
Dynamic Partitioned Global Address Spaces for Power Efficient DRAM

Virtualization

Jeffrey Young and Sudhakar Yalamanchili

School of Electrical and Computer Engineering

Georgia Institute of Technology, Atlanta, GA

jyoung9@gatech.edu, sudha@ece.gatech.edu

Abstract—Dynamic Partitioned Global Address Spaces (DP-
GAS) is an abstraction that allows for quick and efficient
remapping of physical memory addresses within a global ad-
dress space, enabling more efficient sharing of remote DRAM.
While past work has proposed several uses for DPGAS [1],
the most pressing issue in today’s data centers is reducing
power. This work uses a detailed simulation infrastructure
to study the effects of using DPGAS to reduce overall data
center power through low-latency accesses to “virtual” DIMMs.
Virtual DIMMs are remote DIMMs that can be mapped into
a local node’s address space using existing operating system
abstractions and low-level hardware support to abstract the
DIMM’s location from the application using it. By using a
simple spill-receive memory allocation model, we show that
DPGAS can reduce memory power from 18% to 49% with
a hardware latency of 1 to 2 µs in typical usage scenarios.
Additionally, we demonstrate the range of scenarios where
DPGAS can be realized over a shared 10 Gbps Ethernet link
with normal network traffic.

Keywords-memory allocation; DRAM power; interconnects;
power efficiency

I. INTRODUCTION

The emergence of cloud computing and the continued

growth of data centers have been accompanied by increased

power requirements. While many architectural improve-

ments in data center servers have focused on reducing

power consumed by CPU and disk, several studies [2] [3]

indicate that DRAM power can consume up to 30% of

the total hardware power budget and thus should not be

overlooked. One of the challenges in optimizing memory

power usage is the time-varying nature of workloads. Servers

within the data center are usually overprovisioned to handle

memory footprints associated with peak workloads leading

to excess static power dissipation. Furthermore, commodity

server blades are packaged in a manner that remote blades

can share only via heavyweight, OS-coordinated mecha-

nisms between blades - Remote Direct Memory Access

(RDMA) and custom NUMA interconnects have provided

two approaches to make DRAM sharing easier, but they are

limited by registration overhead and the requirement for non-

commodity parts, respectively.

We previously proposed a model for non-coherent global

address spaces called Dynamic Partitioned Global Address

Spaces (DPGAS). Virtual memory address spaces can be

allocated across memory controllers on distinct blades and

can be transparently supported by low level communication

mechanisms over commodity networks. Our previous work

focused on analytical models to show the feasibility of

using DPGAS to reduce memory power and improve cost

efficiency in large data centers. This work contributes a

more detailed analysis through the trace-driven simulation

of several workloads and memory allocation across blades.

We study the effects of the DPGAS model on memory

performance, network latency, and utilization, specifically

in environments with existing network loads.

In addition to having implications for reducing DRAM

power, DPGAS also enables memory virtualization at the

hardware level. DIMMs can be virtualized transparently to

applications using interactions between an OS process, such

as a kernel-level block device or a hypervisor module, and

the hardware required to set up and release remote memory

partitions. Other existing memory virtualization solutions [4]

have shown the benefits of using memory virtualization as a

technique for data caching of extremely large datasets such

as in-memory databases.

The rest of this paper addresses the following themes:

First, we review the trends that enable HyperTransport over

Ethernet (HToE) and the definition of how DPGAS works.

Next, we look at the features of our hardware model and

address the creation of a new simulation infrastructure to

study DPGAS in more detail. Finally we investigate the

effects of using DPGAS on reducing memory power and

also on memory and network utilization.

II. IMPORTANT TRENDS ENABLING HTOE AND DPGAS

HyperTransport over Ethernet is part of an important shift

toward integrating networks and memories that has resulted

from several trends. These trends include the dramatic

decreases in network end-to-end latencies, the integration

of high-speed on-die networks, and the pressing need for

additional pin bandwidth in future architecture designs.

