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ABSTRACT
Processor power is a complex function of device, packaging,
microarchitecture, and application. Typical approaches
to power simulation require detailed microarchitecture
models to collect the statistical switching activity counts
of processor components. In manycore simulations, the
detailed core models are the main simulation speed
bottleneck. In this paper, we propose an instruction-based
energy estimation model for fast and scalable energy
simulation. Importantly, in this approach the dynamic
energy is modeled as a combination of three contributing
factors: physical, microarchitectural, and workload
properties. The model easily incorporates variations in
physical parameters such as clock frequencies and supply
voltages. When compared to commonly used cycle-level
microarchitectural simulation approach with SPEC2006
benchmarks, the proposed instruction-based energy model
incurred a 2.94% average error rate while achieving an
average simulation time speedup of 74X for a 16-core
asymmetric x86 ISA processor model with multiple clock
domains operating at different frequencies.

1. INTRODUCTION
Advances in semiconductor technology and the evolution

to manycore architectures have defined the challenges in
energy or power management of processors. Increasing
transistor counts can no longer be devoted to performance
enhancements but rather must be used to improve
performance per Joule or energy per instruction. These
challenges in conjunction with the need to continue to
effectively support serial components of an application
have largely been responsible for the push towards
asymmetric chip multiprocessors (ACMP) for sustainable
and energy efficient performance growth [1, 2]. Thus,
architecture-level energy and power modeling is central to
the microarchitectural design space exploration for high core
count future ACMPs.

The initial approaches to a single core power modeling
were mostly measurement-based regression models. These
models are known to be highly accurate but limited
in applicability to explore evolutionary technologies and
new architecture designs [3, 4]. In the past decade

or so, power modeling approaches have been moving
toward the counter-based model. This method decomposes
the architecture into basic functional blocks (e.g., cache,
execution units, decoders, etc.) and analyzes the power
behavior at the block level by multiplying the access counts
(or activity factor) by per-access unit energy. The gross
power is calculated by adding contribution from each basic
block. This approach is known to deviate from real
measurements, depending on the accuracy and detail of
the basic block model [5, 6, 7] but remains popular due to
its applicability across new architectures and technologies.
The predominant approach to using counter-based models
is via cycle-level microarchitecture simulation. This is a
time-consuming process where simulations can easily take
days for small core count processors, and these simulations
typically execute at tens of KIPs [8, 9]. This approach is
not sustainable to high core count simulations.

This paper proposes an instruction-based energy
estimation model that significantly speeds up energy
simulation while maintaining accuracy close to that
of detailed cycle-level simulation using the popular
counter-based approach. Our model builds on the insights
of counter-based energy calculation with highly detailed
microarchitecture simulation to analyze how instructions
exercise different execution paths through the core. The
execution path information is distilled into an architecture
matrix where the entries are the invocation counts of
physical components in the datapath with respect to
the workload metric. Thus, this matrix reflects the
characteristics of microarchitecture and instruction set
architecture (ISA). The per-access energy of physical
components in the core is represented as unit energy
vector which can be computed offline from circuit-level
modeling tools [5, 6, 7]. The architecture matrix is
used in conjunction with a workload vector that captures
instruction-level properties of a thread, where the entries
are the counts of key observation parameters such as
instruction types (e.g., integer, floating-point, branch, or
memory operation), number of operands, operand type,
and so forth. Simple matrix-vector computations can
replace the use of heavy microarchitecture models [8, 9] to
increase the simulation speed while maintaining the energy
estimation as accurate as the detailed models. This paper



presents our experiments with this model, its strengths and
weaknesses, and areas of continuing work.

In the following, we first review previous approaches to
processor energy modeling and then present our analytical
energy model based on instruction-level execution path
analysis. The proposed method is compared with the
results produced from a highly detailed cycle-level x86
architecture simulator integrated with the energy models
[6, 8]. Comparisons are made using SPEC2006 benchmarks
executed on a 16-core asymmetric manycore processor with
out-of-order and in-order cores operating at different clock
frequencies.

2. RELATED WORKS
In this section, we overview the major past approaches to

processor power modeling and evaluate their applicability to
ACMP power modeling.

2.1 Measurement-based Models
The measurement-based approach models the processor

as a black box. The output of the processor (i.e., current,
power) is measured in response to the workload input. A
predictive model is constructed based on the observed data
[3, 4]. This approach can be expressed as Equation 1.

P (t) = α
Cw · w(t)

Tsampling
+ β (1)

In this equation, w(t) is a vector of workload metrics
typically comprised of instruction types or key operational
parameters such as cache miss ratio, pipeline stall cycles,
and number of executed instructions. Cw is a weight
vector that is calibrated for a target processor through
measurement. Tsampling is the sampling period, and α and
β are the constants for the first-order regression model. The
difficulty of using this approach is creating a correct Cw

vector. In general, this cannot be predicted for an unknown
architecture or technology.

