
Optimizing Parallel Simulation of Multicore Systems Using
Domain-Specific Knowledge

Jun Wang, Zhenjiang Dong, Sudhakar Yalamanchili, and George Riley
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia, USA 30332-0250

{jun.wang, zdong30, sudha, riley}@ece.gatech.edu

ABSTRACT
This paper presents two optimization techniques for the ba-
sic Null-message algorithm in the context of parallel simu-
lation of multicore computer architectures. Unlike the gen-
eral, application-independent optimization methods, these
are application-specific optimizations that make use of sys-
tem properties of the simulation application. We demon-
strate in two aspects that the domain-specific knowledge
offers great potential for optimization. First, it allows us
to send Null-messages much less eagerly, thus greatly reduc-
ing the amount of Null-messages. Second, the internal state
of the simulation application allows us to make conservative
forecast of future outgoing events. This leads to the creation
of an enhanced synchronization algorithm called Forecast
Null-message algorithm, which, by combining the forecast
from both sides of a link, can greatly improve the simu-
lation look-ahead. Compared with the basic Null-message
algorithm, our optimizations greatly reduce the number of
Null-messages and increase simulation performance signifi-
cantly as a result. On a subset of the PARSEC benchmarks,
a maximum speedup of about 6 is achieved with 17 LPs.

Categories and Subject Descriptors
I.6.8 [SIMULATION AND MODELING]: Types of Sim-
ulation—Parallel; Discrete event

General Terms
Algorithms, Performance

Keywords
Null-message algorithm, domain-specific knowledge, opti-
mization, multicore systems, parallel discrete event simu-
lation

1. INTRODUCTION
The current trend in CPU design is moving increasingly to-
ward multicore systems [10], where multiple processing cores
are integrated in the same physical chip. Multicore systems

bring an extra dimension of complexity, i.e., core-level con-
currency and related issues. As always, simulation is playing
an important role in helping designers to explore the design
space and meet the new challenges. As system complexity
increases, researchers have turned to parallel discrete event
simulation (PDES) [8] in order to achieve better simulation
performance.

The most important difference between PDES and sequen-
tial simulation is that events are processed in a distributed
manner and the simulation processes, called logical processes
(LPs), send messages to each other. To ensure global or-
der of the events, various synchronization algorithms have
been created. These are broadly classified as conservative
or optimistic algorithms. The Null-message algorithm, or
the CMB algorithm after its inventors [2], is the first syn-
chronization algorithm for PDES. It is a conservative algo-
rithm that maintains correct event order and avoids dead-
lock by sending the so-called Null-messages. The advantages
of the Null-message algorithm are its conceptual simplicity
and ease of implementation. However, a commonly faced
problem with this algorithm is low performance due to the
large amount of Null-messages. Various optimizations of
the basic algorithm have been proposed [15][17][6]. Gen-
erally speaking, these are general, application-independent
optimizations that focus on the algorithmic aspect of the
basic scheme. An important fact about the Null-message
algorithm is that it depends on a system property called
look-ahead in order to function. Look-ahead quantifies the
simulation process’ ability to predict its future and is highly
application dependent. Poor look-ahead generally leads to
poor performance for the Null-message algorithm. Based on
this, we believe that, while general, application-independent
optimizations are useful and should be adopted if applica-
ble, optimizations that take advantage of problem-domain
knowledge are more effective, particularly if inter-process
communication is not heavy. Simulation models of multi-
core computer systems are just this kind of systems.

This paper presents two optimizations we have created with
Manifold [13], our parallel simulation framework for multi-
core computer architectures. The first optimization differs
from the basic scheme in determining when Null-messages
are to be sent, and greatly reduces the number of Null-
messages and improves performance significantly as a re-
sult. In the second optimization, we look inside the data
structures of the simulation application and attempt to pre-
determine the time-stamp of the next output event over an

inter-LP link. Through a simulation kernel API, this infor-
mation is passed to the synchronization algorithm, which in
turn improves its look-ahead when sending out Null-messages.
Based on this idea, an enhanced synchronization algorithm
called Forecast Null-message algorithm is created, where the
Null-message carries an LP’s forecast of future output events
in addition to its time-stamp. By combining the forecast in-
formation from both sides of an inter-LP link, the Forecast
Null-message algorithm can greatly improve an LP’s looka-
head. This enhanced algorithm further reduces the number
of Null-messages. Although the reduction of the number of
Null-messages only produces limited performance improve-
ment when all of the LPs are running on a single physical
node, in the more likely and more scalable simulation envi-
ronment that involves multiple physical nodes, the perfor-
mance improvement is substantial.

2. BACKGROUND AND RELATED WORK
The Null-message, or CMB, algorithm [2] is the first al-
gorithm created to address the synchronization problem in
PDES. The purposes of the algorithm are to avoid deadlocks
that may arise because of the conservative principle of event
processing, and to insure correct total ordering of events
leading to correct event causality. While the algorithm does
achieve its goal of guaranteeing causality correctness and
preventing deadlocks, it has the potential problem of poor
performance due to the excessive number of Null-messages
exchanged among the LPs. A number of variations of the
basic algorithm have been proposed to address this prob-
lem. Two schemes are discussed in [15]. One is to use a
time-out such that Null-messages are only sent after a time-
out, and another is demand-driven where Null-messages are
only sent when requested. In [17], a few variants of a cen-
tral theme are presented, namely, deferring sending of ei-
ther Null-messages, or simulation event messages, or both,
and combining the messages so as to reduce the messag-
ing overhead. In [6] the author explored ways to reduce the
number of Null-messages by predicting the time-stamp of fu-
ture messages for incoming channels that are current empty.
The prediction is based on the underlying network topology,
specifically, the feedforward and feedback topologies. These
are all optimizations aimed at reducing of the Null-message
overhead of the basic algorithm. They are general in nature
and independent of the simulation applications. It should be
noted that, if the look-ahead of the system can somehow be
improved, the number of Null-messages will also be reduced
because the simulation time can advance more before an LP
needs to send Null-messages. Since look-ahead is heavily de-
pendent on the application, making use of problem-domain
knowledge to improve look-ahead can potentially be more
effective than the general methods.