In the past two decades, raw network packet latencies

have dropped from milliseconds to hundreds of nanosec-

onds while DRAM access latencies have remained rela-

tively constant (due to increases in density and a focus

on increasing DRAM bandwidth). Additionally, high-speed



network interfaces such as Intel’s QuickPath Interconnect

[5] and AMD’s HyperTransport [6] are being integrated

on-die, further reducing congestion-free memory-to-memory

hardware latency between remote memory modules. The

integration of high-performance network interfaces into the

die and the consequent minimization of hardware memory-

to-memory latency between blades makes the sharing of

physical memory across blades practical.

In contrast to this trend of continually increasing on-

and off-die interconnect bandwidth and reduced latency,

the trend of increased VM consolidation and multi-core

proliferation has led to reduced pin bandwidth per core and

per hardware thread. As the number of VMs per core and the

core count increases, the demand for memory bandwidth will

also increase for on-die memory controllers. Integrated, very

low-latency interconnects will have to serve as a pressure

valve to release memory pressure by providing low-latency

access to remote memory.

HyperTransport over Ethernet provides the benefits of a

low-latency interconnect with the additional benefits of pro-

viding this “release valve” for additional memory bandwidth.

HyperTransport was chosen due to its open specification,

while Ethernet was selected for its wide deployment, low

cost, and its growing usage as an encapsulation and conver-

gence standard for other traditional data center technologies

such as FibreChannel over Ethernet (FCoE) [7] and RDMA

over Converged Ethernet (RoCE).

III. DYNAMIC PARTITIONED GLOBAL ADDRESS SPACES

Although the concept of Dynamic Partitioned Global

Address Spaces (DPGAS) is covered in greater detail in [1],

we review the basic concepts here.

The DPGAS model is a generalization of the partitioned

global address space (PGAS) model [8] to permit flexible,

dynamic management of a physical address space at the

hardware level—the virtual address space of a process is

mapped to physical memory that can span multiple (across

blades) memory controllers. The two main components

of the DPGAS model are the architecture model and the

memory model.

A. Architecture model

Future high-end systems are anticipated to be composed

of multi-core processors that access a distributed global 64-

bit physical address space. A set of cores on a chip will

share one or more memory controllers and low-latency link

interfaces integrated onto the die, such as HyperTransport

or QuickPath. All of the cores will also share access to a

memory management function that will examine a physical

address and route this request (read or write) to the correct

memory controller—either local or remote. For example,

in the current-generation Opteron systems, such a memory

management function resides in the System Request Queue

(SRQ), which is integrated on-chip with the Northbridge [9].

Figure 1. DPGAS Overview and Memory Functions

B. Memory model

The memory model is that of a 64-bit partitioned global

physical address space. Each partition corresponds to a

contiguous physical memory region controlled by a single

memory controller, where all partitions are assumed to be of

the same size. For example, in the Opteron, partitions are 1

TB corresponding to the 40-bit Opteron physical address.

Thus, a system can have 2
24 partitions with a physical

address space of 2
40 bytes for each partition. Although large

local partitions would be desirable for many applications,

such as databases, there are non-intuitive tradeoffs between

partition size, network diameter, and end-to-end latency that

may motivate smaller partitions. Further, smaller partitions

may occur due to packaging constraints. Thus, the DPGAS

model incorporates a view of the system as a network of

memory controllers accessed from cores, accelerators, and

I/O devices.

The DPGAS model operates over a non-coherent global

physical address space. However, if blades implement co-

herence, one can view the DPGAS model as dynamically

increasing the size of physical memory accessible by a

blade, i.e., within a coherence domain. Specific protocols

are beyond the scope of this paper.

The programming model provides get/put operations that

correspond to one-sided read/write operations on memory

locations in remote partitions [8]. A sample get transac-

tion on a memory location in a remote partition must

be forwarded over some sort of network to the target

memory controller and a read response is transmitted back

over the same network. Once the DPGAS memory model

is enabled, an application’s (or process’s) virtual address

space can be allocated a physical address space that may

span multiple partitions (memory controllers), i.e., local and

remote partitions. The set of physical pages allocated to

a process can be static (compile-time) or dynamic (run-

time). Multiple physical address spaces can be overlapped

to facilitate sharing and communication.





