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ABSTRACT
The wide usage of GPGPU programming models and com-
piler techniques enables the optimization of data-parallel
programs on commodity GPUs. However, mapping GPGPU
applications running on discrete parts to emerging integrated
heterogeneous architectures such as the AMD Fusion APU
and Intel Sandy/Ivy bridge with the CPU and the GPU on
the same die has not been well studied.

Classic time-step simulation applications represented by
agent-based models have the intrinsic parallel structure that
is a good fit for GPGPU architectures. However, when map-
ping these applications directly to the integrated GPUs, the
performance may degrade due to less computation units and
lower clock speed.

This paper proposes an optimization to the GPGPU im-
plementation of the agent-based model and illustrates it in
the traffic simulation example. The optimization adapts the
algorithm by moving part of the workload to the CPU to
leverage the integrated architecture and the on-chip memory
bus which is faster than the PCIe bus that connects the dis-
crete GPU and the host. The experiments on discrete AMD
Radeon GPU and AMD Fusion APU demonstrate that the
optimization can achieve 1.08–2.71x performance speedup
on the integrated architecture over the discrete platform.

Categories and Subject Descriptors
C.1.3 [Computer Systems Organization]: Heterogeneous
(hybrid) systems; I.6.3 [Computing Methodologies]: Sim-
ulation And Modeling—Applications

General Terms
Algorithms, Performance

Keywords
GPGPU, APU, Agent-Based Model, Traffic Simulation

1. INTRODUCTION
The transition to heterogeneous computing has been ac-

companied by the advance of general-purpose graphics pro-
cessing unit (GPGPU) technologies. While the discrete GPU
architectures such as AMD Southern Island [4] and NVIDIA
Fermi [18] have demonstrated their successes both in in-
dustry and academia, commodity heterogeneous platforms
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are moving towards integrated architectures represented by
AMD Fusion APUs [2], Intel Sandy Bridge [11] and NVIDIA
Echelon [13] each of which have the CPU and the GPU on
the same die. The new design methodology, especially the
CPU-GPU shared memory hierarchy, introduces challenges
to the programming models, compiler techniques, applica-
tion algorithms, software stacks and power management.

Specifically, mapping traditional GPGPU applications that
are running on discrete platforms onto integrated architec-
tures and understanding the impact of architectural differ-
ence on algorithm design are increasingly important yet not
well studied. The implementations of these applications gen-
erally rely on the GPUs as the computation accelerators and
limit the CPUs to the role of preparing and transferring the
data to the GPUs. The large memory access overhead in-
troduced by the slow PCIe bus that connects the CPU and
the GPU precludes the possibility of splitting the compu-
tation between them. On the other hand, the integrated
architectures have more closely coupled CPU and GPU con-
nected by the on-chip memory bus with higher bandwidth,
which enable a new implementation philosophy that can ex-
tract more computation power from the CPUs by assigning
workloads other than data transfer.

The agent-based models belong to a classic group of prob-
lem sets that use time-step simulation to predict or recreate
the complex environment behaviors. The parallel implemen-
tations of the agent-based models on GPUs have been a
recent trend with significant performance improvement re-
ported from the serial counterpart on the CPUs especially
for extra-large scale simulations[22, 16, 1]. However, when
mapping to integrated architectures, the algorithm needs to
be properly adapted to leverage both the CPU computa-
tional capability and the memory hierarchy.

In this paper we report an implementation and optimiza-
tion of an agent-based model on heterogeneous architec-
tures. The experiments demonstrate that the integrated ar-
chitecture can achieve 1.08–2.71x speedup depending on
the problem size compared to the seemingly faster discrete
platform because of both the use of the CPU and the higher
bandwidth provided by the on-chip memory bus. Specifi-
cally, this paper makes the following main contributions:

• An optimized massively parallel implementation that
can run the agent-based model applications on either
the discrete or the integrated GPUs.

• An optimization to the above implementation that moves
a portion of computation to the CPU to leverage the



shared memory hierarchy of the integrated architec-
tures.

• A systematic performance evaluation and comparison
of the implementations on different architectures with
emphasis on understanding how to efficiently use inte-
grated CPU-GPU architectures.

The rest of the paper is organized as follows. Section 2 in-
troduces the discrete GPU and the integrated heterogeneous
architecture represented by the AMD GPU and Fusion APU,
as well as the agent-based model and the traffic simulation
used in this paper. Section 3 describes the massively paral-
lel GPU implementation for the traffic simulation. Section
4 proposes an adaption of the implementation for heteroge-
neous architectures to utilize the computation power from
both the CPU and the GPU. Section 5 evaluates and com-
pares the performance on different architectures. Section
6 reviews the related works, followed by the conclusion in
Section 7.

2. BACKGROUND

2.1 AMD GPU and Fusion Architecture
This paper targets both the discrete and integrated het-

erogeneous architectures. The discrete architectures have
separate CPUs and GPUs in the system where the GPU
architectures are represented by NVIDIA’s Fermi [18] as
well as AMD’s Evergreen, Northern Island and Southern
Island [3, 4]. The integrated architectures put the CPU and
the GPU on the same die, represented by NVIDIA Eche-
lon [13], Intel Sandy Bridge [11] and AMD Fusion APUs [2].

