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Abstract

Modern data centers are presenting unprecedented
demands in terms of cost and energy consumption, far
outpacing architectural advances. Consequently, blade
designs exhibit significant cost and power inefficien-
cies, particularly in the memory system. We propose
a HyperTransport-enabled solution called the Dynamic
Fartitioned Global Address Space (DPGAS) model for
seamless, efficient sharing of memory across blades in
a data center, leading to significant power and cost sav-
ings. This paper presents the DPGAS model, describes
HyperTransport-based hardware support for the model,
and assesses this model’s power and cost impact on
memory intensive applications. Overall, we find that
cost savings can range from 4% to 26% with power re-
ductions ranging from 2% to 25% across a variety of
fixed application configurations using server consoli-
dation and memory throttling. The HyperTransport im-
plementation enables these savings with an additional
node latency cost of 1,690 ns latency per remote 64
byte cache line access across the blade-to-blade inter-
connect.

1. Introduction

The current solution to satisfying increasing de-
mand for memory on a blade server is to provision
memory on each blade for the worst case demand. One
recent study empirically measured memory footprints
from non-virtualized applications across 3,000 servers
under normal applications and found the average phys-
ical memory usage to be about 1 Gigabyte [3]. How-
ever, this study also found that memory requirements
can vary greatly, with 50% of the applications requiring
between 1 GB and 4 GB of memory at certain points
during the five-week period of data collection. Thus,
provisioning blade memory for the average case can
prove to be inadequate with respect to the subsequent
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page fault rate while provisioning for the worst-case
memory footprint can lead to servers that are substan-
tially overprovisioned and consequently expensive and
power inefficient. Furthermore, the cost of DRAM is
a non-linear function of density and memory size, thus
small increases in provisioned memory lead to dispro-
portionate increases in cost.

We hypothesize that while memory demands of in-
dividual applications can vary substantially, rarely, if
ever, do all applications make peak demands concur-
rently. The idea proposed by this work is to reduce
the cost and power associated with memory by provi-
sioning blades with less than worst-case memory de-
mand and sharing memory across blades during periods
of localized, high memory demand. Thus, the physi-
cal memory accessible to a blade can vary over time,
increasing during periods of peak load by “borrowing”
physical memory from an adjacent blade. This idea of
shared memory is clearly not new. However, memory
sharing via traditional means can exact significant per-
formance penalties through the interconnect and oper-
ating system management functions rendering them in-
feasible in commodity server configurations.

What has changed is the recent introduction of fast
interconnects integrated onto the multi-core die close to
the memory controllers. The advent of HyperTransport
technology reduced the distance from the “wire” to the
on-chip memory controller providing low-latency ac-
cess to remote memory controllers. Thus the hardware
cost to access remote memory, e.g., adjacent blades, is
no longer prohibitive. However, to productively har-
ness this raw capability, a global system model must be
defined to direct how the system-wide memory is allo-
cated/accessed and thereby shared across the operating
system domains of distinct blades. This is where our ap-
proach differs from prior non-uniform memory access
(NUMA) architectures. Each blade is under the con-
trol of a distinct OS. However a blade may periodically
become a NUMA machine that has access to a portion
of the physical memory of an adjacent blade. The ad-



vent of on-die integrated HT makes this feasible from a
performance perspective.

This paper proposes a dynamic global address
space model (DPGAS) by modifying the existing par-
titioned global address space model (PGAS) [4] to
support a global, noncoherent physical address space
where an application’s virtual address space can be dy-
namically allocated physical memory located on local
and remote nodes. Architectural support for address
space management is tightly integrated into the Hyper-
Transport interface to minimize the performance over-
head of remote memory accesses and to permit fast,
dynamic changes in physical address space mappings.
Physical memory is dynamically shared by spilling
memory demand on a blade to neighboring blades as
necessary during peak periods. Consequently, the to-
tal amount of memory to be provisioned across the data
center can be significantly reduced, leading to substan-
tial cost and power savings with minimal loss of perfor-
mance (an increase in the page fault rate).