Table I
TEST OVERVIEW

Num Nodes Apps / node Spill Nodes Receive Nodes Mem Size (GB) Apps / Receive Node

1 4,16 0 0 4,16 N/A

2 6 0 0 4/8 2

2 6,16 1 1 4,16 2,8

4 6,16 2 2 4,16 2,8

8 6,16 4 4 4,16 2,8

16 16 0 0 16/20 8

16 6,16 8 8 4,16 2,8

8 6,16 6 2 4 (8 on Recv Nodes),16 2,8

16 6,16 14 2 4 (8 on Recv Nodes),16 2,8

process) are started on each DPGAS-enabled machine, and

each blade enumerates its closest (one-hop) neighbors. 2)

The DPGAS daemon monitors current DRAM allocation

and load, keeping track of average load or major page faults

(to disk) over a long period of time (similar to running

“ps” in the background of Linux OS). 3) When the average

allocation exceeds a preset threshhold (e.g. 80% of DRAM

or 100 page faults to disk in 4 seconds), the DPGAS daemon

issues a request to a neighboring node (or a dedicated

“receive” node) via message passing for M MB of memory.

4) The daemon at neighboring Node B checks to see if it can

satisfy the DPGAS memory request and then decides how

much of the requested M MB of memory can be allocated.

5) Node A is notified whether its spill request is rejected

or fulfilled and both nodes update their HTEA and SRQ

mapping tables and notify the local VMM or OS of the

change in the mapped physical address space.

D. Memory Deallocation

Although our current simulation infrastructure does not

enforce tie-breaking for simultaneous DPGAS requests, we

also must provide for deallocating memory that has been

mapped across virtualized DIMMs using DPGAS. Memory

deallocation takes place in three situations: 1) the requesting

node has finished using the remote memory it requested.

Typically, this takes place when its load has decreased below

a certain threshold or a hard timeout (set globally for all

nodes at start up) occurs. 2) The node that is receiving, i.e.

sharing memory via DPGAS, experiences high load (typical

when all nodes have equal amounts of memory). 3) Another

Node C with better fairness characteristics (fewer requests

or a smaller amount of memory requested) needs memory

that is currently being used by the original requesting Node

A. Obviously, the manner in which memory is forcefully

deallocated depends on the overall implementation goals

and required QoS metrics of the system, but one possible

deallocation technique is as follows: 1) Node B notifies node

A that it is revoking its shared memory. Node A must then

ACK back to confirm it is done. If it does not ACK back

within a preset time limit, Node B will change its HTEA

mapping tables ensuring that incoming requests to Node B

are rejected. 2) Both nodes update their HTEA mappings,

VMM status, and SRQ tables. 3) Node B proceeds to

allocate memory to the next highest-priority node.

V. TEST SETUP

Synthetic traces were generated based on application

access patterns and inter-reference timing from other stud-

ies looking at benchmark suites such as Spec 2006 [14].

These studies were used to specify the DRAM access

inter-reference time for synthetic benchmarks. The Spec

2006 benchmark represents applications that are worst-case

application workloads in terms of L2 cache misses, and some

of the most intensive of these applications, such as MCF and

Omnetpp, have an L2 cache miss every 4000-4500 cycles for

a 2 MB L2 cache size. Enterprise applications and general-

purpose applications likely have better spatial and temporal

locality than the SPEC suite, so we use an inter-reference

time ranging from 10,000 to 20,000 cycles between L2 cache

misses (memory accesses).

Three different synthetic benchmarks were used to rep-

resent different access patterns: 1) Random - worst case

scenario where there is no spatial locality within an address

stream; 2) Clustered Random - accesses are clustered around

a mean address, and locality is similar to an application

repeatedly accessing several pages in the application’s ad-

dress space; 3) Strided - the access stream is specified by

a stride and is related to applications that perform large

numbers of sequential array element accesses. Application

footprints were randomly assigned from 500-1500 MB,

although specific tests were designed with larger memory

footprints to have one or more applications that would

require spilling to a remote node via DPGAS. The sizing

of these memory footprints was drawn from insights found

in [15]. The number of read and write operations was split

equally between reads and writes.