We specifically use the AMD GPU and Fusion APU in
this paper. This section presents an overview of their archi-
tectures and introduces the differences in the memory hier-
archy. AMD devices use OpenCL [14] as the programming
model. Accordingly, this paper adopts OpenCL terminol-
ogy, where a work-item and a work-group correspond to a
thread and a Cooperative Thread Array (CTA) in the Bulk
Synchronous Parallel (BSP) model [24] respectively, and the
local memory is the memory region that can be accessed and
shared only by the work-items in a work-group. However,
the methodology and the conclusions also apply to other
heterogeneous architectures or programming models [10].

Figure 1 shows the typical AMD GPU architecture, where
Figure 1a represents the general architecture for both the
Evergreen and Northern Island Devices and Figure 1b shows
an overview of the Southern Island Device, also known as the
Graphics Core Next (GCN) architecture. These GPU de-
vices comprise several compute units, the number and the
structure of which vary with the device family. In Ever-
green or Northern Island GPUs, a compute unit has mul-
tiple processing elements, each of which executing a work-
item. The processing element possesses ALUs either in 4-
way VLIW (Northern Island) or 5-way VLIW (Evergreen).
In the Southern Island Devices, a compute unit comprises
a scalar unit and a vector unit with 4 16-lane SIMDs. The
Local Data Share (LDS) memory stores the data shared by
the work-group and is used as the local memory in OpenCL.
The AMD Radeon HD7950 GPU used in this paper belongs
to the Southern Island device family. The AMD A10-5800K
APU possesses the Radeon HD7660D GPU which has the
Northern architecture. It should be noted that on A10-
5800K, the L2 cache in Figure 1a does not exist.
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Figure 1: AMD GPU architecture block diagrams for (a)
Evergreen or Northern Island and (b) Southern Island.

The AMD Fusion APUs integrate the CPU and the GPU
on the same chip. Instead of the PCIe bus on the discrete
GPUs that connects the separate device and the host mem-
ory, APUs use an on-chip memory bus that can achieve 1.2x-
3.9x higher bandwidth. In addition, the physical memory is
shared by the CPU and the GPU on the integrated archi-
tectures. However, the memory on current APUs is not co-
herent between the CPU and the GPU. The GPU can probe
the CPU memory while the CPU relies on APIs to synchro-
nize the GPU memory. In consequence, current APUs use
different data paths shown in Figure 2 to access CPU/GPU
memory. For example, the memory access request from the
CPU should go through the write combination buffer and
unified north bridge to the GPU in order to get the GPU
memory physical address.

AMD introduced the zero-copy memory access technique
on the GPU and the APU, which allows direct mutual mem-
ory accesses between the CPU and the GPU without trans-
ferring a copy of the data. Zero-copy is performed through
on-chip data paths on APUs and PCIe bus on discrete plat-
forms. The benefit of zero-copy includes two aspects: i)
this feature saves memory space because only one copy of
the data resides in the system; ii) when there are scattered
memory accesses from one side to the other (e.g., CPU mod-
ifies a few discrete bytes in the GPU memory), zero-copy
read/write for these scattered bytes can be faster than trans-
ferring all blocks of data between the CPU and the GPU.

2.2 Agent-Based Model and Traffic Simulation
The agent-based model [17] is a computational model for

simulating a group of autonomous agents which usually per-
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State Description

Type Either a car or a truck
X Position The X coordinate of the vehicle in the

lane. The direction of X axis is the
same as the moving direction of the
traffic.

Velocity Velocity of the vehicle
Lane Current lane number. For two-lane

traffic simulation, lane number is either
0 or 1.

Table 1: List of vehicle states

form simple individual actions but can be intelligent and
purposeful when interacting with their neighbors. People
have been using the agent-based model for recreating and
predicting the appearance of comprehensive systems such
as economics, logistics, social networks and biological appli-
cations. A typical agent-based model simulation comprises
the following four elements: i) agents with states, ii) commu-
nication with the neighbors, iii) universal transit functions
that apply to each agent to update their states, iv) time-
driven or event-driven simulation environment.

This paper uses traffic simulation in [23] as a specific ex-
ample to illustrate the agent-based model. The traffic simu-
lation is widely used for analyzing the traffic congestion pat-
terns which can help advance road infrastructure and city
planning. In this work, the time-driven simulation assumes
traffic moving on a two-lane highway as shown in Figure 3a.
Each vehicle, either a car or a truck, is an agent that pos-
sesses a set of states. Table 1 lists all the states used in
the traffic simulation. For simplicity, the traffic simulation
described in this paper does not include any intersection
or turbulence. However, they can be easily integrated to
current framework by introducing extra agent states and re-
strictions on the time-driven simulation environment.

In every time step, the transit functions update the states
of each vehicle by i) computing the acceleration using the
Intelligent-Driver Model (IDM) and ii) making lane-changing
decisions using the model of Minimizing Overall Braking de-
celeration Induced by Lane changes (MOBIL) [23]. Both
models perform arithmetic operations on the input vehicle
states.