The computer architecture community has been using sim-
ulation as an effective design and research tool. However,
traditionally the simulators being developed and used are
sequential. In recent years, a few parallel simulation frame-
works have appeared in the computer architecture literature.

SST [16] is an open-source, parallel simulation framework
designed for the research of new technologies in the area of
supercomputing. It takes a modular approach that allows
system models to be built using the components in its repos-
itory. For parallel simulation, it uses barriers to address the

synchronization problem. For each inter-LP link, a sync
object is created and is scheduled periodically. When the
action associated with the sync object is processed, a global
synchronization is performed. Unlike the Null-message al-
gorithm, this is a barrier-based conservative algorithm.

In [4] the authors explore the design space for parallel sim-
ulation of chip-multiprocessors and evaluate the impact of
a few design choices, including distributed vs. centralized
L2 cache, blocking vs. non-blocking cache access, and Null-
message vs. barrier-based algorithm. An abstract of the
full-fledged simulator is used in the evaluation, and with the
Null-message algorithm a speedup of about 2 is achieved
with 16 LPs. Apparently the Null-message algorithm used
is the basic algorithm without optimizations. We are not
aware of any parallel simulators for multicore systems that
have explored optimizations of the Null-message algorithm.

Two other parallel simulation systems for computer archi-
tectures can be classified as optimistic simulation because
they allow violations of the local causality constraint. In
other words, they allow external events to arrive in an LP’s
past. SlackSim [3] defines a quantity called slack which ba-
sically specifies how far in the simulation time an LP can
go from its current local time. A separate thread moni-
tors the smallest local time of all LPs, i.e, the global virtual
time (GVT). As the GVT moves, the upper bound for event
execution also moves. This makes it different from quan-
tum simulation, which uses explicit barrier synchronization.
Graphite [14] is similar to SlackSim in that it allows causal-
ity violations. It supports three simulation schemes: Lax,
Lax-Barrier, and Lax-P2P. Lax is essentially unlimited op-
timism. Lax-Barrier is like a quantum simulation, and in
Lax-P2P an LP periodically chooses a random peer with
which to synchronize. These methods are fundamentally
different from the Null-message algorithm, which executes
events in a conservative manner and does not allow simula-
tion errors.

3. THE MANIFOLD SIMULATION SYSTEM
Manifold [13] is a scalable parallel discrete event simula-
tion framework designed for the research of modern multi-
core computer architectures. Manifold adopts a component-
based open software architecture, which, coupled with stan-
dardized inter-component interfaces, allows easy integration
of third party components. The software package is com-
posed of a parallel simulation kernel and a set of computer
architecture models, such as processor, cache, interconnec-
tion network, and DRAM controller models. Users use the
kernel and the models to build system models for paral-
lel simulations. A typical architecture that Manifold is de-
signed to simulate is the tiled multicore system as discussed
in [10]. This architecture is made up of a number of identical
processor nodes connected with an interconnection network.
The system model is shown in Figure 1. As can be seen, the
system model consists of a few processor nodes and one or
more memory controller nodes, interconnected through the
underlying interconnection network. The processor nodes
each consist of a processor core and one or more level of
cache. The dashed lines in Figure 1 shows the partitioning
scheme used by our simulator, which will be explained later.

Manifold adopts a layered software architecture [5], sepa-

memory
controller

interconnection network

processor

caches

processor

caches

Figure 1: Manifold’s example system model and par-

titioning scheme.

rating the simulation kernel and the computer architecture
components into two different layers. The simulation kernel
layer encapsulates all the PDES services. For parallel simu-
lation, two conservative synchronization algorithms are sup-
ported, Null-message and lower bound time-stamp (LBTS)
[8]. Quantum simulation is also supported, for users who
can allow a small percentage of inaccuracy in exchange for
faster simulation speed.

4. OPTIMIZING THE NULL-MESSAGE AL-
GORITHM IN MANIFOLD

Manifold does not use automatic partitioning, mainly be-
cause the number of components in a system model is rela-
tively small. Instead, components are assigned to different
LPs in the simulator program. A typical partitioning scheme
we have been using is shown in Figure 1 with dashed lines
denoting LP boundaries. As can be seen, in this partitioning
scheme, the entire interconnection network and the memory
controller(s) are in one LP, and each processor node is in a
separate LP. In the following we shall assume this partition-
ing choice.

Another important characteristics of Manifold that should
be mentioned in advance is that the system model represents
a clock based digital system. Although Manifold allows link
delays to be specified in seconds, in this paper we confine
our discussion to the cases where link delays are specified
in clock ticks. Therefore, all events occur at discrete clock
ticks, and the simulation moves from one clock tick to the
next.

