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ABSTRACT 
This paper examines the interaction between thermal 

management techniques and power boosting in a state-of-the-art 

heterogeneous processor consisting of a set of CPU and GPU 

cores. We show that for classes of applications that utilize both the 

CPU and the GPU, modern boost algorithms that greedily seek to 

convert thermal headroom into performance can interact with 

thermal coupling effects between the CPU and the GPU to degrade 

performance. We first examine the causes of this behavior and 

explain the interaction between thermal coupling, performance 

coupling, and workload behavior. Then we propose a dynamic 

power-management approach called cooperative boosting (CB) to 

allocate power dynamically between CPU and GPU in a manner 

that balances thermal coupling against the needs of performance 

coupling to optimize performance under a given thermal 

constraint. Through real hardware-based measurements, we 

evaluate CB against a state-of-the-practice boost algorithm and 

show that overall application performance and power savings 

increase by 10% and 8% (up to 52% and 34%), respectively, 

resulting in average energy efficiency improvement of 25% (up to 

76%) over a wide range of benchmarks. 
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1 INTRODUCTION 
Modern, high-performance client processors are composed of 

heterogeneous cores that are managed to create a compelling user 

experience. Power management is a critical piece of the user 

experience, with the goal to allocate power adaptively across cores 

to produce the best performance outcome within a fixed processor 

power and thermal envelope. 

The maximum power for a processor (i.e., the thermal design point 

(TDP)) is set based on running a heavy workload under worst-case 

conditions [36]. It is an upper bound for the sustainable power 

draw of the core and is used to determine the cooling system 

required. Under normal operating conditions, however, not all 

components are active at the same time or to the same extent, 

leaving thermal headroom in the system. Power-management 

technology such as Intel's Turbo Boost [36] and AMD's Turbo 

CORE [33] take advantage of the thermal headroom to increase the 

active cores' frequencies until either the maximum performance 

state or the thermal limit is reached. 

A common state-of-the-practice is to boost the frequencies of 

CPU or GPU cores greedily to utilize all of the available thermal 

headroom for improving performance. These boost algorithms seek 

fairness through allocation of power across cores in proportion to 

expected performance benefits. This works well for many 

applications in which the type of computation dictates the 

component that requires boosting. For graphics applications, the 

GPU is the obvious choice, as is the CPU for many control-

divergent, general-purpose applications. However, for applications 

those require cooperative execution of both CPU and GPU cores, 

these boost algorithms can break down and degrade – rather than 

improve performance. This occurs for two reasons: performance 

coupling and thermal coupling. 

Performance coupling refers to control and data dependencies 

between computations executing on CPU and GPU cores. For 

example, for peak GPU utilization, the CPU must provide data to 

the GPU at a certain rate to sustain GPU performance. 

Performance coupling between CPU and GPU cores is accentuated 

by the tighter physical coupling due to on-die integration and 

emergence of applications that attempt a more balanced use of the 

CPU and the GPU [43]. Thermal coupling refers to the heat 

exchange that occurs when the CPU and GPU cores share the same 

die. For example, heat from the CPU cores can accelerate the 

temperature rise of the GPU. This can cause premature throttling 

of the GPU cores and loss of performance, whereas the absence of 

thermal coupling may have permitted the GPU to execute at a 

higher frequency and, hence, performance. Power-management 

techniques, such as boost algorithms, must balance the needs of 

performance coupling between CPU and GPU cores against the 

negative impact of thermal coupling to deploy power effectively 

across the CPUs and the GPU. 

In this paper, we examine the nuances of thermal coupling and 

performance coupling and how to balance the two to maximize 

performance. The apparent solution of throttling the CPU cores to 

mitigate thermal coupling effects can become counterproductive if 

the CPU units become too slow to utilize the GPU fully. Further, 

emerging applications are more likely to utilize both the CPU and 

the GPU as first-class computational engines, increasing the 

importance of power-management solutions that balance 

performance and thermal coupling effects. 

This paper makes the following contributions: 

 

 Demonstrates the impact of thermal and performance 

coupling on system performance using hardware 

measurements and analysis from a state-of-the-art 

heterogeneous client system; 
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 Proposes a cooperative boosting (CB) algorithm for the 

coordinated management of power states on the CPU and 

GPU to optimize performance; and, 

 Provides a detailed, measurement-based analysis of the 

performance of CB in comparison to a state-of-the-practice 

boost algorithm for exploiting thermal headroom across a 

range of benchmark applications. 

 

In the rest of the paper, Section 2 discusses existing power-

management architectures. Section 3 explains the thermal and 

performance coupling phenomena and their interactions motivating 

the dynamic CB algorithm described in Section 4. In Sections 5 

and 6, we present the experimental set-up and our results, while 

Sections 7 and 8 present related work and our conclusions. 

 

2 BACKGROUND 
Heterogeneous processors such as Sandy Bridge from Intel® 

[28][36] and the Trinity accelerated processing unit (APU) from 

AMD® [33] (Figure 1) consist of one or more CPU cores in 

combination with many GPU cores. Both systems feature several 

heterogeneous cores in close proximity. 

 

 
Figure 1: Die shot of AMD Trinity APU [33]. 

 

2.1 Power Management 
Although the CPUs and the GPU are on independent power planes, 

they share the same die and system power supply, and hence share 

the same power and thermal headroom. These heterogeneous 

processors use a sophisticated power-monitoring and management 

technology, referred to as Turbo Boost on Sandy Bridge and AMD 

Turbo CORE on Trinity, to determine the dynamic voltage and 

frequency scaling (DVFS) states for the CPU and GPU to optimize 

performance given power and thermal constraints. These 

technologies use some combination of measured and approximated 

power and/or temperature values to monitor and guide the power-

management algorithm. 

The maximum software-visible voltage and frequency for the 

processor is defined using a combination of heavy activity and 

worst-case operating conditions. This corresponds to the thermal 

design point (TDP) power. However, across time-varying 

workloads it is common for the processor to operate well below the 

TDP power and, therefore, well below the peak temperature 

allowed. The difference between the current and peak temperatures 

is the thermal headroom. Thermal headroom can be utilized by 

permitting the CPU and/or the GPU components to exceed the 

maximum frequency and TDP power for short periods. Power-

management algorithms differ in how the timing, extent, and 

duration of the boosted operation are determined. However, 

regardless of the specific implementation, it is safe to say that both 

Sandy Bridge and Trinity processors dynamically manage power 

allocation across the CPUs and the GPU under a pre-set thermal 

limit. For the rest of the paper, we use the Trinity processor as our 

test bed for analyzing and optimizing power-management 

techniques in heterogeneous systems. However, similar concepts 

and methodologies are applicable to other heterogeneous 

processors using thermal-based power management. 