IDM determines the acceleration of each vehicle locally
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Figure 3: A sample of the traffic simulation problem. (a) is
the traffic simulation for a two-lane highway with vehicles
indexed and (b) shows the data structure used for the traffic
simulation in (a).

from its own states and the states of the preceding vehicle.
For example, in Figure 3a, the acceleration of vehicle 3 is
computed from its own velocity, the velocity difference and
distance from its preceding vehicle 4. IDM also computes
the new velocity and X position according to the obtained
acceleration in each time step.

The lane-change model MOBIL makes the lane-change de-
cision by checking two criteria. The first criterion is the
incentive criterion which is satisfied when the acceleration
increase of the vehicle after a possible lane-change is larger
than the acceleration decrease of the back vehicle because
of the brake (e.g. acceleration increase of vehicle 3 in Fig-
ure 3a is larger than the acceleration decrease of vehicle 2
if 3 changes its lane and precedes 2). The second criterion
is the safety criterion which is satisfied when the decelera-
tion of the back vehicle after a possible lane change does not
exceed a threshold, i.e. vehicle 2 does not brake too hard.

The IDM and MOBIL models use states from three neigh-
bors as their inputs: preceding vehicle in the same lane,
preceding vehicle and back vehicle in the other lane.

3. GPU MASSIVELY PARALLEL IMPLE-
MENTATION

This section discusses the major steps of implementing
the traffic simulation on GPUs. The implementation uses
a structure of arrays to store all the state data, with each
array representing one state for all the vehicles, as shown
in Figure 3b. The elements in the arrays are sorted ac-
cording to the vehicle X position in each time step. The
chosen data structure can generate optimized memory ac-
cess pattern as well as minimize the effort to locate neigh-
bors. While there are other data structure representations
for agent-based models such as octree [9], they also rely on
some restructuring methods similar to sorting in each time-
step. Therefore, the implementation methods and conclu-
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Figure 4: Locating two preceding and two back neighbors for a block.

sions drawn from this paper still apply.
This implementation of traffic simulation on GPUs uses

one work-item for each vehicle and applies transit functions
in parallel in each time-step. A work-group composed of
several work-items processes a block of vehicles. Without
loss of generality, all the figures in this paper are drawn
assuming the size of the work-group, i.e. the size of a vehicle
block, is 8 if not stated. The state data of the vehicles are
maintained in the global memory. Three major steps in
the simulation iteration are i) to locate the neighbors, ii)
to update vehicle states, and iii) to sort the states array
globally according to X positions.

3.1 Locating Neighbor and Update States
The first step of the implementation is to locate the three

neighbors for the vehicles. The search of neighbors may cross
the boundary of vehicle blocks, therefore, the core algorithm
of locating neighbors is composed of two stages both of which
have a BSP structure : i) locating neighbor vehicles for the
blocks and ii) locating neighbors for individual vehicle within
the block.

The first stage locates the preceding two neighbors and
the back two neighbors from each lane for the block of vehi-
cles processed by the work-group. An example for this stage
in Figure 4 is that vehicle 12, 15, 24, 27 are the four neigh-
bor vehicles for the current block 16 - 23. Although only
one back neighbor is needed for an individual vehicle, this
stage locates two back block neighbors since the last vehicle
in the block can be in either lane. The following describes
the algorithm for locating two preceding neighbors for the
block. The same procedure can apply to locating two back
neighbors with the opposite operations, e.g., using minimum
instead of maximum operations, and minus instead of plus.
The index of one preceding neighbor (vehicle 24) can be
computed directly as the maximum vehicle index (vehicle
23) in the block plus one, since no matter which lane this
vehicle is in, it must precede the head vehicle either before
or after a possible lane-change. To locate the other pre-
ceding neighbor, the algorithm searches forward iteratively
from the preceding neighbor that has been identified. In
each iteration, the work group examines a block of vehicles

in parallel with each work-item checking one vehicle. For
example, in the first iteration, vehicles 25-32 in Figure 4
are examined by the work group. The search stops when
a vehicle with the lane number different from the identified
preceding neighbor is found. The minimum index is selected
if multiple vehicles are found, which is implemented by ap-
plying the atomic minimum operation on the indices of those
vehicles. In Figure 4, among the vehicles examined in the
first searching iteration, vehicles 27, 29 and 31 have the dif-
ferent lane number from the identified preceding neighbor
24. The minimum of the three indices is 27, which is the
other preceding vehicle for the block 16-23. The number of
searching iterations is limited to a few blocks, since vehicles
that are too far away have little effect on IDM, and therefore
can be ignored.

The second stage locates the three neighbors for the indi-
vidual vehicle in the current block respectively. These neigh-
bors are the two preceding neighbors in each lane and one
back neighbor in the lane after a possible lane-change. For
instance, vehicle 19 has vehicles 20 and 21 as its two pre-
ceding neighbors and vehicle 17 as its back neighbor after
a possible lane-change. At the beginning of this stage, the
states of current block of vehicles are loaded into local mem-
ory with the two preceding and two back block neighbors,
so that all following communication between vehicles in the
block are conducted through the local memory for fast ac-
cess. For example, the current block of vehicles 16-23 in Fig-
ure 4 along with four neighbors 12, 15, 24, 27 are loaded into
local memory as shown in Figure 5. The following describes
the procedure for locating the two preceding neighbors for
the individual vehicle in the block. The same procedure
can apply to locating the back neighbor by performing the
computation in an opposite direction. The algorithm is com-
posed of three steps as shown in Figure 5 and described as
follows.

