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Talk Outline

e Memory Efficiency Challenges

e Dynamic Partitioned Global Address Space (DPGAS) model
e Architectural Support
e Memory Management
e Performance Evaluation

e Lessons Learned and Conclusions




Memory Efficiency Challenges

e Modern data centers are presenting challenges in terms of
cost and power efficiency

e Statistics suggest that 1.5 % of all U.S. energy costs go to
datacenters and this cost could double by 2011 !

e Focus has been on CPU power and overall cooling of datacenter
e Memory can be a dominant consumer of cost and power 2

1) EPA Report to Congress on Server and Data Center Efficiency, 2007

2)  C Lefurgy, et al., Energy Management for Commercial Servers, IEEE Computer
2003

Photo from http.//eetd.lbl.gov



Power Challenges

Google data center in Oregon

Power densities of 10-20 KW/m?2 =
footprint = cost

SUN MD S20: Water cooled containers 187.5KW

From R. Katz, “Tech Titans Building Boom,” IEEE Spectrum, February 2009, http://www.spectrum.ieee.org/feb09/7327



Improving Memory Efficiency

e Workloads are time-varying

e Memory requirements can vary from 1 GB to 4 GB for average server
applications !

e System workloads have time varying footprints
¢ Provision memory/blade for the average case not peak

e On-Demand Sharing of physical memory
e Virtualize the location of physical memory location

e Enabled by low latency HyperTransport

1) S. Chalal and T. Glasgow. Memory sizing for server virtualization. 2007. http://communities.intel.com/docs/



Proposed Approach

¢ A dynamically managed system-wide global address space

e Physical address spaces dynamically mapped across memory
controllers as needed

e Integrated network interface and memory mapping unit
e Memory mapping integrated into the HyperTransport interface
e Bridge to commaodity or specialized interconnection networks

e Location-aware page allocators
e Demand driven
e Coordinated cross operating systems



Partitioned Global Address Space Systems
Single global physical (PGAS)

address space

Integrated
network
interface

and
memory
controller

—_—

e Global Address Space Partitioned Into Local and Remote
Partitions Based on Access Latency

Low Latency, System-Wide Non-Uniform Memory Access




System View
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e Portion of the HT address space mapped to remote memory

e Protection issues handled by virtual memory system
e Bridge mapping handled and coordinated by OS
e System-wide RDMA analogy



Architectural Support

Memory mapping unit

Translation Table

— HT Address
— | |

|::|
—~_Global Address
| | |

Multiple Cores + Cache

Memory

4+ ~
\ 4

HT Links

HT
Bridge

Memory
Controller

e Address translated into a node address and remote local
memory address

e LOw latency memory bridge: encapsulation takes 24 — 72 ns
in current FPGA implementation
e TO Ethernet

e Bridge = 1300-1500 FPGA slices (Virtex 4 FX140)
.. SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIAINSTITUTE OF TECHNOLOGY, o Febwary12n 2000 CASI, o



HT Bridge — Translation and Encapsulation

2Mac Look Frame Assembl/
Posted Seg2Mac Lookup ¥
From Iocal Non-Postea_‘ 40 b Dest Outgoing
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64 b Dest Mac HT packets
CMD HT packet
MAC address
HT address 3 | Pending Request Store To Ethernet,
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- |
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e Modular approach and encapsulation allows software to be portable as
processor physical address space grows.

e Extension from the 40-bit to 64-bit physical address
e Creation of a HyperTransport packet which includes a 64-bit extended address

e Map the most significant 24 bits of destination address to a 48-bit MAC address and
encapsulation into an Ethernet frame.



HT Bridge — Translation and Encapsulation
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¢ Addition of remote_flush transactions to support consistency
models

e Limits on the number of outstanding transactions - back pressure
¢ Handling non-unique message IDs



Evaluation of Cost/Power Efficiency

e Trace based simulation used to generate profiles of page
fault behavior vs. memory footprint

e Random workload mix generated from applications

e Static bin-packing algorithm for allocation memory
e "Spill” model for generating remote allocations

e Analytical models used to evaluate power and cost of DRAM
memory and reductions for HP server configurations

e Cost statistics obtained from HP’s server business website 2
e Power statistics obtained from HP power calculators 3

2) HP Proliant DL servers - cost specifications, http://h18004.www1.hp.com/products/servers/platforms/, 2008
3) HP Power Calculator Utility, http://h20000.www?2.hp.com/bc/docs/support/SupportManual/c00881066/c00881066.pdf, 2008



Experimental Setup — Trace Generation

e Sampled from high frequency and large footprint program
regions

¢ 2.1 billion references were taken from these points using
Simics 3.0.31 infrastructure 4
e Simics traces included background operating system traffic
¢ 100 million references were used to warm the page table simulation

e C++ page table simulation evaluated 7 physical memory
sizes (32 MB - 2 GB) for each application

4) Peter S. Magnusson, et al., Simics: A full system simulation platform. Computer, 35(2):50-58, 2002.