DRAMSIM was initialized using a 4 GB module that

corresponds to Micron’s MT47H512M8 TwinDie 4 GB

DDR2 module [16]. Timing and power parameters were

selected for the DDR2-800 part, and 1 and 4 ranks were used



to simulate 4 and 16 GB of installed memory, respectively.

The associated CPU speed was set at 3000 MHz.

NS3 was initialized with between one and 16 nodes,

with each node connected to a single switch via 10 Gbps

channels. NS3’s raw socket layer was used to represent the

transfer of HT packets inside Ethernet packets. Simulations

were run for 100 real-world seconds and each node had

between one and 16 applications that each generated 500,000

synthetic addresses. For applications with a miss rate of

every 20,000 cycles, this would mean that the synthetic

applications would run about 3 real-world seconds. Tests

with 4 GB were run with 6 applications per “spill” node

and 2 applications per “receive” node, while tests with 16

GB of memory were run with at least 16 applications for the

“spilling” node and 8 applications for the “receiving” node.

In each test a certain number of applications were specified

to spill to other nodes, usually one to three applications

that exceeded the amount of memory for a minimally pro-

visioned blade. This setup assumes that an overprovisioned

blade would have 8 GB and 20 GB of memory, while our

simulation uses 4 GB and 16 GB, respectively.

Two tests were also devised to test scenarios similar to

those tested by proponents of memory blades [17] for times

when a greater number of “client” servers would like to

access remote memory on one central blade to support peak

workloads. The first simulation used eight nodes, with six

nodes containing 4GB of installed memory spilling to two

nodes with 8 GB of DRAM installed. The second test used

sixteen nodes with fourteen spill nodes and 2 receive nodes

with 4 and 8 GB of installed DRAM, respectively.

The simulations tracked several different metrics includ-

ing: 1) dynamic power for DRAM (W), 2) memory access

latency for DRAM (ns), 3) link and buffering latency for

the 10 Gbps network (ns), and 4) network utilization of the

10 Gbps network (B/s). These results are discussed more in

Section VI.

The different test cases are summarized in Table I.

VI. RESULTS

We break down the results according to the different met-

rics our simulations measured for memory and the network.

A. Memory Latency

Table II shows the average memory access latency across

all simulations. The use of DPGAS spilling does not dra-

matically change the average latency for a memory access,

although it can cause a slight increase in average latency of

a lightly loaded node that receives DPGAS remote memory

request. Changes in access patterns from DPGAS spill

operations and increases in the number of applications also

affect the number of conflicts on open rows in the simulated

DRAM, requiring additional latency to access a new row. In

most simulations, access latencies varied between 60 and 70

Table II
MEMORY LATENCY

Simulation, DRAM Size
Ave. Mem

Latency (ns)
Std. Dev.

2 node, 4/8GB 54.28 6.21

2 node, 4GB 53.06 2.5

4 node, 4GB 69.42 5.58

8 node, 4GB 66.29 9.5

16 node, 4GB 64.35 11.5

8 node, 4GB,8GB 67.74 10.89

16 node, 4GB,8GB 69.98 10.65

2 node, 16GB 68.11 12.51

4 node, 16GB 68.27 13.28

8 node, 16GB 68.72 14.21

16 node, 16/20GB 68.17 9.11

16 node, 16GB 68.84 7.2

nanoseconds. Variations between nodes are expressed in the

standard deviation calculations in Table II.

Further tests showed that the latency difference for DP-

GAS versus non-DPGAS simulations (two nodes with 4/8

GB and sixteen nodes with 16/20 GB) led to an increase

(sixteen node case) or decrease (two node case) of less than

2 ns and a smaller standard deviation. While the amount

of traffic to the “receiving” DRAM increased, this DRAM

was already underutilized due to lighter application loads.