Step 1: Compute lane dynamic. Lane dynamic is defined
as the indices of all the vehicles whose lane numbers are
different from the previous vehicles. For example, if vehi-
cle 17-21 have lane numbers (1,0,0,0,1), the lane dynamic
is (18,21) since vehicles 18 and 21 have different lane num-
bers from vehicle 17 and 20. To compute lane dynamic, an
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Figure 5: The three steps for locating two preceding neigh-
bors for individual vehicle.

exclusive-or operation is applied to the lane numbers of two
consecutive indexed vehicles, followed by the prefix sum and
stream compaction [5] operations as shown in Figure 5.

Step 2: Compute the preceding neighbor after a possible
lane-change. The basic idea is to find the next nearest ve-
hicle in the block that has the different lane number from
the current vehicle. This can be done by indexing the lane
dynamic array with the scan index generated by the prefix
sum as shown in Figure 5. The reason is that the scan index
records the position in the lane dynamic array of the next
vehicle whose xorLane is ‘1’ (i.e. whose lane number is dif-
ferent from the previous vehicle). Indexing the lane dynamic
array by the scan index can generate an array composed of
these vehicles. When properly re-aligned with the indices of
the current block, they exactly point to the preceding neigh-
bors to be located in this step. Take an individual vehicle as
an example, the scan index is 2 for vehicle 19, giving index
2 of the lane dynamic as the next vehicle with the differ-
ent lane, which is 21. After a re-alignment with the current
block indices, this number is aligned with 18, meaning that
vehicle 18 has 21 as its preceding neighbor after a possible
lane-change.

Step 3: Compute the preceding neighbor before a possible
lane-change. There are two cases for this neighbor. In the
first case, the current vehicle and the next nearest vehicle
share the same lane number, so that the result of exclusive-or

Stage 1

Stage 2

Stage 3

Stage 4

Work-group 0 Work-group 1

Global Barrier

Figure 6: Bitonic sort algorithm skeleton.

operation is 0 for these two vehicles and the neighbor can be
located directly. For example, vehicles 18 and 19 in Figure 5
have the same lane number 0, which generates 0 as their
exclusive-or result, therefore, 19 is the preceding neighbor
of 18. In the second case, the next nearest vehicle and the
current vehicle do not have consecutive indices, e.g. vehicle
20 and 21. The algorithm then increases the scan index
by one and uses it to index the lane dynamic array. The
lane number of the result vehicle is the same as the current
vehicle as it changes twice (e.g. 0 changes to 1 and then
back to 0). In Figure 5, the algorithm first checks the result
of exclusive-or operations, xorLane, and then combines the
two cases together to generate the final result.

With all the three neighbors located, each work-item fetches
the state data for current vehicle and the neighbors, com-
putes the new acceleration, velocity and X position accord-
ing to IDM, makes lane-change decision according to MOBIL
and stores the newly updated states back to the global mem-
ory. This procedure is completely parallel since each vehicle
can update its states independently. Ping-pong buffers are
used to avoid any global memory race condition in loading
the state data. When implementing the neighbor locating
and states update, no cross-work-group dependency exists,
requiring only one GPU kernel referred as traffic states up-
date kernel hereafter.

3.2 Sorting States Data
The previous algorithm of locating neighbors is based on

the assumption that all the state data of the vehicles are
sorted according to the X position of the vehicle. In order
for this assumption to hold, sorting is necessary at the end
of each time step, simply because the X positions of the
vehicles are updated and the relative sequential order can
be changed when, for example, the vehicles in one lane pass
the vehicles in the other lane.

This implementation uses bitonic sort algorithm [19] for
its highly hierarchical structure that can be easily adapted
to the framework of vehicle neighbor locating. Figure 6
shows the algorithm skeleton for bitonic sort. The algo-
rithm contains logN stages (N is the number of the inputs
to be sorted), each of which generates a bitonic sequence by
comparing and swapping data. In Figure 6, the data in the
rectangular boxes are either monotonically non-decreasing
or non-increasing. For the beginning logM stages where M
is the work-group size, all the data accessing and swapping
are within the work-groups, therefore only work-group bar-
riers are needed. However, all the subsequent stages require
data accessing across work-groups, therefore the global bar-
riers are necessary between stages.

The GPU implementation of other parallel sorting algo-
rithm such as merge sort and radix sort have similar struc-
tures to the bitonic sort that require both the processing
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Figure 7: Bandwidth comparison of AMD HD7950 GPU and AMD A10-5800K Trinity APU. (a) shows the bandwidth for
non-zero copy memory transfer rate and (b) shows the bandwidth for zero copy memory access rate.

within the work-groups and across the work-groups sub-
jected to the global barriers. Therefore, they can also be
used in the traffic simulation framework. We select bitonic
sort for its best performance out of the experiments on sev-
eral different sorting algorithms in the traffic simulation.
The sorting stage is referred to the sorting kernel hereafter.