 

2.2 Trinity Accelerated Processing Unit 
The Trinity APU in Figure 1 contains two PileDriver modules or 

compute units (CUs), AMD Radeon™ GPU cores, and other logic 

components such as a NorthBridge and a Unified Video Decoder 

(UVD). Each CU is composed of two out-of-order cores that share 

the front-end and floating-point units. In addition, each CU is 

paired with a 2MB L2 cache that is shared between the cores. The 

GPU consists of 384 AMD Radeon cores, each capable of one 

single-precision fused multiply-add computation (FMAC) 

operation per cycle. The GPU is organized as six SIMD units, each 

containing 16 processing units that are four-way VLIW. The 

memory controller is shared between the CPU and the GPU. 

Table 1 shows all possible DVFS states for the CPU cores in the 

A8-4555M Trinity APU. On Trinity, DVFS states can be assigned 

per CU; however, because the CUs share a voltage plane, the 

voltage across all CUs is set by the maximum-frequency CU. P0 

through P4 are software-visible DVFS states that are referred to as 

performance states, or P-states, and are managed either by the OS 

through the Advanced Configuration and Power Interface (ACPI) 

specification [1] or the hardware. Pb0 and Pb1 are boost states only 

visible to and managed by the hardware – in other words, entrance 

to and exit from Pb0 and Pb1 are managed only by hardware. 

The GPU has an independent power plane whose voltage and 

frequency are controlled independently. However, unlike the CPU, 

the GPU does not have DVFS states visible to software. Entrance 

to and exit from these states are managed entirely in hardware. 

Throughout the rest of the paper we refer to these hardware-

managed GPU DVFS states as GPU-high (highest frequency), 

GPU-med (medium frequency) and GPU-low (lowest frequency). 
 

Table 1: HW- and SW-managed DVFS states for the CPU 

compute units on the Trinity APU. 

 P-state Voltage (V) Freq (MHz) 

HW 

Only 

Pb0 1 2400 

Pb1 0.875 1800 

SW-
visible 

 

P0 0.825 1600 

P1 0.812 1400 

P2 0.787 1300 

P3 0.762 1100 

P4 0.75 900 

 

AMD's Turbo CORE technology uses the bidirectional 

application power management, or BAPM, algorithm [8][33] to 

manage to thermal limits. BAPM controls the power allocated to 

each thermal entity (TE) in the processor. TEs are defined to be 

any sub-component of the processor that interfaces with BAPM to 

report its power consumption and receive its power limits. Once 

BAPM has assigned power limits, each TE manages its own 

frequency and voltage to fit within that limit. For the Trinity 

system evaluated in this paper, BAPM interfaces with the two CPU 

compute units (CU0 and CU1) and the GPU. At regular time 

intervals, the BAPM algorithm does the following: 

 

1) Calculates a digital estimate of power consumption for each 

TE; 

2) Converts the power estimates into temperature estimates for 

each TE; and, 

CU1 

L2 

GPU 

L2 

CU0 
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3) Assigns new power limits to each TE based on the 

temperature estimates. 

 

To estimate the temperature across the die, the chip is divided 

into regions in which local power and thermal properties are 

calculated and transfer coefficients (represented as an RC network) 

are utilized to compute heat transfer among the thermal regions, 

substrate, and package. Temperatures within each region are 

computed using numerical methods. 

The BAPM algorithm is optimized for a fair and balanced 

sharing of power between the TEs. When thermal headroom is 

available, BAPM proportionally allocates power to each TE using 

a pre-set static distribution weight derived using empirical analysis 

reflecting the individual thermal properties of each TE (i.e., its 

thermal behavior for a given power). Such static allocation is an 

effective choice in the absence of dynamic feedback from 

application execution. When the core reaches its thermal limit, 

BAPM reduces the allocation of power to all TEs in the system. 

BAPM is designed to provide reasonable performance 

improvements without any significant outliers for today's 

applications. 

 

3 POWER, THERMALS, AND PERFORMANCE 
Managing power in a heterogeneous system is a complex task 

given the variability in power and performance within each TE. 

This section presents an analysis of the relationship between power 

and heat in the CPU and GPU and its impact on performance. The 

section concludes by showing the need for cooperative boosting 

between the CPU and GPU. 

 

3.1 Motivation 
To motivate the rest of the discussion, we present an example of 

the impact of thermal coupling. Figure 2 illustrates thermal 

coupling using an AMD A8-4555M Trinity APU comprised of two 

dual-core CPU compute units (CU0 and CU1) and one six-SIMD 

unit GPU (Figure 1). The x-axis shows time. The left-side y-axis 

shows measured power relative to time zero using the techniques 

described in Section 5. The right-side y-axis shows the peak die 

temperature relative to the maximum junction temperature. 

Initially, the GPU operates at its highest frequency and the CUs 

are fixed at a low-frequency, low-power state. After the GPU heats 

up and stabilizes, at around 230 seconds, we enable the BAPM 

algorithm to control power allocation. Because there is significant 

thermal headroom available, BAPM allocates additional power to 

CU0 and CU1 and they enter a higher-power DVFS state. Not only 

do the CUs increase their power dissipation, but due to thermal 

coupling and the impact of heat on leakage power, the GPU power 

also rises. The increase in system power causes an increase in peak 

temperature and eventually triggers temperature-based throttling of 

both the CUs and the GPU at around 267 seconds to maintain a 

steady-state peak junction temperature. This results in a net 

performance loss for all components. 

This behavior can be attributed to thermal coupling effects 

between the TEs. As the GPU warms up (see Figure 2), CU1 has a 

stronger thermal coupling to the GPU due to its proximity to the 

GPU (Figure 1), and so its power is initially higher than that of 

CU0 although they are both relatively low. When they switch to a 

higher-performing DVFS state, at around 230 seconds, the power 

in both CUs increases, but thermal effects cause CU0 power to 

exceed CU1 power. CU0 is on the edge of the die, and its heat is 

trapped between the edge of the silicon and CU1. The GPU acts as 

a thermal sink for CU1 due to its larger die area and more 

distributed heat and, as a result, lower temperature. However, once 

steady state is reached (more than 267 seconds), CU0 and CU1 

temperatures stabilize to roughly equal values. 