The decrease in standard deviation reflects that the average

latency of memory accesses on the “spill nodes” was reduced

as remote accesses took place.

B. Memory Power

DRAMSIM tracks the average power for one activation-

to-activation cycle, meaning that it tracks the power used to

perform one operation, whether it be a read, write, precharge,

or refresh operation. The calculated power is averaged across

all the accesses that take place in the memory simulation to

get a power value for each type of operation the DRAM

performs. DPGAS-enabled servers can be used to reduce

the static component of DRAM power, that is the average

power that is required even if a DIMM is not used for read or

write operations. Due to overprovisioning, DIMMs that are

underutilized must still be refreshed, and they still consume

leakage energy.

This static component of DRAM power includes the

power used when a DIMM is in power-down or standby

states for either active (when data is stored in the sense

amplifiers) or precharge (all data is restored to a row) modes.

Additionally, static power takes into account the refresh

power for refresh cycles that occur at regular intervals every

64 ms (for our model DIMM). Figures 4 and 5 show

the average static power savings achieved by reducing the

DRAM in each node by 1 DIMM. For the 4 GB case,

we assume that power savings are calculated based on



 1

 10

 100

1 2,1 4,2 8,4 16,8 8, 6 16, 14

P
o
w

e
r 

(W
)

Number of Nodes, Spill Applications

4GB Total Power and Static Power Savings vs Number of Nodes

Normal
DPGAS

Static Savings

Figure 4. Total Power and Power Savings for Nodes With 4 GB DRAM

provisioning each DPGAS-enabled node with 4 GB instead

of an 8 GB overprovisioned server, and for the 16 GB case,

we assume that power savings are calculated in relation to

a “normal” 20 GB overprovisioned server. Note that in the

“memory blade” case, there are two receive nodes with an

extra 4 GB of memory, leading to slightly higher total power.

The power savings are illustrated with respect to the total

power (including power for activations, read, write, and

termination commands) to give a proper sense of the total

power consumed versus the static power that can be saved by

provisioning fewer DIMMs. For the 4 GB case, each server

receives half as much memory, so power savings are between

2 and 19 Watts or 47 to 49% for the normal spill/receive

tests. For the 16 GB case, the overall percentage of savings is

lower since we assume overprovisioning means adding only

one more similar (4 GB) DIMM rather than adding multiple

DIMMs. The savings for the 16 GB tests is between 1.5 and

16 Watts or 18% to 20%.

The memory blade experiments show similar savings

for high-load environments. Compared to the medium load

experiments (with an equal number of spill/receive nodes),

the memory blade tests reduce static power by 36% and

42%, compared to 47% for the medium load simulations.

It should also be noted that removing DIMMs from the

system can increase the overall system power if this reduc-

tion increases the system utilization. For instance, the HP

Power Advisor Calculator [18] was used to build a 10,000

core data center with the similar DRAM characteristics

to our experiments and based on the Proliant DL160 G6

server blade running at 60% utilization. For the 16 GB

case, removing 4 GB of DRAM from half of the blades

would result in a power savings of 3,540 Watts or 2.8%.

However, if removing DIMMs increased utilization (CPU

and memory) by 5%, the power cost would increase by

3,040 Watts or 2.5%. It is unlikely that our approach would

increase CPU utilization, since modern operating systems

are already geared toward hiding the latency of accesses

to storage devices like DRAM and hard disks but more

comprehensive experiments are needed to validate the effect

of DPGAS on overall system utilization and accompanying

power reductions.

 1

 10

 100

1 2 4 8 16

P
o
w

e
r 

(W
)

Number of Nodes

16 GB DRAM Total Power and Static Power Savings vs Number of Nodes

Normal
DPGAS

Static Savings

Figure 5. Total Power and Power Savings for Nodes With 16 GB DRAM

C. Network Latency

In addition to using the HToE medium and DPGAS to

virtualize DRAM DIMMs, HToE also helps to provide a

low-latency interconnect solution that compares favorably

with other mature solutions like RDMA and custom NUMA

interconnects. To find the latency of an access to a remote

DIMM, we must first calculate the “static” components of

latency that are not modeled in our NS3 simulation model.

