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Talk Outline
s Why Worry About DRAM Power?

mIncreasing Memory Efficiency with Virtual DIMMs using
Dynamic Partitioned Global Address Spaces (DPGAS)
= Architectural Support
= Memory Management
= Performance Evaluation

mLessons Learned and Conclusions
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Inefficient DRAM Usage Leads to Power Inefficiency

= 1.5 % of all U.S. energy costs go to datacenters and costs could double!

= DRAM power can consume from 20-30% of total HW budget?
m Increased use of virtualization increases need for more DRAM

= Projects like RamCloud? and in-memory databases lead to increased usage
of memory

= DRAM background power hard to reduce due to need to refresh state
= DRAM is overprovisioned due to time-varying workloads.

= Actual memory requirements can vary with time#
= Data centers typically have low utilization>

Y L,
'l

Photo from http.//eetd.lbl.gov

1)  EPA Report to Congress on Server and Data Center Efficiency, 2007 3)  J. Ousterhout, et al., The case for RAMClouds: scalable high-performance storage
entirely in DRAM, SIGOPS Operating System Review, 2010

4) 8. Chalal, et al., Memory Sizing for Server Virtualization, Intel, 2007

2)  C Lefurgy, et al., Energy Management for Commercial Servers,

IEEE Computer 2003
5)  Barroso, et al.,, The Case for Energy-Proportional Computing, IEEE Computing, 2007
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Techniques for Power Efficient DRAM Usage

= What about sharing underutilized DRAM between nodes?

m Existing techniques have high overhead
= RDMA is fast but has high set up cost
= MPI and other high-level sharing mechanisms use OS/network stack

= Or require custom interconnects
= Supercomputing clusters typically use custom interconnects with NUMA

= How can we enable DRAM sharing that is high
performance and uses commodity infrastructure?
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Proposed Approach — Dynamic Partitioned Global Address
Spaces (DPGAYS)

Node A
Appl App2 App3

Mapping Bridge

Mapping Bridge

Commodity
Interconnect

= Create a "virtual DIMM" abstraction that allows for transparent,
low-latency DRAM sharing over commodity interconnects

= 1I::{emote access is handled at hardware layer with OS control path interaction
or setup

= OS handles “control path” setup while “reference path” bypasses
traditional networking stack
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Proposed Approach — Dynamic Partitioned Global Address
Spaces (DPGAYS)

Node A
Appl App2 App3

oS

12 GB

Mapping

Commodity
Interconnect

= Create a "virtual DIMM" abstraction that allows for transparent,
low-latency DRAM sharing over commodity interconnects

= 1I::{emote access is handled at hardware layer with OS control path interaction
or setup

= OS handles “control path” setup while “reference path” bypasses
traditional networking stack
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Proposed Approach — Dynamic Partitioned Global Address
Spaces (DPGAYS)

Node A
Appl App2 App3

Mapping Bridge

Mapping Bridge

8 GB

Commodity
Interconnect

= Create a "virtual DIMM" abstraction that allows for transparent,
low-latency DRAM sharing over commodity interconnects

= 1I::{emote access is handled at hardware layer with OS control path interaction
or setup

= OS handles “control path” setup while “reference path” bypasses
traditional networking stack
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Dynamic Partitioned Global Address Spaces (DPGAS)

= Dynamically managed system-wide global address space
= 64-bit physical address spaces dynamically mapped across memory
controllers as needed
= Builds on existing Partitioned Global Address Space (PGAS) model that uses
“private” and “shared” memory
= (UPC, Co-array Fortran, X10, etc.)

= Integrated network interface and memory mapping unit
= Memory mapping integrated into a HyperTransport interface
m Bridge to commaodity or specialized interconnection networks
= Ethernet used for this work

= Remote memory accesses built on spill/receive model
= One node “spills” requests to remote node with unused DRAM, which “receives”
remote requests.
= OS daemon handles memory allocation and updates to lower-level HW
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DPGAS System View

Virtual Address
Space 2

2 GB

Virtual Address
Space 1

8 GB

Global Physical
Address Space

VA 1

Node 1 '32

|
47 33 64
O Memory 2 2

m Portion of the virtual address space mapped to remote physical
memory

= Protection issues handled by virtual memory system
= Bridge mapping handled and coordinated by OS

= 'Dynamic” updates allow for flexibility in sharing
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Architectural Support — Reference Path?