4. OPTIMIZATION FOR HETEROGENEOUS
ARCHITECTURE

This section introduces an optimization of the traffic sim-
ulation implementation on the heterogeneous architecture
featuring both the GPU and the CPU. We discuss the mo-
tivation and identify a part of the problem whose workload
can be reduced and moved to the CPU.

4.1 Motivation
In traditional GPGPU programming, GPUs generally take

the role of computation accelerators while CPUs prepare and
transfer the data to the GPUs. Therefore, the CPUs are idle
most of the time. One alternative would be to move some of
the workload to the CPU. However, the overhead of memory
access between the CPU and the GPU can impose significant
impact on the overall performance.

The integrated architecture such as AMD APUs put the
CPU and the GPU on the same die with the on-chip memory
bus that can provide better support for zero-copy memory
transfer and higher memory bandwidth. Figure 7 compares
the CPU-GPU memory bandwidth of the discrete GPU which
uses the PCIe bus and that of APU which uses the on-chip
memory bus. The figure shows the comparison for both
the memory access with non-zero copy and zero-copy. The
zero-copy CPU read operations are very slow since the ac-
cesses are uncached and only a single outstanding read is
supported. For both the zero-copy and non-zero copy cases,
the integrated architecture outperforms the discrete plat-
form with 1.2x-3.9x higher bandwidth, which enables more
closely workload sharing between the CPU and the GPU
with less overhead in data access. For the traffic simula-
tion implementation, we adapt the algorithm to utilize both
the CPU and the GPU and investigate the performance on
different heterogeneous architectures.

4.2 Local Sort and Merge

For all three steps of the traffic simulation implementa-
tion on GPUs described in Section 3, the global sorting part
consumes most of the execution time according to the per-
formance break down in the experiment section (Section 5).
We design an optimized algorithm to reduce the sorting
workload and thereby the overall implementation workload.
This optimization requires computation on CPU and the
data transfer between GPU and CPU. The performance can
vary depending on different heterogeneous architectures, es-
pecially taking advantage of the high bandwidth in the in-
tegrated architecture.

In the bitonic sort algorithm, if only the first logM stages
are performed, the data are sorted within a work group. This
is defined as local sort. After the local sort, the boundary
data across the work group might be out-of-order, which
requires merge between neighbor work-groups. In bitonic
sort, the merge process is performed through the subsequent
stages. However, in the traffic simulation, the vehicles can
only have very small changes in their x positions in each
time step, which would only require minimal effort to merge.
Figure 8 shows two cases of traffic updates in one time step
requiring or not requiring merge after local sort. In this
example, the work-group size is set to 4. At time step N,
work-group 0 updates vehicle 0-3 and work-group 1 updates
vehicle 4-7. Then after one time step, vehicles are reordered
in two cases. For case 1, reordering occurs only within the
work-group, so that only local sort is needed. For case 2,
vehicle 2 is moving fast enough to pass vehicle 4 in work-
group 1. Therefore, after a local sort, vehicles can still cross
the boundary of work-group 0 and work-group 1 so that the
merge is necessary.

In the presence of both case 1 and case 2, we propose an
optimization for the sorting algorithm in the original traffic
simulation implementation, which is composed of two steps.
In the first step, the first logM stages of bitonic sort are pre-
served to perform the local sort. Since the local sort is done
within a work-group, it can be included in the original traffic
states update kernel. In the second step, the CPU will check
the boundary data of each work-group to perform necessary
merge between work-groups. The algorithm for CPU merge
is shown in Figure 9a. The inputs to the algorithm are all
the vehicle states that have been local sorted by each work
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Figure 8: Two cases of traffic states update that require or
do not require merge after local sort.

group. These data reside in GPU global memory. The CPU
will access these values by direct zero-copy reading/writing.
To determine if the merge is necessary, the CPU reads out
the X positions of both the first and the last vehicles in each
work-group and compares their values. This procedure is
performed in the increasing order of the work-group indices.
If there exists vehicles that cross the boundaries, e.g. the
last vehicle in the current work-group has greater X position
than the first vehicle in the next work-group as shown in Fig-
ure 9a, the CPU will do a merge across the work-group. Any
traditional CPU-based merge algorithm can be used in this
procedure. We specifically use the in-place merge algorithm
introduced by Katajainen et al [12] for its fast computa-
tion performance and low space complexity. Parallel merge
methods can also be utilized on multi-core CPUs. However,
the details of the merge algorithm are out of the scope of
this paper.

Sometimes the merge can involve several consecutive work-
groups as shown in Figure 9b. At the beginning of time step
N, vehicles in work-group 0 all lag behind work-group 1. Af-
ter one time step, vehicle 3 in work-group 0 can pass all the
vehicles in work-group 1 and some of the vehicles in work-
group 2. In this case, the merge involves work-group 0, 1
and 2. However, there is a limit for the number of work-
groups that can be involved in a single merge. The reason is
that within a time step which is usually from less than one
second to several seconds in the traffic simulation, vehicles
in one lane can only pass a limited number of vehicles in
the other lane. This limit can be achieved when vehicles in
one lane stop moving due to some congestion while vehicles
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Figure 9: Proposed optimization for sort using merge on
CPU. (a) shows the merge algorithm and (b) shows the max-
imum number of work-groups to be merged is imposed by
the passing limit in traffic moving.

in the other lane move at the highest desired speed. In the
example, since vehicles in lane 0 have 0 velocity and vehicle
in lane 1 move at the maximum desired speed, the maxi-
mum possible number of work-groups that require merge is
achieved, which is 3. In real simulations, this number can
be computed by dividing the max distance one vehicle can
travel in a time step by the minimum possible length of a
work-group of vehicles. The imposed maximum work-group
number to be merged can limit the CPU workload.