The latency values for the related Ethernet and memory

subsystem components were obtained from statistics from

other studies [9] [19] [20] and from the place and route

timing statistics for our HTEA implementation described in

earlier work [1]. An overview is presented in Table III for

convenience. The latency through the HTEA pipeline varies

based on the type of packet (HT request or response) that

is processed, but here we present the average latency based

on an average processing time of six cycles at 125 MHz.

Table III
LATENCY NUMBERS USED FOR EVALUATION OF PERFORMANCE

PENALTIES

Component Latency (ns)

AMD Northbridge 40

On-chip memory access 60

Heidelberg HT Cave Device 45

HTEA 48

10 Gbps Ethernet MAC 500

10 Gbps Ethernet Switch 200

Average Component Delay 893

Measured Transmission 185 - 939

and Buffering Delay (NS3)

Using the values from Table III, the performance penalty

of a remote memory access can be calculated using the

formula:

trem req = tnorthbridge + tHTEA + tMAC + ttransmit

where the remote request latency is equal to the time for

an AMD Northbridge request to DRAM, the HTEA latency

(including the Heidelberg HT interface core latency), and

the Ethernet MAC encapsulation and transmission latency.

Figure 6 shows the total average one-way latency using



 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

4 4, 8 on receive 16

L
a

te
n

c
y
 (

n
s
)

Installed Memory in Spill Nodes (GB)

Network Latency versus Number of Nodes and Spill Applications

2 nodes
4 nodes
8 nodes

16 nodes

Figure 6. HW Latency for HToE Remote Operation

 0

 100

 200

 300

 400

 500

 600

 700

 800

4 4, 8 Recv 16

M
B

/s

Installed Memory in Spill Nodes (GB)

Network Utilization versus Number of Nodes and Spill Applications

2 nodes
4 nodes
8 nodes

16 nodes

Figure 7. Network Utilization with DPGAS

the NS3 transmission latency values for ttransmit and the

average component delay in Table III for the other delay

values. Note that we include the 200 ns switching delay

[21] since NS-3 does not accurately model all the internal

components of a data center-capable Ethernet switch. This

addition likely overestimates the effect switching delay has

on latency.

The one-way latency varies from 1024 ns to 1238 ns for

the 4 GB simulations with six synthetic applications on each

node and from 1057 ns to 1593 ns for the 16 GB simulations

with sixteen applications on each node. Also, the addition

of more spilling nodes doubles the latency of simulations

with 8 and 16 nodes to 1478 and 1832 nanoseconds.

Although the overall latency increases due to buffering de-

lay, latency still remains low enough that remote, virtualized

DRAM can be accessed without causing noticeable delay to

applications. The latency penalties reported here compare fa-

vorably to other technologies, including the fastest reported

MPI latency, at 1.2 µs [22], RDMA (low µs range), and

disk latency, which ranges from 6 to 13 ms for standard

rotational drives [23].

The one-way latency can also be used to determine the

total latency of a read request that receives a response:

trem read req = 2*tHTEA req + 2*tHTEA resp + 2*tMAC

+ 2*ttransmit + tnorthbridge + trem mem access

Using these conservative values, we arrive at 2,242 ns for

the read latency of a cache line.

D. Network Utilization

In addition to tracking packet latency, it is also important

to analyze the overall impact of using HToE on a shared

10 Gbps Ethernet link. Figure 7 shows the link utilization

in MB per second during the simulation time when DPGAS

was being used to spill memory requests to remote nodes.

Utilization varies from 31.3 MB/s for the two-node, 4 GB

test case to 756 MB/s for the heavily loaded test case with

16 nodes and 14 nodes spilling to the two “memory blade”

nodes. The 16 GB test cases show similar utilization to the

normal 4 GB test cases, with utilization ranging from 31.3 to

250.65 MB/s. Although it would be expected that utilization

would be higher for larger numbers of spilling applications,

the synthetic benchmarks in the 16 GB tests transferred more

data but over a much larger interval of time (about 4 seconds

of real-world time versus 2 seconds in the 4 GB tests).