We conducted two additional experiments to support the 

preceding discussion on thermal coupling between the CUs and the 

GPU. In the first experiment, we boosted the CUs to run at a 

higher power while the GPU executed the same workload at a 

constant voltage and frequency. We observed the GPU temperature 

was 6oC higher once the CUs were boosted, indicating thermal 

coupling between CU1 and the GPU. 

In the second experiment, we performed temperature 

measurements with a high-power, two-thread CPU application. We 

first pinned the threads to CU0, then pinned them to CU1. The 

GPU is idle and power is managed by BAPM. When the 

application ran on CU0, we observed the peak die temperature was 

higher than when the application ran on CU1, indicating worse 

heat flow from the CU next to the edge of the die. Further, the 

GPU and idle CU temperatures rose by 13oC when one of the CUs 

was active with all others idle, indicating heat transfer effects. 

 

 
Figure 2: Example of the impact of thermal coupling. 

 

3.2 Thermal Signatures and Thermal Coupling 
Section 3.1 discussed the heat transfer properties of the TEs on the 

die. This section details the differences in the thermal 

characteristics of CPUs and GPUs and how they affect 

performance-coupled applications. 

The thermal signature of a TE reflects its ability to translate 

power to temperature. It is measured by the distribution of power 

density across the occupied area. In this sense, the thermal 

signature of a GPU is quite different from that of a CPU – the latter 

is more "thermally dense". In Figure 3, we show on the left side a 

simulated heat map of the Trinity system when running a CPU-

centric, L1 cache-resident, high-power workload with an idle GPU. 

The simulated heat map was constructed by feeding measured 

power levels and power density while running the workload into a 

thermal grid model. The right side shows a heat map for HotSpot 

[10], a GPU-centric workload with the serial portion being 

executed on the CPU. The thermal maps show the steady-state 

thermal fields produced with the BAPM algorithm across the two 

CPU CUs, the GPU, and the NorthBridge as labeled in the figure. 

Tjmax refers to the maximum junction temperature allowed by the 

die. The temperature distributions in Figure 3 are steady-state 

distributions and therefore correspond to the region of Figure 2 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5

1

1.5

2

2.5

3

3.5

1

2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1

1
8

1

2
0

1

2
2

1

2
4

1

2
6

1

2
8

1

3
0

1

3
2

1

3
4

1

P
e

ak
 D

ie
 T

e
m

p
e

ra
tu

re
 

C
P

U
 &

 G
P

U
 R

e
la

ti
ve

 P
o

w
e

r 

Time (seconds) -> 

GPU Pow CPU CU0 Pow

CPU CU1 Pow PeakDieTemp

CPU power is limited, GPU 
running at max DVFS state 

Thermal 
coupling 

Temp 
throttling 



 

4 

 

 
Figure 3: Thermal densities under CPU-centric (left) and GPU-centric (right) workloads. 

 

 

after 267 seconds (i.e., after the BAPM algorithm throttled the 

CPUs and GPU once they reached peak junction temperature). 

The thermal characteristics of the workloads vary significantly. 

The CPU-centric workload shows high heat density in the CPU 

CUs while the GPU-centric workload shows a wider and flatter 

temperature distribution across the GPU. The computational area 

of the CPU, which is where most of the power is consumed, is 

much smaller than the computational area of the GPU. The 

complex, out-of-order CPU structures combined with their 

relatively small areas lead to higher thermal density for the same 

power and, thus, higher temperatures [22]. The GPU, on the other 

hand, performs computation across many simple in-order SIMD 

units that encompass a large area, leading to a lower thermal 

density for the same amount of power. 

There are two consequences to the higher thermal density in the 

CPU. The first is that the CPU consumes its available thermal 

headroom more rapidly than the GPU. In our analysis, we observed 

that the CPU heats up approximately 4X faster that the GPU. As a 

result, the GPU can sustain a higher power boost than the CPU for 

a longer period before locally reaching the thermal limit. In some 

cases, this results in sustained power dissipation that is higher than 

the TDP power. For example, in the simulations shown in Figure 3, 

the TDP of the APU complex is 19W; the total power for the CPU-

centric workload is 18.8W, while the total power for the GPU-

centric workload is 19.7W for the same thermal limit. 

The second consequence of the higher thermal density in the 

CPU is the destructive effect of thermal pollution on other 

components on the die. The rate and extent of thermal pollution 

depends on the thermal signatures of the entities. The distinct 

thermal signatures lead to a larger thermal gradient between the 

CPU and GPU when the CPU is active than when the GPU is 

active. Heat from the CPU spreads, heating neighboring 

components, increasing leakage, and accelerating temperature rise. 

The thermal coupling effects can be seen in Figure 2 and Figure 3. 

In a thermally coupled system, the TEs do not influence each 

other as long as they are all running well below the thermal limit. 

Power management employs boost algorithms to improve 

performance by pushing the processor to operate near the thermal 

limit, reallocating power across the CPU and GPU. As shown in 

Figure 2, boosting based on available thermal headroom can 

sometimes be detrimental to the application performance. The 

complexity of the power-management task is exacerbated in 

heterogeneous systems because application performance relies on 

components with widely varying thermal signatures and coupling. 

 

3.3 Performance Coupling 
For many applications, the type of computation dictates the 

component to be used. For graphics applications, the GPU is the 

obvious choice, as is the CPU for many control-divergent, general-

purpose applications. However, for compute offload applications, 

both the CPU and the GPU are possible candidates for different 

portions of the computation or data processing. For such 

applications, the CPU and the GPU are performance-coupled. For 

example, a slow CPU can starve the GPU of data, leading to 

underutilization of the GPU. Therefore, we must balance the 

requirements of performance coupling with the realities of thermal 

coupling to produce the best overall outcome. 

This section explores the performance-coupled nature of offload 

applications by demonstrating the sensitivity of performance to the 

CPU performance states. In the following experiments, we 

statically fix the highest-performing (i.e. frequency) CPU P-state 

permitted by the power-management algorithm, which we denote 

 

 
Figure 4: Impact of CPU P-state limit on performance, 

GPU residency, and GPU utilization. 
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as the P-state limit. The local CPU power controller may change 

the P-state to a lower-performing P-state based on thermals, but it 

cannot exceed the P-state limit. Figure 4 presents the impact of 

CPU P-state limits for Binary Search, HotSpot, and Needle. 