4.1 Baseline algorithm
We start with a basic implementation of the Null-message al-
gorithm, as shown in Algorithm 1. This is the Null-message
algorithm in its most general form. It is application-
independent, therefore, does not make use of any charac-
teristics of the simulation application.

In this baseline algorithm, the LP first receives messages in
a non-blocking fashion. It then finds out the clock whose
next edge is the earliest (There may be multiple clocks).
The simulation time of this particular clock edge is kept
in the variable nextClockTime. Next, the minimum time-
stamp of Null-messages from all of the input channels is
determined and kept in min_null. If nextClockTime is less
than min_null, then all of the events scheduled for the clock

edge are safe to process and therefore are processed. Finally,
Null-messages are sent to all successors of the LP with time-
stamp set to the smaller of nextClockTime and min_null,
plus the look-ahead value. Of course, Null-messages are only
sent if the time-stamp is larger than that of the last Null-
messages. The look-ahead is set to a value that is slightly
smaller than the minimum link delay in the system model.

Algorithm 1 Baseline Null-message algorithm.

1: while simulation not terminated do

2: receive messages
3: nextClock := clock whose next edge has smallest time-

stamp among all clocks
4: nextClockT ime := simulation time of next edge of

nextClock
5: receive Null-messages
6: min null := minimum time-stamp of Null-msgs from all

input links
7: if nextClockT ime < min null then
8: process all events scheduled for the clock edge
9: end if

10: null ts := min(nextClockT ime,min null) + Lookahead
11: Send Null-messages to all successors with time-stamp set

to null ts if null ts is larger than time-stamp of the pre-
vious Null-message

12: end while

4.2 Optimization 1: When To Send Null-
Messages

The baseline algorithm in Algorithm 1 does achieve its ba-
sic design goals, namely, to avoid deadlock and to prevent
causality errors. Its drawback is that a lot of Null-messages
are sent, most likely more than necessary. This has a big
impact on the overall simulation performance, particularly
when the messages have to go through a network.

Therefore, we start our optimization of the baseline algo-
rithms by exploring ways to reduce the sending of Null-
messages. Two optimization algorithms have been tested
with success. It should be pointed out that both these al-
gorithms make use of features of the simulation application,
i.e., the multicore computer architecture. Therefore, these
are application-specific optimizations.

The first algorithm shall be referred to as Send-When-Safe,
or SWS. In this algorithm, shown in Algorithm 2, Null-
messages are only sent when the clock edge is safe to process.

Algorithm 2 SWS: send Null-message when clock edge is
safe.
1: while simulation not terminated do

2: receive messages, determine nextClock and nextClock-
Time, receive Null-messages, determine min null

3: if nextClockT ime < min null then
4: process all events scheduled for the clock edge
5: send Null-message with time-stamp set to

nextClockT ime+ Lookahead

6: end if

7: end while

SWS is possible because of the following properties of the
simulation application:

System Property 1. Each LP moves in the fixed step
of half clock tick.

System Property 2. The look-ahead is bigger than half
clock tick.

To see the simulation can progress without deadlock, we can
simply look at one LP. Assume the minimum link delay in
the system is 1 tick and the look-ahead is set to 0.9 ticks,
and denote by Null(ts) the Null-message with time-stamp
set to ts. First, the LP processes tick 0, which is safe, and
sends outNull(0.9). Next, tick 0.5 cannot be processed until
the minimum time-stamp of all the Null-messages it gets
from the input links is greater than 0.5. This is guaranteed
because, with the properties above, all of its fan-ins would
process tick 0 and send Null(0.9) to it. When that occurs,
it processes tick 0.5 and sends Null(1.4). Then it moves on
to tick 1. Eventually it will receive Null(1.4) from all its
fan-ins and be able to process tick 1, and so forth.

The second optimization algorithm, Send-When-Block, or
SWB, does the opposite of SWS. It sends Null-messages only
when it is blocked, as shown in Algorithm 3.

Algorithm 3 SWB: send Null-message when clock edge is
blocked.
1: while simulation not terminated do

2: receive messages, determine nextClock and nextClock-
Time, receive Null-messages, determine min null

3: if nextClockT ime < min null then
4: process all events scheduled for the clock edge
5: else

6: send Null-message with time-stamp set to min null+
Lookahead

7: end if

8: end while

It can be easily verified that this algorithm is correct in gen-
eral, independent of the simulation application. However,
this algorithm forces a certain degree of sequential execution.
For any LP, once it is blocked, it can only make progress af-
ter all of its fan-ins have made progress, and its fan-outs can
only make progress after it has made progress.

This, however, is not a serious problem for our simulation
model. With the star topology shown in Figure 1. the SWB
algorithm causes the simulation to progress in lock-step be-
tween two groups of LPs. On the one hand is the center
of the star, or the network+memory controller, and on the
other hand is the rest of the system, i.e,. the processor
nodes. Since the processor nodes are much more complex
and perform most of the simulation work, and they still do
the work in parallel, this lock-step execution between the
two groups has only limited impact. Of course, if the work-
load of the star center is much heavier, it may be necessary
to send more Null-messages if parallelism can be improved.

4.3 Optimization 2: Improving Look-ahead
Look-ahead plays a critical role in the Null-message algo-
rithm. Generally speaking, the bigger the look-ahead, the
better the parallelism, and hence the better the performance.
Therefore, our next optimization focuses on improving look-
ahead in our simulation.