Specifically, this paper contributes the following:

1. A physical address space model, Dynamic Parti-
tioned Global Address Space (DPGAS), for man-
aging system-wide physical memory in large-scale
server systems.

2. Design, implementation, and evaluation of hard-
ware support for the DPGAS model via a memory
mapping unit that is integrated with a HyperTrans-
port local interface and tunnels memory requests
via commodity interconnect—in this case Ether-
net.

3. An evaluation of DPGAS with 1) traces from
memory-intensive applications, 2) an on-demand
memory spilling policy to allocate off-blade mem-
ory when local demand exceeds available physi-
cal memory, and 3) an evaluation of the cost and
power savings from more efficient DRAM usage.

The following sections present the model, its archi-
tectural support integrated into the HT interface, and a
simulation-based evaluation of the potential for cost and
power savings.

2. A Dynamic Partitioned Global Address
Space model

The DPGAS model is a generalization of the par-
titioned global address space (PGAS) model to permit
flexible, dynamic management of a physical address
space at the hardware level—the virtual address space
of a process is mapped to physical memory that can

span multiple (across blades) memory controllers. The
two main components of the DPGAS model are the ar-
chitecture model and the memory model.

2.1. Architecture model

Future high-end systems are anticipated to be com-
posed of multi-core processors that access a distributed
global 64-bit physical address space. Cores nominally
have dedicated L1 caches for instructions and data, but
may share additional levels of cache amongst them-
selves in groups of two cores, four cores, etc. A set
of cores on a chip will share one or more memory
controllers and low-latency link interfaces integrated
onto the die such as HyperTransport [15]. All of the
cores also will share access to a memory manage-
ment function that will examine a physical address and
route this request (read or write) to the correct mem-
ory controller—either local or remote. For example, in
the current-generation Opteron systems, such a mem-
ory management function resides in the System Request
Interface (SRI), which is integrated on-chip with the
Northbridge [6].

2.2. Memory model

The memory model is that of a 64-bit partitioned
global physical address space. Each partition corre-
sponds to a contiguous physical memory region con-
trolled by a single memory controller, where all parti-
tions are assumed to be of the same size. For example,
in the Opteron (prior to Barcelona core), partitions are
1 TB corresponding to the 40-bit Opteron physical ad-
dress. Thus, a system can have 22* partitions with a
physical address space of 2% bytes for each partition.
Although large local partitions would be desirable for
many applications, such as databases, there are non-
intuitive tradeoffs between partition size, network diam-
eter, and end-to-end latency that may motivate smaller
partitions. Further, smaller partitions may occur due
to packaging constraints. For example, the amount of
memory attached to an FPGA or GPU accelerator via a
single memory controller is typically far less than 1 TB.
Thus, the DPGAS model incorporates a view of the sys-
tem as a network of memory controllers accessed from
cores, accelerators, and I/0 devices.

Two classes of memory operations can be gener-
ated by a local core: 1) load/store operations that are
issued by cores to their local partition and are serviced
per specified core-semantics, and 2) get/put operations
that correspond to one-sided read/write operations on
memory locations in remote partitions [22].

Coherence is separated from the issues central to



defining the DPGAS model because large, scalable co-
herence is still an unsolved research problem, and many
systems do not require full-scale coherence across large
numbers of servers. Additionally, coherence can be en-
forced between the one to eight Opteron-based sockets
on a server blade to provide local “islands” of coher-
ence. In this case one can view the DPGAS model
as dynamically increasing the size of physical mem-
ory (across blades) that is associated with a coherence
domain although the specific protocols are beyond the
scope of this paper.

A sample get transaction on a memory location in
a remote partition must be forwarded over some sort of
network to the target memory controller and a read re-
sponse is transmitted back over the same network. The
specific network is not germane to the DPGAS model
implementation. However, being constrained by com-
modity parts, this study utilizes Gigabit Ethernet.