In Figure 4, the x-axis is labeled with the CPU P-state limit for 

that experiment. In addition, we show results for the baseline, 

which refers to the default Trinity power-management system 

(Section 2.2). Limiting to Pb0 means all P-states are available to 

the power-management controller, which is the same as the 

baseline case and hence not shown separately. The left-side y-axis 

refers to the stacked bar charts, and it shows the percent of time the 

GPU spends active in low-, medium-, and high-DVFS states. The 

right-side y-axis shows speed-up and GPU utilization normalized 

to the baseline results. We define GPU utilization as the ratio of 

time when at least one of the SIMD units in the GPU is active 

versus the total execution time. These data were collected on the 

Trinity system hardware described in Section 5. 

 
(a) Binary Search 

 
(b) Hotspot 

 

 
(c) Needle 

Figure 5: P-state limit effects on GPU memory bandwidth. 

For Binary Search and HotSpot, as the CPU maximum 

frequency decreases (moving to the right), the application 

transitions from being thermally coupled to being performance-

coupled. As the frequency decreases from Pb1 to P2, the GPU 

spends a larger portion of time in its higher-frequency performance 

states, indicated by GPU-high. In addition, speed-up increases, 

indicating that the GPU is utilizing the extra thermal headroom to 

improve performance. However, as the CPU frequency decreases 

beyond P2, we see a marked reduction in overall performance 

because performance coupling begins to dominate. GPU utilization 

decreases beyond P2, indicating that the GPU is being starved by 

the slower CPU. In the case of HotSpot, the thermal headroom 

permits the GPU to continue operating at its highest-performance 

state when active. However, for Binary Search, the local GPU 

power controller reduces the GPU frequency because of a 

significant drop in GPU utilization. For Needle, the GPU is 

thermally limited by the CPU across all P-state limits. Performance 

improves by 27% when the CPU operates at its lowest-

performance P-state. However, performance coupling becomes 

more dominant at a CPU P-state limit of P4 because GPU 

utilization starts to decrease. 

As is evident from the preceding analysis, during any time 

interval there is an optimal CPU operating frequency (and, 

equivalently, P-state) for each application depending on its thermal 

and performance coupling characteristics. We refer to this P-state 

as the critical P-state and the corresponding frequency as the 

critical frequency. We observe that the critical P-state is a time-

varying function of the workload and our goal is to have the CPU 

always operating in the critical P-state. Our approach is to first 

define a measurable performance metric that is sensitive to the 

CPU and GPU frequencies. By tracking the behavior of this metric, 

we can determine and set the CPU to its critical P-state 

periodically. 

Microsoft® Windows® OS Power Management [44] using 

ACPI provides a capability for managing the CPU P-state based on 

application requirements. However, in experiments with ACPI, the 

lower-performing P-states were never utilized. There are a number 

of shortcomings here. First, the OS uses the highest utilization 

among all cores as the metric to determine the P-state of all cores, 

while most of the applications analyzed have varying degrees of 

core utilization. Second, it does not consider the performance 

requirements of an application, while our analysis shows that 

applications experience phases that require higher CPU 

performance. Finally, ACPI does not include any concept of 

performance coupling or thermal coupling; therefore, it cannot be 

used readily to regulate to either requirement. 

In this paper, we propose to use the GPU memory access rate 

gradient as a proxy for CPU-GPU performance coupling [26]. 

When the CPU transitions to a lower-performing P-state, the GPU 

frequency and the memory access rate increase due to decreasing 

thermal coupling effects. However, if the CPU operation drops 

below the critical frequency, the GPU is starved by the slower 

CPU and the GPU memory access rate drops. This observation can 

be used as a starvation hint to transition the CPU to the critical P-

state. In Figure 5, we illustrate the impact of P-state-limiting on 

GPU memory bandwidth for Binary Search, HotSpot, and Needle. 

Memory bandwidth tracks performance for these three 

benchmarks, indicating the applicability of this metric. In addition, 

to deal with phase changes in the applications that require high 

CPU frequency, we also use retired instructions per clock (IPC) of 

the CPU as a measure of the application's sensitivity to CPU 

frequency [20]. 

 

4 COOPERATIVE BOOSTING 
Based on the preceding analysis, we see that the power-

management problem is one of determining the critical P-state – 

the state that mitigates the negative effects of thermal coupling 

while providing sufficient power for performance-coupled 

operation. This section describes our CB algorithm for the dynamic 

determination of the critical P-state. 
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4.1 Structure 
The CB algorithm operates as a decision layer on top of the 

baseline Trinity power-management system (from now on referred 

to as the baseline). The baseline was designed to optimize the 

average case behavior across a wide range of applications with a 

fair allocation of power to both the CPU and the GPU by utilizing 

all of the available thermal headroom. The CB algorithm enhances 

such thermal headroom-based management techniques by tailoring 

its behavior to i) the asymmetry of the thermal behavior of the 

CPU and GPU and ii) the phase behavior of applications – 

specifically, thermal and performance coupling over short 

intervals. Such optimization becomes increasingly important as 

emergent workloads are making more balanced use of the CPU and 

the GPU. The goal of CB is to determine when thermal coupling 

effects are detrimental and set the critical P-state limit under such 

cases. This is the highest-performing P-state the baseline system is 

permitted to use for the CPU. The voltage and frequency for the 

GPU is managed by the baseline and is not directly managed by 

CB; thus, CB essentially controls the CPU limits under which the 

baseline power-management system operates. Figure 6 illustrates 

the CB algorithm flow. 

CB monitors temperature and performance metrics at intervals 

of 10 ms and modifies the CPU P-state limit at intervals of 10 or 

500 ms to account for frequent workload phase changes and 

relatively slow thermal response times, respectively. Periodic 

enforcement of P-state limits at short intervals can cause 

dampening of natural workload behavior, whereas long intervals 

can cause inaccuracy in measurements. Therefore, we decouple the 

monitoring and the control intervals in CB. These intervals are 

chosen carefully to account for the long thermal rise times, shorter 

performance intervals and workload activities, and overheads of P-

state change. In practice, the intervals can be adjusted based on RC 

time constants of the die, floor plan, and process technology. The 

critical P-state limit can be computed at any granularity (per core, 

per CU, or for the entire CPU). In this paper we apply the same 

critical P-state limit to all CPU cores due to a shared voltage plane. 