The addition of more nodes and applications per node

increases the utilization, but the 10,000 to 20,000 cycle

intervals between memory requests keep packets spaced

out for medium load cases, reducing link utilization. The

memory blade tests for 8 and 16 nodes show a dramatic

increase in the amount of traffic with utilizations of 555

and 756 MB/s, respectively. For the sixteen node case, this

translates to a utilization of more than 6 Gbps for the

combined traffic of 56 applications sending HToE requests in

the same period of time (a relatively heavy workload). This

high utilization indicates that large memory blades may need

to be placed on a separate 10 Gbps link to prevent delays

for other network traffic.

VII. DISCUSSION

Our simulations demonstrate a distinct point in time

when multiple applications have overlapping requests to

spill memory via DPGAS. In real-world situations multiple

servers may experience peak workload at the same time,

but we expect that our simulation setup, specifically for the

memory blade tests, represents a heavy loading or worst-case

scenario. While our simulations do not currently incorporate

a full system performance model, DPGAS accesses should

have much better performance than accesses to disk.

Additionally, our simulations did not take into account

other existing optimizations for sharing memory such as

page migration. This penalizes our results because pages

that are most commonly used could be swapped into local

memory, reducing the number of remote accesses. On the

other hand, our simulations also did not take into account the

HT transaction limitations (based on SrcTag and UnitIDs).

This omission likely would increase the remote access

latency in heavily loaded situations.

Finally, we note that there are several unsolved issues with

using HT over Ethernet, mostly related to issues such as flow

control. HyperTransport and similar on-chip interconnects

are designed for fast point-to-point serial communication,

so encapsulating HyperTransport packets into Ethernet will

likely require additional buffering, protocols, and optimiza-

tion to provide an effective implementation of HToE.



VIII. RELATED WORK

An evaluation of power trends in the data center was

conducted in [24], and a design for a memory blade approach

to sharing memory, disaggregated memory, was discussed in

[17]. The disaggregated memory approach has very similar

goals to our work, but their implementation is different in

that they focus on creating additional memory blades to

increase available memory bandwidth and to enable coherent

sharing between client nodes. Our work is focused on using

existing DRAM resources more efficiently to reduce over-

provisioning. While disaggregated memory provides better

bandwidth than DPGAS, it may also prove cost prohibitive

for small to medium data centers.

Our approach is similar to RDMA-based approaches, al-

though DPGAS is focused on reducing registration overhead

and supporting more fine-grained access. One company that

has approached using RDMA for memory virtualization is

RNA Networks, whose Memory Virtualization Platform uses

RDMA with Infiniband or Ethernet to allow high-bandwidth

and low-latency memory sharing [4]. This technique also

helps to restrict memory power by reducing overprovision-

ing.

Other higher-level approaches have addressed operating

system support and data center level support for reducing

DRAM power. At the operating system level, Tolentino [25]

has suggested a software-driven mechanism using control

theory to limit application working sets at the operating sys-

tem level and reduce the need for DRAM overprovisioning.

Additionally, many researchers have proposed the concept of

ensemble-level power management [26] to manage power at

the server enclosure levels

IX. CONCLUSION

In this paper we have presented a fine-grained simula-

tion infrastructure that was used to investigate the latency,

bandwidth, and power characteristics of Dynamic Partitioned

Global Address Spaces and its underlying hardware imple-

mentation, HyperTransport over Ethernet.

We have shown how DPGAS can be used to reduce

DRAM overprovisioning in the data center and subsequently

how to reduce static DRAM power. Additionally, we demon-

strated that HToE is a low-latency encapsulation method that

can be easily incorporated into existing data centers. Results

from our simulations also provided insight into specific use

cases and their effects on the link utilization of a standard

10 Gbps Ethernet switch.

In our future work we plan to further define the complete

implementation of HToE, and we plan to incorporate support

for tracking system-level performance and using optimiza-

tions such as page migration.