Once the DPGAS memory model is enabled, an ap-
plication’s (or process’s) virtual address space can be al-
located a physical address space that may span multiple
partitions (memory controllers), i.e., local and remote
partitions. The set of physical pages allocated to a pro-
cess can be static (compile-time) or dynamic (run-time).
Multiple physical address spaces can be overlapped to
facilitate sharing and communication.

This paper is only concerned with a very spe-
cific application of DPGAS, namely sharing of mem-
ory across blades. Dynamic memory requests at a blade
can be satisfied by spilling—allocating memory from a
neighboring blade with spare capacity. We demonstrate
in section 5 that this simple allocation policy can have a
significant impact. The following section addresses the
feasibility of a hardware implementation.

3. DPGAS: implementation

Hardware support for DPGAS has two basic com-
ponents. The first is a memory function that distin-
guishes between local and remote memory requests.
The second is a memory mapping unit that maps remote
physical addresses to specific destination memory con-
trollers. The former is available in modern processors
such as the Opteron. The latter is contributed by this
paper and is tightly integrated into the HyperTransport
interface as shown in Figure 1. The proposed memory
mapping unit or bridge performs several functions, in-
cluding 1) managing remote accesses, 2) encapsulating
remote requests into an inter-blade communication fab-
ric (the demonstrator uses Ethernet), and 3) extending
noncoherent HT packet semantics across nodes. This
section describes the design and implementation of the
bridge.
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Figure 2. HT read request packet format

3.1. HyperTransport overview

HT is a point-to-point packet switched interconnect
standard [15] that defines features of message-based
communication, including 1) the use of groups of vir-
tual channels, 2) read/write transactions with posted and
non-posted semantics, 3) naming and tracking of multi-
ple outstanding transactions from a source, and 4) spec-
ification of ordering constraints between messages. In
addition, the HT specification defines flush and fence
commands to manage updates to memory on a node.
Our model extends the flush command to a remote ver-
sion while conforming to normal HT ordering and dead-
lock avoidance protocols.

A typical command packet is shown in Figure 2,
where the fields specify options for the read transac-
tion and preservation of ordering and deadlock freedom.
Our implementation specifically relies on the UnitID,
SrcTag, SeqlD, and address fields. The UnitID speci-
fies the source or destination device and allows the lo-
cal host bridge to direct requests/responses. The Src-
Tag and SeqID are used to specify ordering constraints
between requests from a device, for example, ordering
between outstanding, distinct transactions. Finally, the
address field is used to access memory that is mapped to
either main memory or HT-connected devices. An ex-
tended HT packet can be used that builds on this format
to specify 64-bit addresses [15].
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3.2. HyperTransport over Ethernet—address
translation and Ethernet encapsulation

Our demonstrator is based on the use of Ether-
net as the commodity inter-blade interconnect primar-
ily due to ready availability of hardware implementa-
tions. The bridge design itself does not rely on Eth-
ernet and is easily replaced with other commodity or
specialized interconnects. We refer to this demonstra-
tor bridge as the HT-over-Ethernet (HToE) implementa-
tion. The HToE bridge implementation uses the Univer-
sity of Heidelberg’s HyperTransport Verilog implemen-
tation [25], which implements an noncoherent HT cave
(endpoint) device. Our bridge interfaces with the Hei-
delberg core so that we can demonstrate functionality
with a realistic HT cave implementation. Figures 3(a)
and 3(b) show the outbound and inbound components
of our HToE bridge along with interface signals for the
Heidelberg core and Ethernet MAC.

The HToE implementation is based on a system
with Opteron nodes where each Opteron node has an
Ethernet-enabled FPGA card available in the HTX con-
nector slot, such as the University of Heidelberg HTX
card [2]. Several nodes are connected via an inexpen-
sive Ethernet switch, and it is assumed that HyperTrans-
port messages sent to remote addresses via the HToE
bridge are routed using one of two methods: 1) access to
the northbridge address mapping tables (via the BIOS)
in order to specify the physical address space mappings
for the HTOE bridge device, or 2) an intelligent MMU
that distinguishes between accesses to the local memory
and the I/O address space and HT packets that are sent
for non-local addresses through the HToE bridge.