 

4.2 Algorithm 
The CB algorithm operates in three major steps: i) being invoked, 

ii) determining and setting the critical P-state limit, and iii) 

damping control to prevent oscillations. In the beginning, the 

processor starts with the highest-performance-boost P-states for the 

CPU CUs and the GPU, and power and temperature are managed 

by the baseline. At intervals of 10 ms, we determine if the 

processor is thermally limited and if CB should be applied. If so, 

power management moves into CB mode. 

The second step is determining which CPU P-state limit to 

apply. This involves both instrumentation and decision-making. 

CB samples peak die temperature, per-core retired IPC, and 

memory bandwidth usage at every 10-ms monitoring interval. Note 

that although the algorithm in Figure 6 and the discussion in 

Section 3.3 refer to the GPU memory bandwidth, the 

implementation of CB uses a combined CPU and GPU bandwidth 

due to hardware restrictions that prevent GPU-only bandwidth 

measurements while CB is enabled. We found that this did not 

hinder the performance of the algorithm due to the overwhelming 

dominance of the GPU in memory bandwidth usage. 

Each core's IPC is weighted by the number of active clock 

cycles seen by the core during the sampling period, and the 

aggregate IPC for the CPU is the sum of the weighted IPCs for all 

four cores. For memory bandwidth, in addition to monitoring 

memory bandwidth at each 10-ms interval, CB also keeps a short-

term and a long-term moving average of memory bandwidth to 

track how the bandwidth changes over time. Because P-state 

limiting to reduce thermal coupling effects is made at intervals of 

500 ms, the short-term average is computed over the last 500-ms 

interval while the long-term moving average is computed over the 

last five such intervals. Bandwidth gradients are computed by 

comparing the short-term moving average with the long-term 

moving average. 

The CPU P-state limit may be established by observing changes 

in the CPU IPC or GPU memory bandwidth (these metrics were 

advocated as proxies to detect performance-coupled operation in 

Section 3.3). CB utilizes the gradient of memory bandwidth to 

determine the critical P-state for the CPU. If the gradients are 

positive, then the workload benefits from shifting power to the 

GPU. In this case, the algorithm moves the CPU P-state limit to a 

lower performance state. The converse occurs when the gradient is 

negative. Over time, the controller is trying to move the CPU to the 

critical P-state. 

If the workload enters a CPU compute-intensive phase, as 

indicated by a high-CPU IPC phase, the current P-state limit is 

saved and the control part of CB is suspended by disabling P-state 

limiting. The check for CPU IPC changes occurs at 10-ms intervals 

to capture frequent phase changes and data dependencies. When 

the CPU workload exits the compute-intensive phase, CB 

operation is resumed at the saved P-state limit. This dampens 

multiple transitions through performance states arising from a short 

Figure 6: Cooperative boosting algorithm. 

Cooperative Boosting Algorithm 
At beginning 

If (Peak_Temp > Temp_Threshold) { 

    EnableCB(); 

    Prev_PStateLimit=P0; 

} 

Every 10 ms 

for i=0, i<Core_Count; i++ { 

    IPC[i] = ReadIPC(i); 

    Active_Clks[i] = ReadActiveCoreClock(i); 

} 

Weighted_IPC = ComputeWeightedIPC(IPC,Active_Clks) 

IPC_Gradient = Weighted_IPC – Prev_Weighted_IPC 

Prev_Weighted_IPC = Weighted_IPC;  

Peak_Temp = ReadPeakTemp(); 

GPU_Mem_BW = ReadGPUMemBW();Short_Term_BW = 

ComputeShortTermBW(); 

Long_Term_BW = ComputeLongTermBW(); 

 

If (CB_Enabled && (IPC_Gradient > =IPC_Threshold)) { 

    Prev_PstateLimit = CPU_PStateLimit;  

    UnsetPStateLimit(); 

} 

 

Every 500 ms 

If (CB_Enabled && (IPC_Gradient < IPC_Threshold)) { 

    CPU_PStateLimit = Prev_PStateLimit; 

    BW_Gradient = Short_Term_BW – Long_Term_BW; 

    If (BW_Gradient >= BW_Threshold) { 

        Last_Good_PState = CPU_PStateLimit; 

        CPU_PStateLimit++; /* Until P4 is reached */ 

    } 

    Else { 

        CPU_PStateLimit = Last_Good_PState;  

    } 

} 
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burst of high-power CPU phases that would otherwise re-initialize 

the CPU performance state to the highest performance state. 

Finally, to prevent oscillation between a pair of P-state limits, we 

employ a damping mechanism such that a new P-state limit is 

weighted towards the previous P-state limit after more than a 

certain number of transitions. 

To encompass non-performance-coupled applications that may 

have a constant CPU IPC (such as SPEC CPU2006 applications), 

we use an absolute average IPC in conjunction with IPC phase 

changes for CPU-centric workloads with no activity on the GPU. 

Although CPU-centric workloads are not the focus of this paper, 

we show that our CB algorithm can sometimes improve the 

performance of these applications by limiting the performance 

state when the application is memory-bound. 

 

5 EXPERIMENTAL SET-UP 
We perform all measurements and analysis on an AMD A8-4555M 

Trinity APU with 19W TDP. Base CPU frequency is 1.6 GHz, 

with AMD Turbo CORE frequency up to 2.4 GHz. The GPU 

frequency is 320 MHz with AMD Turbo CORE frequency of 423 

MHz [47]. We use four, 2-GB DDR3-1600 DIMMs. Hardware 

performance counters for IPC, memory bandwidth, etc., are 

monitored using performance libraries running in Windows OS. A 

maximum cap on the CPU P-state limit is implemented using 

model-specific registers as described in [8]. 

We evaluate three different boost algorithms. The baseline is the 

BAPM algorithm, which is the state-of-the-practice algorithm in 

the Trinity power-management system described in Section 2.2. 

The second is the CB algorithm described in Section 4.2. Third, we 

evaluate the behavior of a static P-state-limit algorithm in which a 

fixed P-state limit is applied throughout the entire run of the 

application. This means that the CPU can enter a lower-performing 

(but not higher) P-state than the P-state limit. We refer to this as 

the static PX limit scheme, where PX is one of the performance 

states (e.g., P1, P3, etc.). For CB, P-state limits are applied 

according to the algorithm described in Section 4.2. Although CB 

can be implemented in any layer such as hardware, power-

management firmware, or system software, we implement CB at 

the system software level by layering it on top of the baseline. 

