies in the medium and low GPU frequencies once

temperature reaches the steady state to maintain performance

within the maximum thermal limits. GPU frequency throttling

occurs because of thermal coupling and heat transfer effects from

the CPU to the GPU as both CPU and GPU are run at their

maximum frequencies during the initial ramp-up stage due to

availability of thermal headroom. However, as shown in Figure

10(b), CB tries to find the critical P-state for the CPU once we

approach the peak temperature threshold. Once invoked, CB starts

shifting power to the GPU. Because Needle is a high-power

workload, we see a slight temperature-based throttling initially,

after which the temperature decreases and power shifts from CPU

to GPU. This allows boosting of the GPU to higher frequencies for

a much longer period, thereby improving application performance.

Because CB is designed to mitigate detrimental effects of

thermal coupling in thermally limited situations, it effectively

lowers the peak operating temperature of the processor

opportunistically compared to the baseline (2% lower on average

across all applications). Although temperature is not a direct

optimization goal for CB, lower peak temperatures have many

additional benefits: i) increased TDP power budget to achieve

more performance within a fixed thermal envelope; ii) lower

cooling costs within a fixed power budget; iii) lower leakage

power and, hence, lower overall energy; and/or, iv) improved

reliability through increased mean-time-to-failure rates.

6.3 Power and Energy
The power saving achieved with CB over the baseline is illustrated

in Figure 11, which shows an average power savings of 8% across

all applications and an average of 10% across performance-

coupled GPU-centric and mixed workloads. Highest power

reduction is seen in BS, where we see a 5% reduction in average

peak temperature and, hence, leakage power during run-time. BFS,

BP, and KM never reach their peak temperatures, so power savings

are minimal because CB does not limit P-states under such cases

and allows both CPU and GPU to take full advantage of boosting.

We also achieve a small amount of power savings in the SPEC

CPU2006 workloads, up to 11% with Mcf because CB

continuously tracks high-IPC compute-bound phases. When the

workload encounters memory-bound phases, a P-state limit is

applied to lower the frequency; this limit has little to no

performance impact but it saves power [20].

Figure 12 shows the ED2 product (lower numbers signify

improvement over the baseline). With CB, we see an average

energy-efficiency improvement of 25% (up to 76%) across all

applications, and 33% across performance-coupled GPU-centric

and mixed CPU-GPU workloads. Interestingly, a static limit of P4

(the lowest-performing P-state) performs 30% worse than the

baseline, but we see an improvement of about 10% with static

limits of P0 and P2 due to reduction in thermal coupling and a

large reduction in power at those states. However, as shown in

Figure 7, a fixed static P-state of P0 and P2 results in significant

performance outliers for CPU-centric workloads; hence, it is not a

0.60

0.80

1.00

1.20

1.40

1.60

Baseline P0 P1 P2 P3 P4 CB

N
o

rm
al

iz
e

d
 m

e
tr

ic

CPU IPS (Throughput) GPU IPS (Throughput)

Mem BW App Speedup

10

Figure 12: Energy-delay2 product normalized to baseline.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

N
o

rm
al

iz
e

d
 m

e
tr

ic

P0 P2 P4 CB Baseline

viable solution. CB, however, can achieve similar or better results

for performance and energy efficiency than any static scheme

without requiring any offline profiling or user intervention.

Figure 11: Reduction in power for CB relative to baseline.

6.4 Summary

In this section, we summarize our results and insights. First we

show that workloads with high GPU activity are more sensitive to

thermal coupling with the CPU. The baseline can degrade

performance while both CB as well as static P-state limiting shift a

greater portion of the power to the GPU, reduce thermal coupling,

and improve performance. For applications with tight performance

coupling with the CPU, CB finds the critical P-state and thus

performs better.

For applications with very low GPU utilization such as high

control flow divergence, thermal coupling may not be a factor

since these workloads tend to run much cooler. While the baseline

does not hurt performance, static schemes can degrade

performance significantly by amplifying the low GPU utilizations

when the CPU P-state is fixed below the critical P-state. However,

CB dynamically detects when an application is not thermally

limited and stops limiting CPU’s P-state under such cases. This

allows CB’s performance to track baseline for such workloads.

Balanced workloads that actively utilize both the CPU and GPU

are particularly susceptible to thermal coupling effects. CB

outperforms the baseline and static schemes by continuously

tracking the time-varying critical P-state during execution. CB uses

only the power it needs, and thus reducing thermal coupling

without impacting performance coupled operation. This is one of

the fastest growing classes of future workloads [30][43].