Consider a system that has been properly initialized
and consider an application that generates a read oper-
ation to an address that is in a remote partition. There
are three stages in each individual communication op-
eration (e.g., a read request command) at a given source
host and attached devices: 1) extension from the 40-bit
physical address in the Opteron to the 64-bit physical
address, 2) creation of a HT packet that includes a 64-bit

extended address, and 3) mapping the most significant
24 bits in the destination address to a 48-bit MAC ad-
dress and encapsulation into an Ethernet frame. An ef-
ficient implementation could pipeline the stages to min-
imize latency, but retaining the three stages has the fol-
lowing advantages: 1) It separates the issues due to cur-
rent processor core addressing limitations from the rest
of the system, which will offer a clean, global shared ad-
dress space, thus allowing implementations with other
true 64-bit processors, and 2) it will be easy to port to
other platforms that do not encapsulate by using Eth-
ernet frames, but use other link layer formats such as
Infiniband. Thus, some efficiency was sacrificed for ini-
tial ease of implementation and for a cleaner, modular
design.

First, the HT packet type is decoded into a re-
quest or response command packet in the module called
Seq2Mac in Figure 3(a). For request packets the two
most significant bits of the 40-bit address are decoded to
select one of four partition registers to access the 24-bit
partition address—the two most significant bits in the
40-bit address used to address the partition register are
reset in parallel with the access to the partition register.
Now three pieces of information are needed: 1) the ex-
tended 24-bit address to form an HT read request packet
with extended address, 2) the MAC address of the des-
tination bridge to encapsulate the extended HT packet
into Ethernet, and 3) the local MAC address, according
to Ethernet frame format to enable the response. Item
3 has been set during initialization, and access to the
source MAC address is not in the critical path. Items 1
and 2 have a direct correspondence among them—given
a destination node ID or the remote partition address,
there is a unique MAC address associated with both data
fields. Therefore, the partition register can store both
the 24-bit partition address and the destination MAC ad-
dress together, thus reducing access time when forming
the Ethernet frame. Once the remote MAC address and
the 64-bit address have been found in the partition ta-
ble, the new HT packet is constructed and encapsulated
in a standard Ethernet packet, illustrated in the figure



as the Ethernet Frame Assembly module. The encapsu-
lated packet is then buffered until it can be sent using
the local node’s Ethernet MAC and the physical Ether-
net interface. For packets that send a set amount of data,
the control and data packets must be buffered until all
the data has been encapsulated into Ethernet frames.

The receive behavior of the bridge on the remote
node will require a “response matching” table where
it will store, for every non-posted HT request (request
that requires a response), all the information required to
route the response back to the source when it arrives.
This table is required since HT is strictly a local inter-
connect and response packets have no notion of a des-
tination 40-bit (or extended 64-bit) address. Since the
formats of HT request and response packets differ and
this implementation desires not to change local HT op-
eration, the SrcTag field of each packet is used to match
MAC addresses from an incoming request packet with
an outgoing response packet. Note that each request
packet contains the source MAC address, and this is
the address stored in the “response matching” table and
later used as the destination MAC address for the corre-
sponding response. Encapsulation and buffering occur
once again until the response and data can be transmit-
ted over Ethernet. In the HToE bridge, this module is
listed as the Pending Request Store in Figure 3(b) and
is shared between incoming and outgoing packets.

It should also be noted that since HT SrcTags are
5 bits, a maximum of 32 outstanding requests can be
handled concurrently using the Pending Request Store.
This limitation means that additional requests must be
queued in the bridge until space is free in the Pending
Request Store. If two request packets arrive with the
same SrcTag, then the latter packet is remapped before
being stored in the table. When the corresponding re-
sponse leaves the HToE bridge, the SrcTag is mapped
back to its original value to ensure proper HT routing
on the requesting local node. Once the response reaches
the local HToE bridge that initiated the read request, the
HT packet is removed from its Ethernet encapsulation.
The UnitID is changed again to that of the local host
bridge and the bridge bit is set to send the packet up-
stream. This allows the local host bridge to route re-
sponses to the originating HT device. Other transac-
tions, such as a posted write or a non-posted write, in-
volve similar sequences of events. The differences in
these transactions are that for posted writes, no data is
stored to create a response; for non-posted writes, only
a “TargetDone” response is returned and no data needs
to be buffered before the response is sent over Ethernet.
Similarly, atomic Read Modify Write commands can be
treated as non-posted write commands for the purposes
of this model.