As mentioned above, we set our look-ahead to a value that is
close to the minimum link delay in the system. To be precise,

A

B

C

D

lookahead

lookahead

Figure 2: Look-ahead improvement due to syn-

chronous output.

it is set to (dmin − 0.1) ticks, where dmin is the minimum
link delay. This can be improved if we look a little deeper
into the LPs. In the following, we explain how we improve
the look-ahead for Iris, our interconnection network model,
and MCP-cache, our coherence cache model.

Iris consists of a number of routers connected in a ring or
torus topology. Each router is connected to one network
interface (NI), and vice versa. An NI is connected to a single
terminal, such as a cache component or a memory controller.

In the partitioning scheme in Figure 1 the link between the
network interface and MCP-cache crosses LP boundary. We
can make two improvements for the look-ahead for this link.

First, we observe that a component in our system models
sends out messages at the rising clock edges. This is a
system-wide property and applies to both Iris and MCP-
cache.

System Property 3. A component only sends out mes-
sages at the rising clock edges.

This means that the time-stamp for the Null-messages in
line 6 in SWB in Algorithm 3 can be set to ⌈t⌉+Lookahead

instead of (min null + Lookahead), where the meaning of
⌈t⌉ is:

⌈t⌉ =

{

current edge if t is rising edge

next rising edge if t is falling edge

This is further illustrated in Figure 2 which shows four points
in time: A is min null, or the minimum Null-message time-
stamp from all input links, B is the current edge for which
the safety of processing is being determined, C = A +
Lookahead is the time-stamp of the Null-messages to be
sent, based on SWB in Algorithm 3, and D is the improved
time-stamp for the Null-messages based on the fact that the
earliest event to be sent will be sent at the clock edge B. If
B is a falling edge, then the Null-message time-stamp would
be set to the next rising edge plus the look-ahead.

Note that this improvement cannot be made in the general
Null-messages-based simulation, because an event could oc-
cur between A and B and cause another event that is earlier
than B. So, in the general case, when B is not safe to
process, the time-stamp of the Null-messages can only be
A+ Lookahead.

terminal side

router side

router_in_buf

proc_in_buf

packet
buffer

Figure 3: Iris network interface.

This improvement is shown in Algorithm 4.

Algorithm 4 Improvement of SWB: using next rising edge.

1: while simulation not terminated do

2: receive messages, determine nextClock and nextClock-
Time, receive Null-messages, determine min null

3: if nextClockT ime < min null then
4: process all events scheduled for the clock edge
5: else

6: if nextClockT ime is rising edge then

7: null ts := nextClockT ime+ Lookahead
8: else

9: null ts := next rising edge +Lookahead
10: end if

11: send Null-message with time-stamp set to null ts
12: end if

13: end while

The second improvement of look-ahead makes use of the
knowledge of the internal state of Iris and MCP-cache. Based
on the internal state, we can forecast conservatively the earli-
est time when Iris or MCP-cache will send out a message and
use this information to improve look-ahead. In the following,
we first describe how the conservative forecast is achieved in
Iris and MCP-cache without considering flow control mes-
sages. Then we describe the complications caused by flow
control, and how the forecast is made in the presence of
flow control messages. And finally we present the improved
algorithm that uses the forecast.

Iris’ routers operate at the flit level [7]. When a packet is
received for delivery, at the source NI, the packet is broken
up into flits and passed to the router one flit at a time. For
each packet, there is one head flit, zero or more body flits,
and zero or one tail flits. At the receiving NI, the flits for
the packet are assembled. When the entire packet has been
received, it is put in the output buffer before being delivered
to the terminal. Figure 3 shows the internal structure of the
Iris NI for the router-to-terminal direction of traffic. The
other direction has a similar structure. As can be seen,
there are three buffers. The router in buf holds individual
flits for each of the virtual channels. The proc in buf is
where the flits are assembled into packets. It has one slot
for each virtual channel. Finally the packet buffer holds the
assembled packets before delivery.

The system properties of Iris that we use to forecast its
output messages are summarized as follows:

System Property 4. If the packet buffer of an Iris NI
is empty, then the earliest time it will send out a packet is
the next tick.

System Property 5. If the last flit of a packet arrives
at the NI’s proc in buf at tick t, then the earliest time when
the packet is moved to the packet buffer is t+ 1.

System Property 6. The router sends at most one flit
per tick to the NI.

System Property 7. The router has a 3-stage pipeline.
Therefore, it takes at least three ticks for a head flit to go
through the router.

Using these properties, Iris NI can make conservative fore-
cast of the earliest possible tick when it will send out a mes-
sage to its terminal.

On the MCP-cache side it is much simpler. The cache has a
parameter called lookup time that represents the number of
ticks it takes for the cache to send out a message as a result
of an incoming request. Furthermore, we can know L ticks
in advance if there is an outgoing message, where L is the
lookup time. This is summarized below.

System Property 8. When a request is received by the
MCP-cache at tick t, the earliest time when a message is
sent out as a result of the request is t + L, where L is the
lookup time. And if there is a message, it is known at t.

Although the above system properties of Iris and MCP-cache
allow us to forecast outgoing messages, this information can-
not be used right away to improve the look-ahead. This is
because both Iris and MCP-cache implement a credit-based
flow control mechanism. In addition to normal event mes-
sages, both Iris and MCP-cache send credit messages, which
could violate our forecast of outgoing event messages. The
credit message has the following property.

System Property 9. For each received event message,
a credit message is sent.