For non-performance coupled CPU-centric workloads, greedy

boosting approaches work well while static schemes

understandably perform poorly since performance scales with

frequency. CB performs largely as well as the baseline since the

critical P-state tends to be the highest performance state. However,

CB delivers slightly better performance for memory bound

workloads by detecting memory bound phases and adjusting the

critical P- state, which builds up thermal credits for compute

phases that need higher performance state.

In summary, CB is a well-rounded technique that can be used to

dynamically manage power, performance and thermals across a

wide range of applications. Although for a given application one

can profile the critical P-state limit statically offline, such an

approach is impractical and often detrimental if the goal is to

support a variety of applications including emergent and as yet

unanticipated ones. CB improves over current headroom based

greedy boost algorithms by balancing the needs and dependencies

of CPU and GPU performance with the effects of thermal

coupling.

7 RELATED WORK
CB differs from the large body of work on dynamic thermal

management. The latter dealt primarily with homogenous multi-

core processors, did not consider coupled interactions among

cores, and evolved originally to prevent harmful thermal capacity

violations to peak temperature. Consequently, architectural efforts

focused first on preventing unwanted thermal excursions and

quickly evolved to balancing the system-level performance impact

of such management techniques [9][31]. The range of techniques

included i) activity migration, ii) power reduction by various forms

of throttling [18][45], iii) feedback control [37][38][39][46], or iv)

a combination of techniques to balance performance loss against

thermal management. These techniques were concerned primarily

with managing peak temperatures.

That philosophy continued with the advent of multi-core

architectures [16] through run-time techniques such as heat and run

[34] or a combination of design- and run-time techniques [31],

while more recent work considers the impact of reliability [13] and

relationships to process variation [25]. The management issues

naturally evolved to 3D architectures, which exacerbate the

thermal management problem [14][41]. Architectural techniques

are complemented by efforts in the system software community

primarily through managing power dissipation using various

scheduling techniques [4][12][23]. The preceding are just a few

examples of the extensive knowledge base developed in the past

decade or so, and [15][24] provide a thorough overview of the

techniques.

Our work addresses the impending challenge not addressed in

these prior works: the consequences of thermally coupled behavior

of heterogeneous cores that share the same die, and whose

0%

5%

10%

15%

20%

25%

30%

35%

40%
N

D
L

LU
D H
S

SR
A

D B
F

M
M

FA
H

C
FD B
FS B

S

K
M B
P

V
ie

w
d

le

M
cf

Lb
m

P
e

rl

P
vr

G
cc

M
EA

N

11

performance is also coupled through applications that use both the

CPU and the GPU. Some recent work includes efforts to couple

thermal management, cooling management, and power

management [6][7][35]. However, these efforts do not directly

address architecturally coupled operation. Recent studies [3][5]

have identified throughput-computing performance-coupled

applications as an emergent class of future applications. Wang et

al. [43] proposed power-efficient ways of workload partitioning

this class of applications between CPU and GPU in heterogeneous

systems. There has also been a number of works on dynamic

power management of such applications [19][26][27][29][30].

However, these do not address effects of thermal coupling

balanced with performance coupling.

The most relevant work is that of the Intel Sandy Bridge

processor that introduces whole-chip thermal-based power

management, recognizing the shared power and thermal headroom

between the CPU and GPU [36]. A measurement-based budgeting

process allocates this headroom between the CPU and the GPU.

When cores are executing below the headroom, they acquire

"energy credits" that are used to determine the new (boosted)

power state for short durations. They recognize the dependency of

performance between CPU and GPU and expose a software

interface that can be used by the operating system or driver to

specify how to partition the energy headroom between CPU and

GPU. Our work differs from [36] by characterizing thermal

coupling, noting and quantifying its negative interactions with

unregulated boosting algorithms and proposing a solution that can

be implemented to balance thermal and performance coupling

effects dynamically.

Finally, unlike much past work in this area, we implement our

algorithms on hardware and show measureable performance and

power benefits when compared to a state-of-the-practice power-

management algorithm.