Table 1. Latency results for HToE bridge

DPGAS operation Latency (ns)

Heidelberg HT Core (input) 55
Heidelberg HT Core (output) 35
HToE Bridge Read (no data) 24
HToE Bridge Response (8 B data) 32
HToE Bridge Write (8 B data) 32

Total Read (64 B) 1692

Total Write (8 B) 944

4. DPGAS: evaluation of hardware sup-
port

Memory mapping is on the critical path for re-
mote accesses. This section reports on the evaluation
of a hardware implementation of DPGAS support, the
bridge, and the integration into the HyperTransport in-
terface and remote extensions to the HyperTransport
protocol required to support DPGAS.

4.1. Bridge implementation

Xilinx’s ISE tool was used to synthesize, map, and
place and route the HToE Verilog design for a Virtex
4 FX140 FPGA. Synthesis tests using Xilinx software
have indicated that the four major modules that make
up the bridge are individually capable of speeds in ex-
cess of 160 MHz—combined, unoptimized results indi-
cate that the HT bridge is more than capable of feeding
a 1 Gbps or faster Ethernet adapter with a 125 MHz
clock speed. Evaluations for each of the request and re-
ply critical paths suggest that the latency overhead of
the bridge is on the order of 24 to 72 ns (for a control
packet with no data and a read request response with
eight doublewords of data, respectively). In a Xilinx
Virtex 4 FX140 FPGA, an unoptimized placement of
the bridge uses approximately 1,300 to 1,500 slices, or
approximately 5% to 6% of the chip. Overheads that
reduced performance included the use of a serial Gi-
gabit Ethernet MAC interface and the use of only one
pipeline to handle packets for each of the three avail-
able virtual channels. The latency results for our bridge,
the Heidelberg core (used to interface with our bridge)
[25], and total latency for the entire path from local to
remote memory are listed in Table 1. The bridge la-
tency numbers assume a 125 MHz clock and discount
any serialization latency normally associated with Xil-
inx Ethernet MAC interfaces.



4.2. Bridge and memory subsystem latencies

While our synthesis results proved that the HToE
bridge is low-latency, it is also important to understand
the overall latency penalty that the memory subsys-
tem contributes to remote memory accesses. The la-
tency values for the HToE bridge component and related
Ethernet and memory subsystem components were ob-
tained from statistics from other studies [6] [25] [17]
and from the above place and route timing statistics for
our bridge implementation. An overview is presented
in Table 2. Our HToE implementation was based on a 1
Gbps Ethernet MAC included with the Virtex 4 FPGA,
but latency numbers were not available for this IP core.
10 Gbps Ethernet numbers are shown in this table to
demonstrate the expected performance with known la-
tency numbers for newer Ethernet standards.

Table 2. Latency numbers used for evaluation
of performance penalties

Interconnect Latency (ns)
AMD Northbridge 40
CPU to on-chip memory 60
Heidelberg HT Cave Device 35-55
HToE Bridge 24 -72
10 Gbps Ethernet MAC 500
10 Gbps Ethernet Switch 200