Experimental Setup — Server Configuration

Model CPU Cores Max. Physical Memory Base Server Cost/Power
HP Proliant DL785 G5 8 quad-core 2.4 GHz Opterons 512 GB “$42,000/1110 W
HP Proliant DL165 G5 2 quad-core 2.1 Ghz Opterons 64 GB “$2,000/197 W

e TWo Server configurations: i) high-end (8 CPU server) and ii) low-end (2
CPU server)

e 64 GB (high-end) or 16 GB (low-end of memory)

e Combinations of each benchmark were used to model independent
workloads running in VMs

e Nearest neighbor (2) spill model for allocation

e Benchmark applications
e MCF, MILC, and LBM from Spec2006
e HPCS SSCA graph benchmark
e DIS Transitive closure benchmark



Server Cost — Scale Out

HF Proliant DL16S G5 Scale Out - Cost ve Number Blades HP Proliant DL785 G5 Scale Out - Cost vs Number Blades
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e Scale out tested constant number of workloads consolidated
onto varying numbers of servers

e High-end server was given upper bound (64 GB) and lower
bound (56 GB) of memory needs

¢ DPGAS savings in base case - 15% to 26% ($30,000 and
$200,000)

DPGAS Savings: 64 GB ——

Cost (5)
Cost (5)




Server Power — Scale Out
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¢ DPGAS savings vary from 9% to 25%
e Translates to a savings of 2,500 Watts to 3,375 Watts

e Low-end server has less fragmented memaory, thus smaller
savings



Server Savings — Varying Workloads
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e Workload variations:
e Only three large applications allocated
e Allocate one large and one small footprint

¢ DPGAS savings are worse than normal case
e 2% to 4% cost savings, 6% to 12% power savings

e Conservative bin packing allocation leads to little memory
fragmentation



Cost (8)

Memory Throttling Power and Cost

HF Proliant DLVES G5 Memory Throtiling - Cost ves Amount of Memory Availlable
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e Memory Throttling: to 50%, 25% of original physical memory footprint

e Cost and power savings at expense of increased page fault rate

e Reducing memory from 64 GB to 32 GB in high-end server can reduce
memory cost by $478,000 and memory power by 17,750 W with DPGAS

e ~20% savings over normal allocation

e Lower-end savings (56 GB) is 4% to 14% for cost and 2% to 10% for
power




Memory Throttling Performance
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Benchmarks

e Throttling increases page fault rate by order of magnitude

e Some applications suffer more due to small footprints, poor
spatial reuse

e Use of throttling with DPGAS may make sense due to
possible savings

e DPGAS can also work similar to third-level cache to improve
performance



Some Related Work

e Memory Efficiency
e HP Labs, Virginia Tech
e PGAS
e Software approaches - UPC, X10, Titanium, Gasnet
e RDMA - Liang 05 is the best example of low-level implementation

e Power and Cost Analysis
e HP labs — memory blades
e Feng - Green Destiny




Lessons Learned

¢ DPGAS savings vary according to server configurations,
applications
e Dependent on time-varying workload characteristics

e Less memory fragmentation, smaller DPGAS savings
e Applications with small footprints can be efficiently packed
¢ Highly dependent on workload variance

e Memory allocation algorithm matters as well

e Allocation algorithm searched all servers for space to allocate an
application
e May not be realistic in large server environment
e Results may favor DPGAS-based sharing in this case



Conclusions

¢ DPGAS enables opportunities for dynamic sharing of a global
physical address space

e HyperTransport provides the basis for low-latency remote
accesses
e Modest connectivity can be valuable

e Power and cost savings vary according to memory
fragmentation, application workload, and server
configuration

e DPGAS best suited for high-end servers with application workloads
with high variance (large memory fragmentation)