The proposed optimization can also apply to other agent-
base model implementations [22, 16, 8] which have sorting
as a stage to re-order the agent states. It has the following
three features or benefits:

• It reduces the workload of the global sorting and thereby
the overall system workload.

• The merge algorithm requires serial structure, which
can have the CPU as its more natural venue on the
heterogeneous architecture.

• In the merge operations, the communication between
the CPU and GPU is through direct access from the
CPU to the GPU memory, which can generate different
performance on the discrete platform with the PCIe



Integrated Discrete
Device
Platform (AMD) A10-5800K APU Radeon HD7950
GPU Arch. Northern Island Southern Island
Stream Procs 384 1792
Compute Units 6 28
Device Memory 512 MB 3072 MB
Local Memory 32KB 64KB
Peak Clock Freq. 800MHz 850MHz
Host
Processor A10-5800K APU Intel i7-920
Clock Freq. 3.8GHz 2.66GHz
System Memory 8GB 8GB

Table 2: Experimental environment.

Parameter Value

Everyday Acceleration a car:0.5, truck:0.4, m/s2

Desired Velocity v0 80km/h
Acceleration Exponent δ 4
Safety Headway Time T 1.5s
Comfortable Deceleration b 3m/s2

Minimum Gap s0 3m
Politeness Factor p 0.2
Max Safe Deceleration bsave 12m/s2

Lane-change Threshold athr car:0.3, truck:0.2
Car Length car:6m, truck:10m
Simulation Time Step 0.5s

Table 3: Traffic simulation parameters used in the experi-
ments.

bus and on the integrated platform with the on-chip
memory bus.

5. EXPERIMENTS AND EVALUATION
We run the traffic simulation both on the discrete and

the integrated heterogeneous architectures. The experimen-
tal environment is specified in Table 2. The parameters for
the traffic simulation are shown in Table 3. The work-group
size is 64 for the simulation, which is the optimized result
from multiple experiments of different kernel configuration
on both the discrete and the integrated GPUs. For OpenCL
implementation running on CPUs, the performance does not
vary when the work-group size exceeds 16. Therefore, the
work-group size is also set to 64 to ease performance com-
parisons. We set the input size from 128 to 2M vehicles,
which might be considerably large for real traffic, however,
we claim that the experiments and conclusions in this sec-
tion can apply to other large-scale agent-based model such
as cell-level biological simulation where 2M agents are com-
mon and reasonable.

5.1 Evaluation of the GPU Implementation
We first evaluate the performance of the original GPU im-

plementation of the traffic simulation on the discrete GPU
HD7950, the GPU part of A10-5800K APU and the Intel
CPU (as the compute device in OpenCL) by comparing the
speedup over the serial implementation [23] on Intel CPU.
We measure the execution time of one time-step simulation
averaged from 10000 iterations and compute the speedup
over the serial CPU implementation which is shown in Fig-

ure 10a.
The OpenCL implementation on the Intel CPU achieve

similar performance compared to the serial implementation
for input size 128 - 1K. When the input size increases, the
OpenCL implementation can have more benefit from its par-
allel algorithm design and achieves more speedup from 1.25x
to 1.98x.

Similarly, for small input size, the GPU part of APU and
the discrete GPU performs worse than the serial implemen-
tation. More than 1x speedup can be observed on both de-
vices for input size larger than 2K. This speedup increases
steadily from 1.29x to 33.9x on the discrete GPU with the
simulation input size. In comparison, the implementation
on the APU achieves 1.41x-2.72x speedup over the serial
implementation.

The speedup over the serial implementation demonstrates
that the parallel algorithm designed for agent-based is effi-
cient on both the multi-core CPU and the GPU. The dif-
ference between the speedup on the APU and the discrete
GPU shows that the latter has much stronger computation
power than the GPU part of the APU due to larger number
of computation units, advance in architecture and higher
clock speed.

To further analyze the performance result, we break down
the execution time for the traffic states update kernel and
the sorting kernel in Figure 10b and Figure 10c, normalized
towards the total execution time for each simulation size
on each device. Both on the discrete GPU and the GPU
part of the APU, the sorting kernel takes more than 80% of
the total execution time when the input size exceeds 16K,
which justifies the rationale of the proposed optimization in
Section 3.1. It can also be noted that the percentage of the
execution time consumed by sorting is increasing since more
stages and global barriers are required for larger input size.