Utilizing the values from Tables 1 and 2 for using
the HToE bridge to send a request to remote memory,
the performance penalty of remote memory access can
be calculated using the formula:

trem,req = tnorthbridge + tHToE + tmAC + Uransmit

where the remote request latency is equal to the time for
an AMD northbridge request to DRAM, the DPGAS
bridge latency (including the Heidelberg HT interface
core latency), and the Ethernet MAC encapsulation and
transmission latency. This general form can be used to
determine the latency of a read request that receives a
response:

trem,reaa’,req = 2>x<tH ToE _req 2>ktH ToE resp + 2>ktMAC +

* . .
2*Uransmir + tnorzhbrzdge + trem_mem_access

These latency penalties compare favorably to other
technologies, including the 10 Gbps cut-through latency
for a switch, which is currently 200 ns [23]; the fastest
MPI latency, which is 1.2 us [21]; and disk latency,
which is on the order of 6 to 13 ms for hard drives such
as those in one of the server configurations used below
for the evaluation of DPGAS memory sharing [26]. Ad-
ditionally, this unoptimized version of the HToE bridge

is fast enough to feed a 1 Gbps Ethernet MAC with-
out any delay due to encapsulating packets. Likely
improvements for a 10 Gbps-comptable version of the
HToE bridge would include multiple pipelines to allow
processing of packets from different virtual channels
and the buffering of packets destined for the same des-
tination in order to reduce the overhead of sending just
one HT packet in each Ethernet packet in the current
version.

5. DPGAS: evaluation of memory sharing

In the absence of a full hardware testbed, we em-
ploy a trace-driven analysis of the potential savings of-
fered by a DPGAS implementation. Virtual address
traces were acquired using an instrumented SIMICS
3.0.31 model [20] and fed through an internally devel-
oped C++ page table simulator to determine the num-
ber of page faults as a function of physical memory
footprints ranging from 32 MB to 1 GB. Five bench-
marks were selected: Spec CPU 2006’s MCF, MILC,
and LBM [11]; the HPCS SSCA graph benchmark [1];
and the DIS Transitive Closure benchmark [7]. These
benchmarks had maximum memory footprints ranging
from 275 MB to 1600 MB. A 2.1 billion address trace
(with 100 million addresses to warm the page table)
was sampled from memory intensive program regions
of each benchmark.

5.1. Memory allocation

We analyze the impact of DPGAS by simulating a
workload allocation across a multiblade server config-
uration using a simple greedy bin packing algorithm.
An application is randomly selected and its maximum
memory footprint is allocated on a random blade. This
process is repeated until some termination criterion is
met, e.g., allocation failure, fixed workload, etc. The
workload is recorded and the same set of memory foot-
prints is allocated across the same server configuration
using DPGAS as follows. When an application cannot
be allocated on a blade due to a lack of memory, ad-
ditional memory is allocated on an adjacent blade, i.e.,
spilling the memory request. This is repeated until all
application footprints have been allocated.

Two HP Proliant server configurations were se-
lected for analysis, representing high-end and low-end
performance points. Both configurations are expected
to execute at least two instances of a benchmark appli-
cation trace per core. These server configurations are
detailed in Table 3. All associated system and memory
costs and power statistics were derived from [13] and
[14].



Table 3. HP Proliant server configurations

Model (HP) CPU  Cores Max. Base Cost/Power
(Opterons) Memory
DL785 G5 8 quad-core | 512GB ~$42,000/1110 W
2.4 GHz
DL165 G5 2 quad-core | 64 GB "$2,000/197 W
2.1 GHz

5.2. Cost and power evaluation

Results from two classes of experiments are shown
here based on results from experiments (as described in
Section 5.1) averaged over 50 iterations.

5.2.1. Fixed workload and scale out. These experi-
ments considered fixed workloads where a workload is
a fixed number of applications. We based our workload
model results from Intel’s study of candidate applica-
tions for virtualization [3] where an average number of
applications per core were identified. We extrapolated
this number to a data center with 250 servers (which
translates to 2,000 or 500 processor sockets for our
server configurations) that could support either 19,500
applications using high-end servers or 4,700 applica-
tions using low-end servers. Additionally, we investi-
gated the effects of scaling the number of blades while
keeping the workload fixed.