For CPU and GPU power and temperature, we use the digital 

estimates provided by the power-management firmware running in 

the Trinity system, accuracies for which are described in [33]. For 

all schemes, we run the benchmarks for at least a few minutes to 

reach a thermally stable steady state. A fixed-time cool-down 

period is applied before each run to eliminate any variations in 

start temperature. We also run many iterations of the application 

and take an average across those to eliminate run-to-run variance 

in our hardware measurements. 

We use 18 applications, summarized in Table 2. These are a mix 

of both state-of-the-art and emergent applications. Eight of them 

are from Rodinia (NDL, LUD, HS, SRAD, CFD, BFS, KM, and 

BP [10][11]), three are from the AMD APP SDK ( BF, MM, and 

BS [2]), two are stand-alone (FAH [17] and Viewdle [42]), and 

five are from SPEC CPU2006 (Mcf, Lbm, Perl, Pvr, and Gcc [40]). 

We selected the applications to represent i) GPU-centric (where 

GPU is used as a compute accelerator with CPU feeding the data to 

the GPU), ii) CPU-GPU mixed workloads (where computation is 

more balanced between CPU and GPU although the fraction of 

work division may not be the same), and iii) CPU-centric 

workloads (where computation is done only on the CPU and the 

GPU is unused). All GPU applications execute one or more 

parallel kernels for multiple iterations to reach steady-state 

thermals. The SPEC CPU applications are run with four threads, 

one on each core. 

We report performance, power, and energy efficiency as defined 

by the energy-delay2 product (ED2) [21]. We show all values 

normalized to the baseline scheme, which is the default Trinity 

power-management system. Average total power (CPU and GPU) 

and average energy efficiency are also measured over the entire 

run-time of an application. 

 

Table 2: Summary of benchmarks. 

BM (Description) Problem Size Type 

NDL (Needleman-

Wusch [10]) 

4096x4096 data points, 

1K iterations 

GPU 

LUD (LU decomposition 

[11]) 

512x512, data points, 

500 iterations 

GPU 

HS (HotSpot [10]) 1024x1024 data points, 

100K iterations 

GPU 

SRAD (Image Proc [10])  502x458,500K iteration GPU 

BF (BoxFilter SAT [2]) 1Kx1K input image, 

6x6 filter,10K iterations 

GPU 

MM (Matrix Mult [2]) 2Kx2K, 10K iterations GPU 

FAH (Folding at Home 

[17]) 

Synthesis of large 

protein: spectrin$ 

GPU 

CFD (Computational 

fluid dynamics [10] 

200K elements, 20K 

iterations 

GPU 

BFS (Breadth first search 

[10]) 

1M nodes, 1K iterations GPU 

BS (Binary Search [2])  4096 inputs, 256 

segments, 1M iterations 

GPU 

KM (Kmeans [10]) 819200 points, 34 

features, 1K iterations 

Mixed 

BP (BackProp [10]) 252,144 input nodes, 

10K iterations 

Mixed 

Viewdle (Haar facial 

recognition [42]) 

Image 1920x1080, 2K 

iterations 

Mixed 

Mcf (CPU2006 [40]) 4 threads, Ref input CPU 

Lbm (CPU2006 [40]) 4 threads, Ref input CPU 

Perl (CPU2006 [40]) 4 threads, Ref input CPU 

Pvr (CPU2006 [40]) 4 threads, Ref input CPU 

Gcc (CPU2006 [40]) 4 threads, Ref input CPU 

 

6 RESULTS 
In this section, we present performance, power, and ED2 results for 

CB and the static P-state limit algorithm. All results are shown 

relative to the baseline BAPM algorithm described in Section 2.2, 

and all performance and power numbers are measured results from 

running the applications in Table 2 on real hardware. 

 

6.1 Performance 
Figure 7 illustrates the speed-up of CB and static schemes. Across 

the 18 applications, we see a 10% speed-up with CB, a 3% speed-

up with P0 (the highest-performance software-visible P-state), a 

1% speed-up with P2, and a 10% performance loss with P4. For 

the performance-coupled workloads (i.e., GPU-centric and CPU-

GPU mixed workloads), the average speed-up with CB is 15%. 

The static schemes clearly demonstrate good performance gains 

compared to the baseline for certain types of workloads but impose 

a high performance penalty for others, motivating the need for 

dynamic schemes. 

GPU-centric applications such as NDL, LUD, MM, and SRAD 

improve in performance compared to the baseline with both CB 

and static. In general, these applications have low CPU IPC and 

are not very sensitive to CPU performance in the frequency ranges 
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Figure 7: Performance results with static limits and CB. 
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explored. Both CB and static P4 limiting show comparable gains, 

with performance improvement as high as 52% in SRAD. Thermal 

coupling dominates these applications at all CPU frequencies 

because they have high activity in the GPU and, hence, high power 

requirements. The critical P-state for the CPU is at a lower 

frequency than the lowest P-state P4 available in our part. These 

workloads reach the peak temperature quickly, and high-

performance CPU P-states result in excessive thermal throttling 

without a commensurate application performance improvement. 

Similar thermal coupling effects occur in applications such as 

HS, BS, and FAH. However, here we reach the critical CPU P-

state before the lowest P-state limit of P4. At P2, thermal and 

performance coupling effects are balanced and we see the 

maximum performance gains. Decreasing CPU frequency beyond 

P2 causes performance coupling to dominate over thermal 

coupling and degrades performance by 3%, 34%, and 1%, 

respectively, for HS, BS, and FAH at P4. CB achieves comparable 

results to the critical P-state of P2. 

Applications such as KM, BFS, BP, and CFD see minimal to no 

benefits compared to the baseline with static or CB schemes. KM, 

BFS, and BP never reach the peak junction temperature, and so CB 

never invokes P-state limiting. Although KM has high-IPC phases, 

it is primarily memory-bound and its performance stays relatively 

flat with CPU frequencies. BP has serial phases between parallel 

kernels requiring significant CPU-GPU communication. BFS has a 

high control flow divergence with low GPU activity. In both BFS 

and BP, CB results in the same performance as the baseline, 

whereas static P4 limit shows performance degradation up to 3% 

due to performance coupling. Although CFD is heavily memory-

bound, it reaches the peak temperature due to high activity and a 

relatively high compute-to-memory ratio in the GPU; as a result, it 

shows a slight improvement of 3-5% compared to the baseline 

scheme using static limiting and CB. Performance gains from 

reducing thermal coupling effects flatten out beyond P2 as the 

memory-related stall time of the kernel starts to dominate. 