The difficulty lies in predicting when a credit is sent, which is
component dependent. MCP-cache sends a credit one tick
after a message is received, while Iris sends a credit only
after a packet is moved from the terminal-side input packet
buffer to the router-bound middle buffer. For simplicity we
assume the worst case, namely, a credit can be sent any time
after a message is received.

Algorithms 5 and 6 show the outgoing message forecast algo-
rithm for Iris and MCP-cache respectively. Both functions

Algorithm 5 Iris’ algorithm for forecasting outgoing mes-
sage.

1: function iris forecast next output

2: if outgoing credit scheduled for this tick then

3: return 0 ⊲ this tick

4: if output packet buffer not empty then

5: return 0 ⊲ this tick

6: if an output packet will be assembled this tick then

7: return 0 ⊲ this tick

8: if there is an input message then

9: m ts := input message scheduled time
10: if (m ts < now) then

11: return 0 ⊲ credit could be sent any time
12: else

13: forecast := m ts− now
14: end if

15: else ⊲ no un-credited incoming messages
16: for each virtual channel v do

17: if (proc in buf [v] has flits) then

18: forecasts[v] := packet len - received flits
19: else ⊲ proc in buf [v] is empty
20: if (router in buf [v] has flits) then

21: forecasts[v] := packet len
22: else ⊲ router in buf [v] empty
23: forecasts[v] := router → earliest() + 2
24: end if

25: end if

26: end for

27: end if

28: forecast := min(forecasts[])
29: return now + forecast
30: end function

31: function router::earliest

32: if there is one in-transit packet bound for NI then
33: return 0
34: else

35: return 3
36: end if

37: end function

Algorithm 6 MCP’s algorithm for forecasting outgoing
message.

1: function mcp forecast next output

2: if L1’s output buffer not empty OR L2’s output buffer not
empty then

3: return 0 ⊲ this tick

4: forecast := 0
5: if there is msg or credit scheduled then

6: forecast := earliest msg or credit time-stamp

7: if (forecast == now) then

8: return 0 ⊲ this tick

9: if no msg or credit scheduled then

10: forecast := min(L1’s lookup time, L2’s lookup time)

11: return now + forecast
12: end function

return 0 if an outgoing message could occur at the current
tick, otherwise, they return the earliest possible tick for the
next outgoing message.

In Algorithm 5, lines 2-7 are self-explanatory. Lines 9-14
deal with the problem of making forecast in the presence of
un-credited incoming messages, which require credits to be
sent. To handle outstanding credits, we use a FIFO queue.
Every time there is an incoming message, its scheduled time
is entered into the queue. When a credit is sent, the first
element in the queue is removed. When there is an un-
credited incoming message scheduled at m ts, if its already
past, then the credit could be sent at any moment, therefore,
we return 0. Otherwise, since the credit for the message
could be sent at m ts, we make the conservative forecast
that the earliest possible time for an outgoing message is
m ts (line 13).

Lines 16-26 handle the case where there are no outstand-
ing credits to be sent. In this situation, we don’t have to
worry about sending out credits. Therefore we look at the
NI’s buffers to forecast the next outgoing event message. For
each virtual channel, we first look at proc in buf , where the
packet is assembled. If proc in buf is not empty (line 18),
since the head flit carries the packet length in terms of the
number of flits, we know how many more flits are yet to
come, and since we can only receive one flit per tick, that
is the lower bound of the remaining ticks it takes before we
have a complete packet. If proc in buf is empty, we check
the router in buf . If it is not empty (line 21), then it must
holds the head flit because proc in buf is empty. Therefore,
it takes at least packetlen− 1 + 1 before all the flits for the
packet enters proc in buf . If router in buf is also empty
(line 23), then we consult the router for the earliest possi-
ble time when it could forward a head flit to the NI on the
given virtual channel. We add two ticks to the router’s fore-
cast (one for entering router in buf , and one for entering
proc in buf). Finally, in line 28, we find out the minimum
forecast value from all of the virtual channels and use that
as our forecast for the Iris NI.

The forecast algorithm for MCP-cache is much simpler be-
cause: (1) its internal structure is simpler, and (2) it always
sends out a credit one tick after receiving a message. We use
a priority queue to hold the ticks of future outgoing event
messages and credits. If this queue is not empty, the first
element is used as the forecast. Otherwise, the smaller of L1
and L2 caches’ lookup time is used as the forecast.

We now present the improved Null-message algorithm that
uses the event forecast as described above to improve look-
ahead. For this purpose the Null message itself is slightly en-
hanced such that it carries a pair Null(ts, forecast), where
the meaning of the time-stamp ts is as usual, and forecast

means the sender will not send a message before forecast

unless it receives a message between ts and forecast. The
enhanced Null-message is shown in Figure 4. The basic idea
of the algorithm is to use the minimum of the forecast values
from both sides of a link as the basis for the time-stamp of
the next Null-message.

The Forecast Null-message algorithm is shown in Algorithm 7.

Null(ts_a, forecast_a)

Null(ts_b, forecast_b)

LP_a LP_b

Figure 4: Null-message with event forecast.

Algorithm 7 The Forecast Null-message algorithm.