Memory mapping unit

Translation Table

HT Address
. — |
Multiple Cores + Cache . U
——
—~_Global Address
Interface (SRI)
A ~
¥ HT Links
Memory |, < > HTEA To Ethernet, IB, etc.
Controller Crossbar > — < >

mAddress translated into a node address and remote local
memory address

= Low latency memory bridge: encapsulation takes 24 — 72 ns
in current FPGA implementation
= Referred to as HyperTransport Ethernet Adapter (HTEA)

mBridge = 1300-1500 FPGA slices (Virtex 4 FX140)

1) JYoung, et al., A HyperTransport-enabled global memory model for improved memory efficiency, WHTRA '09
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Memory Allocation with DPGAS — Control Path

Node A Node B

App2 Appl

Northbridge / SRI Northbridge / SRI DRAM
Local HT Local HT
HTEA HTEA

= Node A hits memory threshold (pg faults or % of physical memory)
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Memory Allocation with DPGAS — Control Path

Node A Node B

2 1
APP Req 250 MB APP

OS, DPGAS Daemon OS , DPGAS Daemon

A 4

Northbridge / SRI TCP/IP Northbridge / SRI
Local HT Local HT
HTEA HTEA

= Node A hits memory threshold (pg faults or % of physical memory)
= Node A requests to “spill” to Node B via OS daemon
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Memory Allocation with DPGAS — Control Path

Node A Node B
App2 App1
Approve 250 MB
0OS, DPGAS Daemon < OS , DPGAS Daemon
TCHIP Northbridge / SRI
LocaNHT Local HT
HTEA HTEA

= Node A hits memory threshold (pg faults or % of physical memory)
= Node A requests to “spill” to Node B via OS daemon

= Node B approves and agrees to “receive” remote accesses from Node A
& E])_Sto; hypervisor updates available memory (possibly with libnuma
ints
m System Request Interface is updated to direct requests to HTEA
= HTOE mapping table is updated on Node A

= If memory is to be unshared, Node B OS updates its available
physical memory
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Memory Allocation with DPGAS — Control Path

Node A Node B
App2 App1
0OS, DPGAS Daemon OS , DPGAS Daemon
Northbridge / SRI DRAM
LocaNHT Local ﬁT
HToE request/response
HTEA o HTEA

Ethernet

= Node A hits memory threshold (pg faults or % of physical memory)
= Node A requests to “spill” to Node B via OS daemon

= Node B approves and agrees to “receive” remote accesses from Node A
& E])_Sto; hypervisor updates available memory (possibly with libnuma
ints
m System Request Interface is updated to direct requests to HTEA
= HTOE mapping table is updated on Node A

= If memory is to be unshared, Node B OS updates its available
physical memory

= Node A can make remote accesses to Node B's memory via the HTEA
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DPGAS Test Infrastructure

= Demonstrate how DPGAS can reduce DRAM power
inefficiency
= Also investigate DPGAS effects on network and DRAM
s Simulation infrastructure used with NS-3, DRAMSIM, custom
C++ code
= NS-3 handles event scheduling, network
= DRAMSIM handles memory access latency, DRAM power

m2 t0o 16 node simulations with different levels of DPGAS
sharing

m Synthetic traces used for this evaluation
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Test Setup
Num Nodes | Apps / node | Spill Nodes | Receive Nodes Mem Size (GB) Apps / Receive Node

| 4,16 0 0 4,16 N/A
2 6 0 0 4/8 2

2 6.16 1 | 4,16 2.8
+ 6.16 2 2 4.16 2,8
b 6.16 4 4 4,16 2.8
16 16 0 0 16/20 &

16 6.16 B ] 4,16 2.8
8 6.16 & 2 4 (8 on Recv Nodes), 16 2.8
16 6,16 14 2 4 (8 on Recv Nodes), 16 2.8