8 CONCLUSIONS
This paper addressed the complex relationship among power,

thermals, and performance in a heterogeneous system running

diverse applications. We described and explored thermal entities

with varying thermal signatures and demonstrated the relationship

between thermal coupling and performance coupling through

detailed empirical analysis. Based on our analysis, we proposed a

cooperative boosting solution that balances the effects of thermal

coupling with the requirements of performance coupling to

determine the critical frequency of operation. We compared the CB

algorithm with a state-of-the-practice boost algorithm and static

power-limiting methods for a varied set of homogeneous and

heterogeneous benchmarks. We showed on hardware that CB

achieves an average 10% speed-up and an average 8% power

reduction compared to the other algorithms, resulting in a 25%

improvement in the ED2 product.

We presented an initial assessment of performance-coupled

applications and how to manage them dynamically. In the future,

we plan to expand this work to manage the GPU directly in

addition to the CPU, explore additional measures to detect

performance coupling, and examine more complex usage

scenarios.

9 ACKNOWLEDGMENTS
The authors gratefully acknowledge the constructive comments of

the reviewers, which have improved the quality of the final

manuscript.

10 REFERENCES
[1] Advanced Configuration and Power Interface (ACPI),

Specification, http://www.acpi.info/spec.htm.

[2] AMD APP SDK,

http://developer.amd.com/tools/heterogeneous-

computing/amd-accelerated-parallel-processing-app-sdk/.

[3] M. Arora, S. Nath, S. Mazumdar, S. Baden, and D. Tullsen,

"Redefining the Role of the CPU in the Era of CPU-GPU

Integration," IEEE Micro2012.

[4] A. Arani et al., "Online thermal-aware scheduling for multiple

clock domain CMPs," ISOCC 2007.

[5] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P.

Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker, J.

Shalf, S. W. Williams, and K. A. Yelick, "The landscape of

parallel computing research: A view from Berkeley,"

Technical Report UCB/EECS-183, 2006.

[6] R. Ayoub, R. Nath, and T. Rosing, "JETC: Joint Energy

Thermal and Cooling Management for Memory and CPU

Subsystems in Servers," HPCA 2012.

[7] Peter Bailis, V. J. Reddi, S. Gandhi, D. Brooks, and M.

Seltzer, "Dimetrodon: Processor-level Preventive Thermal

Management via Idle Cycle Injection," DAC 2011.

[8] BKDG:http://support.amd.com/us/Processor_TechDocs/4230

0_15h_Mod_10h-1Fh_BKDG.pdf.

[9] D. Brooks and M. Martonosi, "Dynamic thermal management

for high-performance microprocessors," HPCA 2001.

[10] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, Lee S-

H, and K. Skadron, "Rodinia: A benchmark suite for

heterogeneous computing," IISWC 2009.

[11] S. Che, J. W. Sheaffer, M. Boyer, L. Szafaryn, and K.

Skadron, "A characterization of the Rodinia benchmark suite

with comparison to contemporary CMP workloads," IISWC

2010.

[12] J. Choi, C. Cher, H. Franke, H. Haman, A. Weger, and P.

Bose, "Thermal-aware task scheduling at the system software

level," ISLPED 2007.

[13] A. K. Coskun, T. S. Rosing, and K. C. Gross, "Temperature

management in multiprocessor SoCs using online learning,"

DAC 2008.

[14] A. K. Coskun, T. S. Rosing, D. A. Alonso, J. Leblebici, and J.

Ayala, "Dynamic thermal management in 3D multicore

architectures," DATE 2009.

[15] J. Cong, S. W. Chung, and K. Skadron, "Recent Thermal

Management Techniques for Microprocessors," ACM

Computing Surveys 2012.

[16] J. Donald and M. Martonosi, "Techniques for multicore

thermal management: classification and new exploration,"

ISCA 2006.

[17] Folding At Home,

http://folding.stanford.edu/English/Download

[18] V. Hanumaiah and S. Vrudhula, "Temperature- Aware DVFS

for Hard Real-Time Applications on Multicore Processors,"

IEEE Transactions on Computers 2012.

[19] S. Hong and H. Kim, "An integrated GPU power and

performance model," ISCA 2010.

[20] C. Hsu and W. Feng, "Effective dynamic voltage scaling

through CPU-boundedness detection," Lecture Notes in

Computer Science 2004.

[21] Z. Hu, D. Brooks, V. Zyuban, and P. Bose,

"Microarchitecture-level power-performance simulators:

modeling, validation and impact on design," MICRO 2003.