In balanced workloads such as Viewdle, a face-recognition 

application, both the CPU and the GPU are utilized heavily for 

computation. Thermal coupling is dominant at the higher CPU 

frequencies, and so static P-state limiting to both P2 and P4 

improves performance compared to the baseline. CB, however, 

outperforms all static P-state-limiting schemes by dynamically 

adjusting to the critical P-state based on application needs. 

Viewdle's IPC varies periodically from low to high, and it is 

sensitive to CPU frequency during high-IPC phases. CB 

dynamically shifts power to the CPU during high-IPC phases and 

to the GPU during low-IPC phases, thereby limiting the impact of 

thermal coupling while providing the required power for 

performance coupling. Section 6.3 provides further insights in 

Viewdle's performance. We see similar behavior with BF, which is 

an image-filtering application with frequent CPU communication 

phases between the horizontal and vertical passes in the image blur 

filter. CB performs 13% better than the baseline and 9%-12% 

better than any of the static schemes in the case of BF. 

Finally, we analyze the performance of CPU-centric, non-

performance-coupled applications such as Perl and Pvr. As we see 

in Figure 7 the baseline does very well for these workloads and 

static limiting significantly degrades performance. CB largely 

performs as well as the baseline, indicating that CB is a well-

rounded approach to multiple usage scenarios. Although analyzing 

multiple non-performance-coupled applications (e.g., a CPU-

centric app and a GPU-centric app) running together was not the 

focus of our paper, we believe CB will perform as well as or better 

than the baseline because CB tries to limit CPU power only when 

it is not needed. 

 

6.2 Thermal and Performance Coupling Analysis 
In Figure 8 we illustrate how CB mitigates the effects of thermal 

coupling in the case of BS. The y-axis indicates the measured peak 

temperature normalized to Tjmax. With a static limit of P4, the 

application heats the chip to a value less than the peak. CB, on the 

other hand, does not initially restrict the baseline algorithm; 

instead, it tries to find the critical P-state for CPU once we 

approach the peak temperature threshold. As power is shifted from 

the CPU to the GPU, peak die temperature decreases because the 

GPU is able to sustain a higher power boost for a longer period due  

 

Figure 8: Thermal behavior of Binary Search with CB. 
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Figure 10: Thermal throttling in Needle with CB. 
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to its lower thermal density, as described in Section 3.2. Further, 

the effects of thermal coupling become less dominant because the 

CPU is running at a lower P-state. As a result, the GPU residency 

in the high-performance state increases significantly compared to 

the baseline, thereby improving application performance. 

Moreover, the short variations in temperature result from the fact 

that CB constantly adjusts the critical P-state based on workload 

phases. This helps balance performance and thermal coupling 

effects. 

 

 
Figure 9: Viewdle performance analysis with CB. 

 

Figure 9 provides further insights into the performance of 

Viewdle in terms of instructions per second (IPS), memory 

bandwidth, and speed-up. As we apply CPU P-state limiting with 

lower-performing P-states, CPU IPS understandably drops. 

However, the GPU IPS continues to increase, and so does memory 

bandwidth due to the GPU's ability to sustain higher frequencies 

because of the reduction in thermal coupling. For P-state limiting 

beyond P3, both GPU throughput and memory bandwidth drop due 

to performance coupling effects. However, with CB, the CPU P-

state limit is managed dynamically to balance performance and 

thermal coupling effects: GPU throughput and speed-up increase 

by 42% and 36%, respectively, compared to the baseline. 
In Figure 10, we illustrate how CB mitigates the effects of 

thermal coupling when running Needle. The left-side y-axis shows 

GPU residencies in the different performance states. The right-side 

y-axis shows the measured peak temperature normalized to Tjmax. 

In the baseline case (Figure 10(a)), we see a considerable amount 

of residencies in the medium and low GPU frequencies once 

temperature reaches the steady state to maintain performance 

within the maximum thermal limits. GPU frequency throttling 

occurs because of thermal coupling and heat transfer effects from 

the CPU to the GPU as both CPU and GPU are run at their 

maximum frequencies during the initial ramp-up stage due to 

availability of thermal headroom. However, as shown in Figure 

10(b), CB tries to find the critical P-state for the CPU once we 

approach the peak temperature threshold. Once invoked, CB starts 

shifting power to the GPU. Because Needle is a high-power 

workload, we see a slight temperature-based throttling initially, 

after which the temperature decreases and power shifts from CPU 

to GPU. This allows boosting of the GPU to higher frequencies for 

a much longer period, thereby improving application performance. 

Because CB is designed to mitigate detrimental effects of 

thermal coupling in thermally limited situations, it effectively 

lowers the peak operating temperature of the processor 

opportunistically compared to the baseline (2% lower on average 

across all applications). Although temperature is not a direct 

optimization goal for CB, lower peak temperatures have many 

additional benefits: i) increased TDP power budget to achieve 

more performance within a fixed thermal envelope; ii) lower 

cooling costs within a fixed power budget; iii) lower leakage 

power and, hence, lower overall energy; and/or, iv) improved 

reliability through increased mean-time-to-failure rates. 

 

6.3 Power and Energy 
The power saving achieved with CB over the baseline is illustrated 

in Figure 11, which shows an average power savings of 8% across 

all applications and an average of 10% across performance-

coupled GPU-centric and mixed workloads. Highest power 

reduction is seen in BS, where we see a 5% reduction in average 

peak temperature and, hence, leakage power during run-time. BFS, 

BP, and KM never reach their peak temperatures, so power savings 

are minimal because CB does not limit P-states under such cases 

and allows both CPU and GPU to take full advantage of boosting. 

We also achieve a small amount of power savings in the SPEC 

CPU2006 workloads, up to 11% with Mcf because CB 

continuously tracks high-IPC compute-bound phases. When the 

workload encounters memory-bound phases, a P-state limit is 

applied to lower the frequency; this limit has little to no 

performance impact but it saves power [20]. 

Figure 12 shows the ED2 product (lower numbers signify 

improvement over the baseline). With CB, we see an average 

energy-efficiency improvement of 25% (up to 76%) across all 

applications, and 33% across performance-coupled GPU-centric 

and mixed CPU-GPU workloads. Interestingly, a static limit of P4 

(the lowest-performing P-state) performs 30% worse than the 

baseline, but we see an improvement of about 10% with static 

limits of P0 and P2 due to reduction in thermal coupling and a 

large reduction in power at those states. However, as shown in 

Figure 7, a fixed static P-state of P0 and P2 results in significant 

performance outliers for CPU-centric workloads; hence, it is not a 
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Figure 12: Energy-delay2 product normalized to baseline. 
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viable solution. CB, however, can achieve similar or better results 

for performance and energy efficiency than any static scheme 

without requiring any offline profiling or user intervention. 