» Synthetic traces represented large memory footprint applications
s DRAM accesses every 4000 - 4500 cycles for 3000 MHz CPU!
= Random, clustered random, strided access each with 50,000 accesses
= 1 — 16 applications with 2 of the nodes with 2-8 applications spilling
= Memory blade scenario has 6 or 14 nodes spilling to 2 nodes
= DRAM timing/power stats match Micron’s MT47H512M8 TwinDie 4 GB
DDR2
= 10 Gbps Ethernet network simulated with 200 ns latency
= Additional component latency drawn from other studies, datasheets

1) A Jaleel, "Memory characterization of workloads using instrumentation-driven simulation. A pin-based memory
characterization of the spec cpu2000 and spec cpu2006 benchmark suites,” VSSAD Technical Report 2007

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY August 18th, 2010 CASL 16




LASH Dynamic Partitioned Global Address Spaces for Power Efficient DRAM Virtualization

Test Setup (continued)

m Metrics studied

= Background power for DRAM — How much power could DPGAS
spill/receive save by reducing overprovisioning of DIMMs?

= Link and buffering latency — How much latency is incurred by DPGAS-
enabled sharing?

= Network utilization — How does sharing with DPGAS affect demand
on a shared 10 Gbps Ethernet link?

= Memory Controller Access Latency — Does DPGAS dramatically
increase the local access latency of “receive” nodes?

= Experiments described in paper — access latency within 2 ns between
DPGAS/non-DPGAS tests
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Impact on DRAM Power Savings

4GB Total Power and Static Power Savings vs Number of Nodes 16 GB Total Power and Static Power Savings vs Number of Nodes
100 C T T T T T ] ‘100 C T

Normal s Normal s

DPGAS == ] B DPGAS ==
I Static Savings E I Static Savings

Power (W)
S
I
|

10 |

Power (W)

|

1 2,1 4,2 8,4 16,8
Number of Nodes, Spill Applications

1 21 42 84 168 86 16,14 .
Number of Nodes, Spill Applications

H_J

Memory Blade

= 2 of all nodes have reduced number of DIMMs
m Reduces background power — refresh, standby
= Power Savings from Removing one 4 GB DIMM
m 2to 19 Watts (4 GB)
= 1.5 to 16 Watts (16 GB)
= Savings for a 10,000 core data center would be 3,540 Watts!

1)  HP Power Advisor utility: a tool for estimating power requirements for HP ProLiant server systems, 2009,
http://h20000.www2.hp.com/bc/docs/support/SupportManual/c01861599/c01861599.pdf
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DPGAS Impact on Network Latency

Network Latency vs Number of Nodes and Installed DRAM

1800 T
Cmn_pmlen.i Latency (ns) 1700 b 2nodes mm— ]
AMD Northbridge 40 4 nodes ———
On-chip memory access 60 1600 - 12 noces T M;:“:"V .
Heidelberg HT Cave Device 45 @ 1500 | ade i
L i g 1400 - .
10 Gbps Ethernet MAC 500 o
10 Gbps Ethernet Switch 200 5 1300 - ]
Average Component Delay ®O3 1200 L i
Measured Transmission 185 - 939
Bk £ 1100 |
and Buffering Delay (NS3)
1000

4 4 Spill, 8 Recv 16
Installed DRAM per Node (GB)

= Network latency calculated based on NS-3 simulations and estimates
from other work

= One-way latency varies from 1042 to 1238 ns (4 GB), 1057 to 1593 ns
(16 GB), and 1478 to 1832 ns (memory blades)

= Two-way latency is on the order of 2.242 us for cache line read
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DPGAS Impact on Network Utilization

Network Utilization vs Number of Nodes and Installed DRAM
800 T T

700
600
500
400
300
200
100

0

MB/s

4 4 Spill, 8 Recv 16
Installed DRAM per Node (GB)

= Link utilization measured for “peak” times when many applications were
“spilling” via DPGAS
= Represents a worst-case scenario for data center machines that are typically
underutilized!

= Utilization ranges from 31.3 MB/s to 555 MB/s (4GB), 31.3 MB/s to
250.65 MB/s (16 GB), and 324 MB/s to 756 MB/s (memory blade).