We also evaluate the performance of other sorting algo-
rithms when used in this problem. For example, the tradi-
tional odd-even sorting algorithm [15] is a good candidate on
the almost sorted vehicle states. We observe that for input
size which is smaller than 64K vehicles, the odd-even sorting
can be very efficient that takes less than 65% of the total
execution time. However, the performance decreases signif-
icantly for larger input size due to more iterations required
to converge and increased overhead on global synchroniza-
tion for each iteration. When the number of vehicles exceeds
256K, the sorting takes more than 99% of the total execution
time. The comparison of multiple sorting algorithms shows
that bitonic sort is the most efficient for this problem, which
is also evidenced by optimal sorting algorithms on GPGPU
architectures [20].

5.2 Evaluation of the Optimization on Hetero-
geneous Architectures

As discussed in Section 4.2, merge is a necessary step in
the proposed optimization when there exists vehicles that
cross the work-group boundary after the local sort. To eval-
uate how often the merge is required, we compute the merge
rate which is defined as the number of work-groups that re-
quire merge divided by the number of total work-groups.
Figure 11 shows the merge rate for different simulation size.
The low merge rate (less than 25%) for all input sizes indi-
cates that most of the time, performing only the local sort
will preserve the ordering of the states data, so that the
merge effort can be minimized to reduce the overall imple-
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mentation workload.
We apply the proposed optimization both on the discrete

and the integrated heterogeneous platforms. On both plat-
forms, the GPU performs the traffic states update and local
sort while the CPU performs the merge. The CPU accesses
the traffic states data directly through zero-copy memory
space mapping from the GPU to the CPU. Therefore, only
one copy of the states data resides in the system. The mem-
ory mapping and data access for zero copy are through the
PCIe bus on the discrete platform and the on-chip mem-
ory bus on the integrated platform. As a comparison, we
also evaluate the optimization on the OpenCL implemen-
tation on the Intel CPU. In this case, CPU performs both
the states update/local sort and the merge operations by
directly accessing the data in the system memory.

Figure 12a shows the speedup over the original OpenCL
implementation on the three platforms respectively and Fig-

ure 12b compares the speedup over the baseline GPU im-
plementation on discrete GPU HD7950.

The APU achieves most significant speedup from the opti-
mization which is up to 25x over the original implementation
and 1.57x to 3.41x over the baseline implementation on the
discrete GPU. In the contrast, the discrete GPU achieves
1.1x to 2.6x speedup for input size smaller than 128K but
performs even worse than the baseline implementation for
input size larger than 128K (0.8x-0.9x). If we compare the
optimization result on the APU and the discrete GPU, the
former achieves overall performance 1.08x to 2.71x over the
latter. The speedup on both the APU and the discrete GPU
is a result of reduced workload in the sorting. However, the
larger input size requires more data accesses through the
memory bus. The scattered memory access pattern in the
CPU merge algorithm can even increase the memory bus
pressure. On the discrete GPU, the memory access overhead
negates the benefit of reduced workload for large input and
results in the overall system performance decrease. Com-
pared to the PCIe bus that connects the discrete GPU to
the CPU, the APU has higher memory bandwidth that can
help reduce the overhead of memory access which results in
performance increase.

The optimization of the OpenCL implementation on the
Intel CPU introduces very little data access overhead, so
that we can see the speedup over the original implemen-
tation when replacing the workload of global sort with lo-
cal sort and CPU merge. However, since the global sort
does not take as much time as in the GPUs, the optimiza-
tion only achieves 1.8x-3.0x speedup. When compared to
baseline implementation on HD7950, the multi-core CPU
achieves 1.6x-4.9x speedup for input size smaller than 4K
when the computation capability on GPU is not saturated
but performs worse thereafter.

Figure 12c demonstrates the memory access overhead by
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Figure 12: Performance of the optimization for the traffic
simulation. (a) shows the individual speedup over the origi-
nal OpenCL implementation, (b) shows the speedup over the
baseline GPU implementation on HD7950 and (c) shows the
execution time breakdown normalized to the baseline total
execution time on HD7950.

showing the breakdown of the traffic states update/local sort
kernel time and the CPU merge time. It also shows the
breakdown of the baseline discrete GPU execution time as a
comparison. Note that with the zero-copy technique, the
memory access time composes the majority of the CPU
merge time since the merge algorithm is memory bound and
CPU performs the merge by reading and swapping the data

in the GPU memory directly.
On the discrete GPU, the new traffic state update kernel

after optimization includes the local sort portion, which re-
sults in slight execution time increase as shown in Figure 12c.
The global sort in baseline implementation is replaced with
the CPU merge, which can be efficient for small input size
but consumes a large amount of time when the input size
increases and thereby hurts the overall system performance.

In contrast, the implementation on the APU consumes
much more time on the computation part including the traf-
fic states update and the local sort due to the reduced com-
putational capability. For input size larger than 8K, the
computation part on APU takes 1.2x to 14.6x more time
than the discrete GPU. However the time spent on CPU
merge is much less (only 11% to 45% of the time spent on
CPU merge on the discrete GPU or 9% to 20% of the time
spent on global sort in discrete GPU baseline). When com-
bining the computation part and the memory access time,
the APU can still achieve better overall performance.