This set of experiments used a baseline configura-
tion with a fixed 64 GB of memory per blade and stan-
dard bin packing allocation where application mem-
ory footprint had to reside within a blade. The result-
ing fragmentation left unused memory across blades al-
though several blades exhibited very high memory uti-
lization (in excess of 60 GB). For comparison purposes,
we considered a DPGAS-enabled server configuration
where half the blades were provisioned with 64 GB
and half with less memory. The aggregate difference
in memory is roughly equal to the unutilized memory
in the first configuration. This latter configuration cor-
responds to a data center with half of the servers over-
provisioned (receivers in our model) and half of the
servers minimally provisioned (spill memory to other
nodes). Finally we repeated the experiment with 56 GB
per blade rather than 64 GB, which reduced memory
fragmentation.

The total cost savings for the low- and high-end
server configurations are shown in Figures 4 and 5
with savings between standard and DPGAS allocation
graphed as the third column of each group. As we see in
the base (250-server) case, DPGAS has the potential to
save 15% to 26% in memory cost when the initial provi-
sioning is high (64 GB), which translates into a $30,736
savings for the low-end servers and $200,000 for the
high-end servers. On the other hand, with lower initial
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memory (56 GB), the savings in Figure 5 are 13%, or
$103,365
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Figure 5. Scale out cost for Proliant DL785 G5

It is also important to notice that savings with DP-
GAS allocation drops as applications are consolidated
onto fewer servers. This is likely due to the fact that
there is less fragmentation with no sharing and there-
fore less inefficiency to be recovered.
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Similarly, the power savings using DPGAS alloca-
tion (Figures 6 and 7) is substantial in the base case,
with savings of 3,625 (25%) and 5,875 (22%) watts of
input power for the low-end and high-end server config-
urations, respectively. When server consolidation onto
200 servers is used, power savings drops substantially
to 800 and 500 watts for the same configurations. The
smaller memory configuration results for the high-end
server also demonstrate smaller savings of 2500 watts in
the 250 server case. Both the cost and power results in-
dicate that DPGAS memory allocation is most effective
when fragmentation is normally high and when vari-
ance in workload memory footprint is high.
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Figure 9. Scale out power for Proliant DL785 G5
- varying workload sizes

To further investigate the effects of memory frag-
mentation on cost and power, we also ran two separate
sets of allocations using workloads drawing from 1) a
pool of three applications with large memory footprints
and 2) a pool of two applications with small and very
large footprints. This experiment included the use of a
synthetic benchmark with a memory footprint of 2275
MB that represented a large, unknown enterprise work-
load similar to those in [3]. The results can be seen in
Figures 8 and 9 with cost savings of 2% to 3% for the
large applications and 2% to 4% for the second applica-
tion set. Power savings range from 6% to 7% for large
applications and 8% to 12% for the second set of appli-
cations. The dropoff in performance can be explained
as follows. When application footprints are of similar
size, the bin packing behavior of allocation produces
little fragmentation, but when applications have small
footprints, they can fill unallocated memory and reduce
fragmentation. DPGAS seems to work best when the

dynamics are such that a wide range of footprints are
likely, leading to fragmentation that can be otherwise
recovered by DPGAS.

5.2.2. Memory throttling. Memory throttling is
where the allocated footprint per application is less
than the maximum footprint at the expense of an
increased page fault rate. We compared two additional
cases with 250 servers: 1) Each server had 50% of the
original memory and each application was allocated
50% of its maximum memory footprint, and 2) each
server had 25% or the original memory, and each
application received 25% of its maximum footprint.
The results for cost and power in the high-end server
are shown in Figures 10 and 11. The effects of memory
throttling are significant. ~ For instance, reducing
memory from 64 GB to 32 GB in each server reduces
memory cost by $478,000 and memory power by
17,750 watts (from a base cost of $897,000 and base
power of 35,500 watts). The usage of DPGAS allo-
cation with 50% memory throttling with the high-end
server configuration can reduce the total memory cost
by $570,000 and total memory power by 21,125 watts.
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Figure 10. Memory throttling cost for Proliant
DL785 G5
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Figure 11. Memory throttling power for Proliant
DL785 G5

At the lower bound of savings, reducing memory
in the high-end server from 56 GB to 28 GB or 14 GB
results in similar savings due to memory throttling, but
the savings from using DPGAS is somewhat lower with
cost savings of 4% to 14% and power savings of 2%
to 10%. This translates to cost savings of $12,000 to



Table 4. HP Proliant 165 G5 cost and power with
memory throttling

Allocation No Throttling | 50% Throttling | 25% Throttling
Normal ($) $230,750 $111,250 $51,500
DPGAS ($) $183,000 $97,125 $51,500
Normal (W) 14,250 7,000 3,500
DPGAS (W) 11,250 5,875 3,500

$24,000 over the normal case and power savings of 250
to 500 W, using 50% and 25% memory throttling.