 
Figure 11: Reduction in power for CB relative to baseline. 

 

6.4 Summary  

In this section, we summarize our results and insights. First we 

show that workloads with high GPU activity are more sensitive to 

thermal coupling with the CPU. The baseline can degrade 

performance while both CB as well as static P-state limiting shift a 

greater portion of the power to the GPU, reduce thermal coupling, 

and improve performance. For applications with tight performance 

coupling with the CPU, CB finds the critical P-state and thus 

performs better.  

For applications with very low GPU utilization such as high 

control flow divergence, thermal coupling may not be a factor 

since these workloads tend to run much cooler. While the baseline 

does not hurt performance, static schemes can degrade 

performance significantly by amplifying the low GPU utilizations 

when the CPU P-state is fixed below the critical P-state. However, 

CB dynamically detects when an application is not thermally 

limited and stops limiting CPU’s P-state under such cases. This 

allows CB’s performance to track baseline for such workloads. 

Balanced workloads that actively utilize both the CPU and GPU 

are particularly susceptible to thermal coupling effects. CB 

outperforms the baseline and static schemes by continuously 

tracking the time-varying critical P-state during execution. CB uses 

only the power it needs, and thus reducing thermal coupling 

without impacting performance coupled operation.  This is one of 

the fastest growing classes of future workloads [30][43]. 

For non-performance coupled CPU-centric workloads, greedy 

boosting approaches work well while static schemes 

understandably perform poorly since performance scales with 

frequency. CB performs largely as well as the baseline since the 

critical P-state tends to be the highest performance state. However, 

CB delivers slightly better performance for memory bound 

workloads by detecting memory bound phases and adjusting the 

critical P- state, which builds up thermal credits for compute 

phases that need higher performance state. 

In summary, CB is a well-rounded technique that can be used to 

dynamically manage power, performance and thermals across a 

wide range of applications. Although for a given application one 

can profile the critical P-state limit statically offline, such an 

approach is impractical and often detrimental if the goal is to 

support a variety of applications including emergent and as yet 

unanticipated ones. CB improves over current headroom based 

greedy boost algorithms by balancing the needs and dependencies 

of CPU and GPU performance with the effects of thermal 

coupling. 

 

7 RELATED WORK 
CB differs from the large body of work on dynamic thermal 

management. The latter dealt primarily with homogenous multi-

core processors, did not consider coupled interactions among 

cores, and evolved originally to prevent harmful thermal capacity 

violations to peak temperature. Consequently, architectural efforts 

focused first on preventing unwanted thermal excursions and 

quickly evolved to balancing the system-level performance impact 

of such management techniques [9][31]. The range of techniques 

included i) activity migration, ii) power reduction by various forms 

of throttling [18][45], iii) feedback control [37][38][39][46], or iv) 

a combination of techniques to balance performance loss against 

thermal management. These techniques were concerned primarily 

with managing peak temperatures. 

That philosophy continued with the advent of multi-core 

architectures [16] through run-time techniques such as heat and run 

[34] or a combination of design- and run-time techniques [31], 

while more recent work considers the impact of reliability [13] and 

relationships to process variation [25]. The management issues 

naturally evolved to 3D architectures, which exacerbate the 

thermal management problem [14][41]. Architectural techniques 

are complemented by efforts in the system software community 

primarily through managing power dissipation using various 

scheduling techniques [4][12][23]. The preceding are just a few 

examples of the extensive knowledge base developed in the past 

decade or so, and [15][24] provide a thorough overview of the 

techniques. 

Our work addresses the impending challenge not addressed in 

these prior works: the consequences of thermally coupled behavior 

of heterogeneous cores that share the same die, and whose 
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performance is also coupled through applications that use both the 

CPU and the GPU. Some recent work includes efforts to couple 

thermal management, cooling management, and power 

management [6][7][35]. However, these efforts do not directly 

address architecturally coupled operation. Recent studies [3][5] 

have identified throughput-computing performance-coupled 

applications as an emergent class of future applications. Wang et 

al. [43] proposed power-efficient ways of workload partitioning 

this class of applications between CPU and GPU in heterogeneous 

systems. There has also been a number of works on dynamic 

power management of such applications [19][26][27][29][30]. 

However, these do not address effects of thermal coupling 

balanced with performance coupling. 

The most relevant work is that of the Intel Sandy Bridge 

processor that introduces whole-chip thermal-based power 

management, recognizing the shared power and thermal headroom 

between the CPU and GPU [36]. A measurement-based budgeting 

process allocates this headroom between the CPU and the GPU. 

When cores are executing below the headroom, they acquire 

"energy credits" that are used to determine the new (boosted) 

power state for short durations. They recognize the dependency of 

performance between CPU and GPU and expose a software 

interface that can be used by the operating system or driver to 

specify how to partition the energy headroom between CPU and 

GPU. Our work differs from [36] by characterizing thermal 

coupling, noting and quantifying its negative interactions with 

unregulated boosting algorithms and proposing a solution that can 

be implemented to balance thermal and performance coupling 

effects dynamically. 

Finally, unlike much past work in this area, we implement our 

algorithms on hardware and show measureable performance and 

power benefits when compared to a state-of-the-practice power-

management algorithm. 

 

8 CONCLUSIONS 
This paper addressed the complex relationship among power, 

thermals, and performance in a heterogeneous system running 

diverse applications. We described and explored thermal entities 

with varying thermal signatures and demonstrated the relationship 

between thermal coupling and performance coupling through 

detailed empirical analysis. Based on our analysis, we proposed a 

cooperative boosting solution that balances the effects of thermal 

coupling with the requirements of performance coupling to 

determine the critical frequency of operation. We compared the CB 

algorithm with a state-of-the-practice boost algorithm and static 

power-limiting methods for a varied set of homogeneous and 

heterogeneous benchmarks. We showed on hardware that CB 

achieves an average 10% speed-up and an average 8% power 

reduction compared to the other algorithms, resulting in a 25% 

improvement in the ED2 product. 

We presented an initial assessment of performance-coupled 

applications and how to manage them dynamically. In the future, 

we plan to expand this work to manage the GPU directly in 

addition to the CPU, explore additional measures to detect 

performance coupling, and examine more complex usage 

scenarios. 
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