1: while simulation not terminated do

2: receive messages, determine nextClock and nextClock-
Time, receive Null-messages, determine min null

3: if nextClockT ime < min null then
4: process all events scheduled for the clock edge
5: else

6: for each registered component c do

7: c → forecast next output() to determine the next
possible cross-LP output event

8: end for

9: min null ts := 0
10: for each successor do

11: out forecast := time of next possible output
12: in forecast := forecast of next possible input from

successor
13: if out forecast > in forecast then
14: forecast := in forecast+ 1 ⊲ assuming
15: ⊲ LP-to-LP delay is 1
16: else

17: forecast := out forecast
18: end if

19: null ts := nextClockT ime+ Lookahead
20: if forecast > nextClockT ime then

21: null ts := forecast+ Lookahead
22: end if

23: if (min null ts==0 ||min null ts>null ts) then
24: min null ts := null ts
25: end if

26: end for

27: for each successor do

28: send Null-message with time-stamp set to
min null ts

29: end for

30: end if

31: end while

As can be seen, Algorithm 7 is a modification of SWB. It
also sends Null-messages only when it is blocked.

Lines 6-8 are where the forecast is made. Each component
that is interested in making forecast should register its fore-
cast function with the clock object. At a rising edge of
the clock when the LP’s execution is blocked, the registered
functions are called.

In the loop in lines 10-26 we find out the time-stamp for
the next Null message for each successor LP. The forecast
is used as follows. The LP sending the Null-messages will
compare its forecast for the successor (out forecast) and
the successor’s forecast carried in the received Null-message
(in forecast). If out forecast > in forecast, then we can
guarantee we will not send out a message before in forecast+
1, assuming the minimum inter-LP delay is 1. Otherwise,
the earliest time when we are going to send a message is
simply out forecast.

We find out the minimum time-stamp for the Null-message
for all of the successors, and then in the loop in lines 27-29,
we send out the Null-messages. Using the minimum is be-
cause experiments have shown this gives better performance
results.

4.4 Section Summary
This section has presented two optimizations for the Null-
message algorithm, particularly, an enhanced Null-message
algorithm called Forecast Null-message algorithm. A few
important points should be noted regarding the applicability
of the methods.

• The optimization methods use domain-specific knowl-
edge. It should be pointed out that the knowledge
used is generally available in the application domain,
namely, multicore system models. For example, a sim-
ulator for multicore systems is generally clock-cycle-
based, a cache model usually has an access latency,
and a router of an interconnection network is generally
pipelined. Therefore, the methods are by no means
limited to the particular components or simulation sys-
tem that we used and are applicable to other similar
systems.

• The methods are not dependent on the partitioning
scheme shown in Figure 1. This partitioning scheme
is based on the observation that, because cache hit
rate is generally well over 95%, only a small amount
of messages are exchanged between the caches and the
network. If, for example, a different way of partition-
ing puts two neighboring routers in two different LPs,
the optimizations presented are still applicable, except
that we need to look inside the routers to in order to
use the Forecast Null-message algorithm.

• The domain-specific optimizations do not preclude the
general optimization methods such as the idea of de-
ferring the sending of Null-messages as presented in
[17]. However, how well the two kinds of optimiza-
tions work together in a single simulation system is
yet to be studied.

5. EXPERIMENTAL RESULTS
We have implemented the four algorithms described above:
Baseline, SWS, SWB, and Forecast. This section describes
the experimental results obtained with the four algorithms,
and presents our analysis of the results.

5.1 Experiment Environment
Tests are conducted on a standalone machine and on a Linux
cluster. The standalone machine has two Intel Xeon E5-2620
6-core CPUs with hyperthreading, for a total of 24 hardware
threads. The operating system is Debian Wheezy and the
MPI package used is OpenMPI 1.4.3. The two nodes that
we use on the cluster each have two Intel Xeon X5670 6-core
CPUs with a total of 24 hardware threads. The operating
system is RHEL release 6.3, and the MPI package is Open-
MPI 1.5.4.

We randomly selected five programs from the PARSEC 2.0
benchmark suite [1] for our testing. These are widely used

parallel benchmark programs. A program that uses Intel’s
Pin API [9] was used to generate trace files from the binaries
of the benchmark programs. The trace files are fed to the
simulator as input.

The simulation system model consists of 16 processor nodes,
a memory controller node, and a torus interconnection net-
work, like the model shown in Figure 1. Each processor node
has a processor component, a private L1 cache, and a shared
L2 cache slice. The processor component is a cycle-accurate
out-of-order x86 model called Zesto [12]. The caches imple-
ment a directory-based MESI (Modified-Exclusive-Shared-
Invalid) coherence protocol to maintain cache coherence.
The lookup time is set to 5 ticks for both L1 and L2 caches.
For simplicity, there is one clock used by all of the compo-
nents.

For each tested benchmark, 16 trace files are used as in-
put, one for each processor component. A multicore shared-
memory machine emulator called QSim [11] was used in gen-
erating the trace files.

As shown in Figure 1 the network and the memory controller
are assigned to one LP, and the processor nodes are each
assigned to a separate LP, for a total of 17 LPs.

5.2 Results
Two sets of tests have been conducted. In the first set, all
of the LPs are allocated to the same machine. And in the
second set, the LPs are allocated to two machines.

5.2.1 Test Set 1
This Test Set is run on the standalone machine. Results for
the Test Set are given in Tables 1 - 3 and Figure 5. We run
the simulation for 10 million simulated clock cycles. Each
data item in the table is the average value of three runs.