Additional statistics for the low-end server configu-
ration are shown in Table 4. These experimental results
concur with the high-end server configuration, except
that power and cost savings are smaller due to less mem-
ory fragmentation and less memory overall for remote
sharing. In the 25% memory throttling case, there is not
enough leftover memory to be utilized with DPGAS,
so no savings are incurred. Overall, DPGAS enables a
4% to 22% reduction in memory cost and a 2% to 25%
reduction in memory power when compared to normal
allocation for both the low- and high-end servers.

When using memory throttling, performance must
also be taken into account. The results from our trace-
driven analysis of the benchmark applications provide
data on page fault rates that directly correspond to the
amount of memory a benchmark is allocated. These re-
sults are used to generate Figures 12 and 13 that demon-
strate the effects of memory throttling on random allo-
cations of each of our benchmark applications. In gen-
eral, the usage of memory throttling leads to an order-
of magnitude increase in the number of page faults for
all applications, but some applications with small mem-
ory footprints or random access patterns (poor spatial
reuse) are affected much more by using memory throt-
tling with normal allocation.
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Figure 12. Memory throttling performance for
Proliant DL165 G5

6. Related Work

Other researchers have also been focused on the
growing power and cost implications of large clusters
and server farms. Feng, et al. [5] discussed the ef-
ficiencies associated with large servers and proposed
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Figure 13. Memory throttling performance for
Proliant DL785 G5

a power-efficient supercomputer called Green Destiny.
Other strategies have included dynamic voltage scaling
for power-aware computing [10] with a focus on CPU
power. Raganathy, et al. [24] has also suggested that
power-management should take place at the server en-
closure levels so that individual systems are not over-
provisioned. This study also focused mainly on high-
level CPU power management, not memory power.

However, Lefurgy’s 2003 study [18] cited impor-
tant reasoning behind why DRAM cost and power
should be considered as a major component in improv-
ing overall server efficiencies. Several other researchers
have also begun focusing on memory power manage-
ment at the architecture level, including [16], which
proposes using adaptive power-based scheduling in the
memory controller, and [9], which uses power “shift-
ing” driven by a global power manager to reduce power
of the overall system based on runtime applications.

At the operating system level, [12] proposed a
power-aware paging method that utilizes fast MRAM to
provide power and performance benefits. Tolentino [27]
also suggested a software-driven mechanism to limit ap-
plication working sets at the operating system level and
reduce the need for DRAM overprovisioning.

An evaluation of power and cost trends similar to
the ones in this paper was conducted in [19], concluding
that separate PCI Express-based memory blades could
be used to reduce overall memory usage and memory
cost and power. [8] investigated real-world statistics for
some of the large “warehouse-sized” server farms that
Google runs.

7. Conclusion

With increasing server power and cost outpacing
related performance gains, a focus on making data cen-
ters and clusters as efficient as possible is vital from a
business perspective. We present a new address space
model, the Dynamic Partitioned Global Address Space,
and define an associated dynamic hardware-based ad-
dress translation scheme for efficiently utilizing remote



memory with low-latency interconnects such as Hyper-
Transport. An implementation of this model has been
developed by encapsulating HyperTransport packets in
Gigabit Ethernet via our HT over Ethernet bridge, and
initial synthesis results indicate that remote read and
write operations are low-latency and comparable to fast
message-passing implementations. The impact of low-
latency remote access on the ability to share memory
is significant, and future plans include the pursuit of a
HW/SW testbed to evaluate a complete solution. Addi-
tional future work is described in [28].
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