[22] W. Huang, M. Stan, K. Sankaranarayanan, R. Ribando, and

K. Skadron, "Many-core design from a thermal perspective,"

DAC 2008.

http://support.amd.com/us/Processor_TechDocs/42300_15h_Mod_10h-1Fh_BKDG.pdf
http://support.amd.com/us/Processor_TechDocs/42300_15h_Mod_10h-1Fh_BKDG.pdf

12

[23] W-L. Hung, Y. Xie, N. Vijaykrishnan, M. Kandemir, and M.

J. Irwin, "Thermal-Aware Allocation and Scheduling for

Systems-on-a-Chip Design," DATE 2005.

[24] S. Kaxiras and M. Martonosi, "Computer Architecture

Techniques for Power Efficiency," Synthesis Lectures on

Computer Architecture.

[25] E. Kursun and C. Y. Cher, "Temperature Variation

Characterization and Thermal Management in Multicore

Architectures," IEEE Micro 2009.

[26] J. Lee and H. Kim, "TAP: A TLP-aware cache management

policy for a CPU-GPU heterogeneous architecture," HPCA

2012.

[27] J. Lee, V. Sathish, M. Schulte, K. Compton, and N. Kim,

"Improving throughput of power-constrained GPUs using

dynamic voltage/frequency and core scaling," PACT 2011.

[28] O. Lempel, "2nd Generation Intel Core Processor Family: Intel

Core i7, i5, and i3," HotChips 2011.

[29] J. Li and J. Martinez, "Dynamic power-performance

adaptation of parallel computation on chip multiprocessors,"

HPCA 2006.

[30] C. Luk, S. Hong, and H. Kim, "Qilin: Exploiting parallelism

on heterogeneous multiprocessors with adaptive mapping,"

MICRO 2009.

[31] R. Mukherjee and S. O. Memik, "Physical aware frequency

selection for dynamic thermal management in multi-core

systems," ICCAD 2006.

[32] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. P. Boyd, L.

Benini, and D. Micheli, "Temperature control of high-

performance multi-core platforms using convex

optimization," DATE 2008.

[33] S. Nussabaum, "AMD Trinity APU," HotChips 2012.

[34] M. D. Powell. M. Gomaa, and T. N. Vijaykumar, "Heat-and-

run: leveraging SMT and CMP to manage power density

through the operating system," ASPLOS 2004.

[35] A. Raghavan, Y. Luo, A. Chandawalla, M. Papaefthymiou, K.

P. Pipe, T. F. Wenisch, and M. M. K. Martin, "Computational

Sprinting," HPCA 2012.

[36] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and E.

Weisman, "Power Management Architectures of the Intel

Microarchitecture Code-Named Sandy Bridge," IEEE Micro

2012.

[37] K. Skadron, T. Abdelzaher, and M. R. Stan, "Control-

theoretic techniques and thermal-RC modeling for accurate

and localized dynamic thermal management," HPCA 2002.

[38] K. Skadron, M. R. Stan, W. Huang, S. Veluswamy, K.

Sankaranrayan, and D. Tarjan, "Temperature-aware

microarchitecture," ISCA 2003.

[39] K. Skadron, "Hybrid architectural dynamic thermal

management," DATE 2004.

[40] The Standard Performance Evaluation Corporation (SPEC).

Web resource, http://www.spec.org.

[41] C. Sun, L. Shang, and R. P. Dick, "Three-dimensional

multiprocessor system-on-chip thermal optimization,"

Proceedings of International Conference on

Hardware/Software Codesign and System Synthesis

(CODES+ISSS) 2007.

[42] Viewdle, http://viewdle.com/products/desktop/index.html

[43] H. Wang, V. Sathish, R. Singh, M. Schulte, and N. Kim,

"Workload and power budget partitioning for single chip

heterogeneous processors," PACT 2012.

[44] Windows Power Management Overview,

http://www.microsoft.com/en-

us/download/details.aspx?id=23878.

[45] J. A. Winter and D. Albonesi, "Addressing thermal non-

uniformity in SMT workloads," ACM TACO 2008.

[46] F. Zanini, D. Atienza, and G. D. Micheli, "A control theory

approach for thermal balancing of MPSoC," ASP-DAC 2009.

[47] http://www.amd.com/us/products/notebook/apu/ultrathin/page

s/ultrathin.aspx#3, AMD A8 4555M.

http://viewdle.com/products/desktop/index.html