Table 1 shows the number of Null-messages sent/received by
the interconnection network component, Iris, per link. Each
entry has two numbers, for sent and received Null-messages
respectively. With the baseline algorithm, a large number of
Null-messages are exchanged. In fact, the average interval
between Null-messages is less than 0.2 ticks, even though
the look-ahead is 0.9 ticks. The number of Null-messages in
SWS can be predicted. It sends two every tick per link. The
interval between two Null-messages is half a tick. Compared
with the baseline algorithm, this is a big improvement. SWB
reduces the number of Null-messages even further. The lock-
step execution between the network component and the pro-
cessor nodes results in the fixed interval of 1.8 ticks between
two successive Null-messages. This is twice the look-ahead.
Finally, Forecast, by dynamically improving the look-ahead
of both sides of the cross-LP links, achieves an additional 29
to 61% reduction of the number of Null-messages compared
with SWB. On the Iris side, the Null-message frequency is
reduced to one in 3.5 to 3.9 ticks, with the exception of body-
track. On the cache side, the frequency is one in 3.9 to 5.8
ticks.

Table 2 shows the simulation running time of the tests. Ta-
ble 3 shows the performance improvements of the Forecast
Null-message algorithm over SWB, and the speedup num-
bers relative to the sequential simulation. The table shows a

Table 1: Number of Null-messages per link.

Benchmarks Baseline SWS SWB Forecast

bodytrack
81,462,560 20M 5,555,559 5,298,071
78,362,448 20M 5,555,560 2,554,396

facesim
73,753,704 20M 5,555,557 2,832,306
66,864,855 20M 5,555,557 1,748,367

freqmine
67,549,584 20M 5,555,557 2,833,459
60,451,605 20M 5,555,557 1,760,523

streamcluster
68,659,786 20M 5,555,557 2,558,872
61,198,045 20M 5,555,557 1,704,793

vips
82,331,880 20M 5,555,557 2,571,159
75,666,786 20M 5,555,557 1,715,470

maximum speedup of 6.3. In Figure 5 we show the running
time of the three optimization algorithms, normalized with
respect to the running time of SWB.

As we can see, compared with the baseline algorithm, all
of SWS, SWB, and Forecast reduce the simulation time by
more than 60%. However, among the three optimization
algorithms, the situation looks more complex. For exam-
ple, compared with SWS, SWB has significantly fewer Null-
messages, but this does not translate into reduction in run-
ning time. On the contrary, SWS outperforms SWB in 4
cases. On the other hand, Forecast outperforms SWB by
8-12%, while the Null-message reduction is much bigger, in
the range of 29 - 61% In the case of freqmine, Forecast only
outperforms SWS by 2.3% while we have an 88% reduction
in the amount of Null-messages. In this test setting, all of
the LPs are running on the same shared-memory machine.
The overhead of inter-process messaging is very low to start
with. The results suggest two conclusions. First, in this en-
vironment, reducing the number of Null-messages has dimin-
ishing returns. Second, the results show SWS outperforms
SWB in 4 cases even though its Null-message count is 3-4
times higher. This indicates some other factor may play a
more important role than the number of Null-messages. One
possibility is that, because SWS sends Null-messages more
frequently than SWB, it may have better run-time paral-
lelism. We leave to our future work the study of the tradeoff
between the number of Null-messages and parallelism.

Table 2: Simulation running time in seconds.

Benchmarks Seq. Baseline SWS SWB Forecast
bodytrack 2410 2592 856 868 769
facesim 4323 2154 869 825 722
freqmine 4457 2099 764 814 746
streamcluster 4630 1957 761 815 733
vips 4508 2446 769 807 719

Table 3: Forecast Null-message: improvements over

SWB and speedup.

Benchmarks Improvement Speedup
bodytrack 11.4% 3.1
facesim 12.5% 6.0
freqmine 8.4% 6.0
streamcluster 10.1% 6.3
vips 10.9% 6.3

Figure 5: Test Set 1 normalized running time.

5.2.2 Test Set 2
This Test Set is run on the cluster. In this Test Set, we
allocate the 17 LPs roughly evenly to the two test machines,
with 9 LPs on one machine and 8 on another. This makes
half of inter-LP links cross the machine boundary, therefore,
messages on these links, including Null-messages, will go
through the physical network. We expect the number of
Null-messages has a much bigger impact on the simulation
performance than in Test Set 1.

Results are shown in Tables 4 - 6, and Figure 6. We run
the simulation for 10 million simulated clock cycles. Each
data item in the tables is the average value of three runs.
Results for the baseline Null-message algorithm are not col-
lected simply because it takes too long (over 24 hours) to
finish one run, making it an unviable choice in this testing
environment.

Table 4: Number of Null-messages per link.

Benchmarks SWS SWB Forecast

bodytrack
20M 5,555,559 5,824,030
20M 5,555,558 2,622,173

facesim
20M 5,555,559 2,737,507
20M 5,555,558 1,730,305

freqmine
20M 5,555,989 2,841,734
20M 5,555,989 1,736,944

streamcluster
20M 5,555,558 2,553,496
20M 5,555,558 1,679,566

vips
20M 5,555,560 2,586,544
20M 5,555,559 1,669,547

Table 5: Simulation running time in seconds.

Benchmarks Seq. SWS SWB Forecast
bodytrack 2326 1915 1304 934
facesim 4340 1658 1178 1006
freqmine 4210 2091 1321 913
streamcluster 4080 1963 1297 811
vips 4023 1592 1179 723

Table 4 shows the number of Null-messages sent/received
by Iris, Table 5 shows the simulation running time, Table 6
shows the performance improvements of the Forecast Null-
message algorithm over SWB, and its speedup numbers rel-
ative to the sequential simulation, and Figure 6 shows the
running time normalized with respect to SWB. Compared
with Test Set 1, it seems the number of Null-messages has

Table 6: Forecast Null-message: improvements over

SWB and speedup.