= Utilization lower for 16GB case due to more spread out accesses

1)  Barroso, et al.,, The Case for Energy-Proportional Computing, IEEE Computing, 2007
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Related Work

s Memory Efficiency
= Lim, et al. - Memory Blades for disaggregated memory
= Tolentino, Cameron — Memory Miser OS level support
= Lefurgy, et al. — DRAM server power and DRAM consolidation

n PGAS
» Software approaches - UPC, X10, Titanium, Gasnet
= RDMA - Liang ‘05 low-level implementation for page swapping
= RNA Networks — RDMA for high BW, low latency sharing

mPower and Cost Analysis
= Google
= Lim, et al. — Warehouse Computing
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Conclusions

s Introduced Dynamic Partitioned Global Address Spaces as
abstraction for efficient sharing of memory

= HyperTransport over Ethernet offers commodity, low-latency
substrate that can access “virtual” DIMMs

= Simulation framework allows for investigation of network and
memory

= Low-latency virtual DIMMs enable power savings for time-
varying workloads

= 18% to 49 % background power savings result from removing
underutilized DIMMs

= Network utilization may require additional network
infrastructure for “memory blades”
= Large-scale memory blade used over 6 Gbps of BW in experiments
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Future Work

= Model the effects of DPGAS latency on system performance

= Longer run-times may lead to increased power draw by system,
network

» DPGAS still has potential for power savings
= Modern processors geared to overlap computation with DRAM access
= Remote DRAM access generally much faster than swapping to disk
= Network hardware to support HTOE already exists in data centers
mAdd page migration support and evaluation

= Remote accesses are reduced for most frequently used pages

= Fat nodes versus thin nodes
= Where can we position dedicated “receive” nodes?
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Thank you!

m Questions?

= More information at
http://www.ece.gatech.edu/research/labs/casl/hec.html
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(Backup) HT Bridge — Translation and Encapsulation
Outgoing

SeqZ2Mac Look Frame Assembl/
Posted d il 4
From local _Non-PosteE: 40 b |pest Outgoing
HT Cave Response | 48 b Imac Encapsulated
64 b Dest Mac HT packets
CMD HT packet
MAC address
HT address Pending Request Store To Ethernet,
SRC Tag —» |Infiniband, etc.

Incoming HT address

MAC address

Frame Disassembly SRCTag Incoming
Encapsulated

Posted HT packets From Ethernet,
To local “5rPosted | Infiniband, etc.
B
HT Cave Response

= Modular approach and encapsulation allows software to be portable as
processor physical address space grows.

m Extension from the 40-bit to 64-bit physical address
= Creation of a HyperTransport packet which includes a 64-bit extended address

= Map the most significant 24 bits of destination address to a 48-bit MAC address and
encapsulation into an Ethernet frame.
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ot

Impact of Memory Latency

m DPGAS causes slight increase in

N : e Simulation, Ave. Mem Std. Dev.

latency for “receive” node DRAM Size | Latency (ns)
= Average DRAM access latency Z”:j:;“fG‘f ;‘Ez 62'251
across 2 nodes rose/decreased by 4 node, 4 Gs o g
2 ns. 8 node, 4 GB 66.29 9.5
= DRAM accesses are more evenly 16 node, 4 GB 64.35 115
split between heavily loaded 8 node, 4/8 GB 67.74 10.89
“spill” and lightly loaded “receive” f ”°je' ‘ZSGGB 22-98 12-65
node, 16 GB A1 12.51
. nOdeS. . 4 node, 16 GB 68.27 13.28
m ngh-performance DRAM Mapping 8 node, 16 GB 68.72 14.21
policy and random traces reduced 16 node, 16/20 GB 68.7 9.11
16 node, 16 GB 68.84 7.2

potential row buffer hit rates

= DPGAS might increase latency
more for “receive” nodes with
high row buffer hit rate

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY

August 18", 2010

No DPGAS - V2 of nodes had more applications and DRAM
Memory Blade — 2 nodes had more DRAM. Other nodes spill.
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