REFERENCES

[1] J. Young, F. Silla, S. Yalamanchili, and J. Duato, “A
hypertransport-enabled global memory model for improved
memory efficiency,” 2009, http://www.ub.uni-heidelberg.de/
archiv/9796.

[2] U. Hoelzle and L. A. Barroso, The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines.
Morgan and Claypool Publishers, 2009.

[3] C. Lefurgy et al., “Energy management for commercial
servers,” Computer, vol. 36, no. 12, pp. 39–48, 2003.

[4] “Rna networks memory virtualization for the data
center,” White Paper, 2008, http://www.rnanetworks.
com/memory-virtualization.

[5] “An introduction to the intel quickpath interconnect,” http:
//www.intel.com/technology/quickpath/introduction.pdf.

[6] “Hypertransport specification, 3.10b,” 2009,
http://www.hypertransport.org.

[7] “Fibre channel over ethernet final standard,” http://www.fcoe.
com.

[8] J. Nieplocha et al., “Global arrays: a portable ”shared-
memory” programming model for distributed memory com-
puters,” in Supercomputing ’94. New York, NY, USA: ACM,
1994, pp. 340–349.

[9] P. Conway and B. Hughes, “The amd opteron northbridge
architecture,” IEEE Micro, vol. 27, no. 2, pp. 10–21, 2007.

[10] U. Brüning, “The htx board: The universal htx test platform,”
http://www.hypertransport.org/members/u of man/htx
board data sheet UoH.pdf.

[11] “Ns-3 network simulator project,” http://www.nsnam.org/.

[12] D. Wang et al., “Dramsim: a memory system simulator,”
SIGARCH Comput. Archit. News, vol. 33, no. 4, pp. 100–
107, 2005.

[13] BIOS and Kernel Developer’s Guide (BKDG) For AMD
Family 11h Processors, 2008, http://support.amd.com.

[14] A. Jaleel, “Memory characterization of workloads using
instrumentation-driven simulation: A pin-based memory char-
acterization of the spec cpu2000 and spec cpu2006 bench-
mark suites,” VSSAD Technical Report 2007, 2007, http:
//www.glue.umd.edu/∼ajaleel/workload/.

[15] S. Chalal and T. Glasgow, “Memory sizing for server virtu-
alization,” 2007, http://communities.intel.com/docs/.

[16] “Micron ddr2 part catalogs - twindie 4 gb,” 2010, http://www.
micron.com/products/dram/ddr2/.

[17] K. Lim et al., “Disaggregated memory for expansion and
sharing in blade servers,” SIGARCH Comput. Archit. News,
vol. 37, no. 3, pp. 267–278, 2009.

[18] “Hp power advisor utility: a tool for estimating
power requirements for hp proliant server systems,”
2010, http://h20000.www2.hp.com/bc/docs/support/
SupportManual/c01861599/c01861599.pdf.

[19] D. Slogsnat, A. Giese, M. Nüssle, and U. Brüning, “An open-
source hypertransport core,” ACM Trans. Reconfigurable
Technol. Syst., vol. 1, no. 3, pp. 1–21, 2008.

[20] “Intel 82541er gigabit ethernet controller,” http://download.
intel.com.

[21] “Quadrics qs ten g for hpc interconnect product family,” 2008,
http://www.quadrics.com/.

[22] “Mellanox connectx ib specification sheet,” 2008, http://www.
mellanox.com.

[23] “Storagereview.com drive performance resource center,”
2010, http://www.storagereview.com/.

[24] K. Lim et al., “Understanding and designing new server archi-
tectures for emerging warehouse-computing environments,” in
ISCA ’08. Washington, DC, USA: IEEE Computer Society,
2008, pp. 315–326.

[25] M. E. Tolentino et al., “Memory miser: Improving main
memory energy efficiency in servers,” IEEE Trans. Comput.,
vol. 58, no. 3, pp. 336–350, 2009.

[26] P. Ranganathan et al., “Ensemble-level power management
for dense blade servers,” in ISCA ’06. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 66–77.