Benchmarks Improvement Speedup
bodytrack 28.4% 2.5
facesim 14.6% 4.3
freqmine 30.9% 4.6
streamcluster 37.5% 5.0
vips 38.7% 5.6

Figure 6: Test Set 2 normalized running time.

a much bigger impact on the performance. For example,
in Test Set 1, the running times of SWS and SWB are
close, with SWS outperforms SWB in a few cases. Here
we see SWB outperforms SWS consistently by a significant
amount: 26-36%. Comparing Forecast with SWB, we see
a reduction in simulation time of 14-38%. Therefore, we
can state that reducing the number of Null-messages is very
important in the case where inter-LP links cross physical
machine boundaries.

6. CONCLUSIONS AND FUTURE WORK
Two optimizations of the Null-message algorithm using
domain-specific knowledge are presented in the context of
parallel simulation of multicore systems. Because of the
characteristics of the simulation application, we can send
Null-messages much less eagerly than the baseline algorithm.
In addition, the internal state of the LP together with the
partitioning topology allows us to make conservative fore-
cast of future events. Based on this, an enhanced algorithm
called Forecast Null-message algorithm is created, in which
the Null-message is enhanced to carry the forecast informa-
tion. And with the forecast from both sides of the inter-
LP link we can achieve a dynamic look-ahead that is much
greater than what can be obtained statically from the inter-
LP delays. The optimizations greatly reduce the number of
Null-messages compared with the baseline algorithm. When
the simulation is run on multiple physical machines, the re-
duced number of Null-messages has a great impact on the
performance. However, if all the LPs run on the same ma-
chine, the reduction of Null-messages has diminishing re-
turns. For our future work, we intend to investigate the
scalability of the methods, the impact of different partition-
ing schemes, and other possible factors that could play an
important role in improving simulation performance.

7. REFERENCES
[1] C. Bienia and K. Li. Parsec 2.0: A new benchmark

suite for chip-multiprocessors. Proceedings of the 5th

Annual Workshop on Modeling, Benchmarking and
Simulation, 2009.

[2] K. Chandy and J. Misra. Distributed simulation: a
case study in design and verification of distributed
programs. IEEE Transactions on Software
Engineering, SE-5(5):440–452, 1979.

[3] J. Chen, L. Dabbiru, D. Wong, M. Annavaram, and
M. Dubois. Adaptive and speculative slack simulations
of cmps on cmps. Proceedings of the 43rd Annual
IEEE/ACM International Symposium on
Microarchitecture, pages 523–534, 2010.

[4] M. Chidester and A. George. Parallel simulation of
chip-multiprocessor architectures. ACM Transactions
on Modeling and Computer Simulation, 12(3):176–200,
July 2002.

[5] P. Clements, F. Bachmann, L. Bass, D. Garlan,
J. Ivers, R. Little, P. Merson, R. Nord, and
J. Stafford. Documenting Software Architectures:
Views and Beyond. Addison-Wesley, 2nd edition, 2011.

[6] R. DeVries. Reducing null messages in misra’s
distributed discrete event simulation method. IEEE
Transactions on Software Engineering, 16(1):82–91,
January 1990.

[7] J. Duato, S. Yalamanchili, and L. Ni. Interconnection
Networks, an Engineering Approach. Morgan
Kaufmann, 2003.

[8] R. Fujimoto. Parallel and Distributed Simulation
Systems. John Wiley & Sons, 2000.

[9] Intel. Pin - a dynamic binary instrumentation tool.
http://software.intel.com/en-us/articles/

pin-a-dynamic-binary-instrumentation-tool.

[10] S. Keckler, K. Olukotun, and H. Hofstee, editors.
Multicore Processors and Systems. Springer, 2009.

[11] C. Kersey, A. Rodrigues, and S. Yalamanchili. A
universal parallel front-end for execution driven
microarchitecture simulation. Proceedings of the 2012
Workshop on Rapid Simulation and Performance
Evaluation Methods and Tools, pages 25–32, 2012.

[12] G. Loh, S. Subramaniam, and Y. Xie. Zesto: A
cycle-level simulator for highly detailed
microarchitecture exploration. International
Symposium on Performance Analysis of Software and
Systems, pages 53–64, 2009.

[13] manifold.gatech.edu. Manifold.
http://manifold.gatech.edu.

[14] J. Miller, H. Kasture, G.Kurian, C. Gruenwald,
N. Beckmann, C. Celio, J. Eastep, and A. Agarwal.
Graphite: A distributed parallel simulator for
multicores. Proceedings of the 16th International
Symposium on High-Performance Computer
Architecture, pages 1–12, 2010.

[15] J. Misra. Distributed discrete event simulation. ACM
Computing Surveys, 18(1):39–65, March 1986.

[16] A. Rodrigues, K. Hemmert, B. Barrett, C. Kersey,
R. Oldfield, M. Weston, R. Risen, J. Cook,
P. Rosenfeld, E. CooperBalls, and B.Jacob. The
structural simulation toolkit. ACM SIGMETRICS
Performance Evaluation Review, 38(4):37–42, March
2011.

[17] W.-K. Su and C. Seitz. Variants of the
chandy-misra-bryant distributed discrete-event

simulation algorithm. Technical Report
Caltech-CS-TR-88-22, California Institute of
Technology, 1988.