5.3 Discussion
The optimization for integrated architectures can also be

performed using sorting algorithms other then bitonic sort
as long as they can benefit from splitting workload between
the CPU and GPU. For example, the earlier iterations in
the odd-even sort requires heavy work on comparing and
swapping data, for which the parallel execution on the GPU
can be highly efficient. However, the later stages have un-
balanced workload for sorted and unsorted blocks, therefore,
running them on the CPU would be a better choice to reduce
the overhead of global synchronization between each stage.
As a practical matter, the choice of sorting algorithm is an
engineering decision depending on the problem, but the op-
timization proposed in this paper is generically applicable
to different sorting algorithms.

While we perform the experiments specifically for the traf-
fic simulation problem, the optimizations and results can
be generalized for other agent-based model applications be-
cause of their similarity in neighbor locating and commu-
nication patterns. For a general agent-based model simula-
tion framework [21, 16, 8], restructuring such as sorting is
required in each time step to re-order the states data, which
usually contains serialized work that can be implemented on
the CPU and take advantage of the integrated architectures.

The experiments reveal that when the algorithm is prop-
erly designed, the APU can achieve the balance between the
computation power and the host-device memory bandwidth,
which provides an opportunity for mapping current GPGPU
applications to the integrated heterogeneous architecture to
utilize both the GPU and the CPU while still preserving low
memory transfer overhead. The overall system performance
on the APU can be even better than on the discrete GPU.

For large-scale parallel programs such as data-warehousing
applications, the overhead of PCIe can eat up all the bene-
fits from optimizing the parallel algorithms on the GPU [25].
This paper provides the insight that the integrated architec-
ture can help these large-scale application to avoid the slow
PCIe bus and achieve better performance.

6. RELATED WORK
Recently agent-based model simulations have been imple-

mented on the GPU architectures with the support of the
GPGPU programming model. The work of Richmond et



al. [21] and Lysenko et al. [16] are among the earlier re-
searchers that implement the agent-based model on GPUs
by addressing problems such as mapping agents, developing
partitioning schemes to allow agent communications, solv-
ing agent collision problems and dealing with agent death
and reproduction. Richmond et al. also advance their work
to a general GPGPU agent-based model simulation frame
work FLAME [22]. While all the above works report signifi-
cant performance improvement over CPU implementations,
they hardly propose any optimizations in neighbor commu-
nications which rely on the restructuring methods like sort-
ing. Erra et al. [8] propose a more efficient algorithm on
GPUs to perform the nearest-neighbor search, which com-
prises hashing mapping, sorting and reordering of the agent
states. Aaby et al. [1] identify the optimization that re-
duces the global synchronization and communications be-
tween neighbor blocks of agents by introducing overlap in
the processing blocks. They claim the optimization is able to
hide the latency caused by the global synchronization. The
various optimizations enable large-scale agent-based model
simulation on a single GPU as well as the extension to multi-
GPU clusters. The optimization proposed in this paper also
targets more efficient neighbor communications, with more
emphasis on the utilization of the memory hierarchy of the
state-of-the-art heterogeneous architecture.

As a recent trend in heterogeneous computing, researchers
are spending more effort on the evaluation of the integrated
GPU-CPU architectures such as the AMD Fusion APU.
These evaluation works are represented by research on the
performance measurement for mapping various GPGPU ap-
plications onto integrated architecture where the new on-
chip memory bus alleviates the communication bottleneck
of data transfer between the CPU and the GPU. Doerksen
et al. [7] study the design and implementation of two prob-
lems: 0-1 knapsack and Gaussian Elimination on an APU,
claiming that most of the workload has been focused on the
GPU while the CPU portion only checks the termination
conditions and performs synchronizations. Their research
is augmented by Daga et al. [6], who study and evaluate a
more complete set of applications on the APU. The study
analyzes the detailed effect of the memory bandwidth of
the discrete GPU and the APU fusion architecture and con-
cludes that the APU may have more benefit on the overall
performance when there are large amounts of data to be
transferred. While the above works are valuable and signif-
icant in current research on the integrated architecture, it
should be noted that the applications used by these works
are originally designed for GPU architectures. To utilize the
advantage provided by the APU, the algorithms should be
redesigned to extract more computational power from the
CPU part and utilize the higher memory bandwidth. This
paper demonstrates this point by designing an optimization
that can utilize both the GPU and the CPU part with rea-
sonable amount of data access between them.

7. CONCLUSION
This work addresses the problem of implementing and op-

timizing agent-based models on heterogeneous architectures.
Specifically, we illustrate the GPU implementation details
for traffic simulation using agent-based model, including the
neighbor locating and states update algorithms. To tackle
the problem of inefficient sorting in the agent states updat-
ing, we propose an optimization that combines low-workload

local sort with necessary boundary merge. This optimiza-
tion utilizes the computation capability of both the CPU
and the GPU part of the heterogeneous architectures and
requires memory access from the host to the device. The
experiments show that the implementation on the APU per-
forms 1.08x to 2.71x faster than the discrete GPU, which
validates the importance of fast CPU-GPU communication.

The conclusions and insights from this paper are impor-
tant to a variety of problems since it provides a way for
mapping the traditional GPGPU applications to integrated
heterogeneous architectures by redesigning the algorithm in
favor of a more closely coupled CPU-GPU memory hier-
archy. The generality of the methodology for accelerating
these applications deserves further research.
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