2.2 Counter-based Model
The counter-based approach is the most popularly used for

architecture-level energy explorations. This method starts
by decomposing the microarchitecture into basic functional
blocks (e.g., caches, decoders, execution units). These
basic blocks are analyzed by circuit-level modeling tools to
compute the per-access energy [5, 6, 7]. The basic block
power is calculated as the product of the per-access energy
and access counts, and the processor power is computed as
the sum of basic block powers. The counter-based method
can be expressed as follows.

P (t) =
Eunit · Cactivity + Estatic

Tsampling
(2)

Eunit is a vector of the per-access unit energy of basic blocks.
Cactivity is a set of counters that represent the basic block
invocation counts in the sampling period. Estatic is static
energy dissipated by all blocks during the sampling period,
Tsampling. The difficulty of using this approach is obtaining
the set of counters. The counters are statistical data that
are typically collected through detailed microarchitecture
simulations that are known to operate around or less than
50KIPS [8, 9] which is a major bottleneck for large-scale
power simulations.

2.3 Instruction-based Model
The study in [10] and related papers describe a method

of instruction-based energy modeling for an embedded
processor where inter-instruction energy dissipation is
modeled at each pipeline stage as summarized in the
following equation.

E(W ) =

P∑
p=1

[

N∑
n=1

E(wn|wn−1)] + Estatic (3)

The workload is composed of N instructions, and
E(wn|wn−1) means the switching energy at the pth pipeline
stage between the (n − 1)th and nth instructions. This
approach is similar to our proposed method in that a
priori instruction information is used to estimate energy.
However, this approach applies to a very specific case of a
pipelined processor and inter-instruction relations. Further,
we demonstrate with our approach that such detailed
interactions are not critical.

3. MODELING
Energy is a complex output that is a function of 1)

device and packaging characteristics, 2) microarchitecture
effects, and 3) the properties of executed workloads. In
contrast to prior approaches, we propose an approach
that captures these three factors through instruction-level
datapath analysis.

3.1 Analytical Model
The proposed method is expressed through the following

equation that includes the features of the aforementioned
approaches (i.e., measurement-based, counter-based, and
instruction-based methods).

Pcore(t) =
Eunit ·Adatapath · w(t) + Estatic

Tsampling
(4)

In this equation, the total energy is separated into
static and dynamic portions. Estatic is the static energy
dissipated by all physical components and modeled as an
activity-independent term that is proportional to execution
time and depends on the operating conditions such as
voltage level and temperature. Note that instruction
latencies can vary in wide range as in Figure 1 example
which shows the delay distributions of two different
types of instructions. Therefore, previous works mostly
focused on analyzing the static energy prediction [3, 11].
Instead, we point out that workload execution time can be
estimated through performance predictors [12, 13] rather
than simulating detailed core models. These time estimates
can be used to compute static energy and power.

Dynamic energy dissipation is incurred due to the
switching activities of instruction executions. In Equation
4, Eunit is an 1 × m vector of the per-access unit energy
of m microarchitecture components. This can be computed
offline using circuit-level modeling tools [5, 6, 7]. Adatapath

is an m × n architecture-level datapath matrix. Each
column represents the microarchitecture components that an
element of the workload vector will access during execution.
w(t) is a workload vector composed of n metrics which drive
different sets of architecture components (correspoding to
the column of Adatapath). Note that the product Eunit ·
Adatapath corresponds to the weight factor vector, Cw in
Equation 1, and Adatapath · w(t) corresponds to Cactivity in
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Figure 1: Delay distributions of x86 computation
(add) and memory (mov) instructions.

Equation 2. Both are computable in our approach without
the disadvantages previously described.

Table 1: Test Models for Energy Profiling

Configuration In-order core Out-of-order core

Feature size 16nm technology
ISA x86 IA32

Clock freq. 1.85GHz 3.75GHz
VDD 1.0V 1.0V

Pipeline depth 16 24
Decode width 2 insts/cycle 4 insts/cycle
Exec width 3 ports 6 ports
L1 cache 32KB 32KB
L2 cache 256KB 256KB

3.2 Unit Energy Calculation of Basic Blocks
The unit energy vector, Eunit, is computed offline for each

core using circuit-level modeling tools. In this paper, we
used the McPAT models for block-level energy computation
[6]. Table 1 summarizes the configuration of the asymmetric
processor analyzed in this paper. The processor comprises
two different types of core execution models operating
at different clock frequencies. The in-order execution
model sequentially processes instructions in the order they
are fetched. In the out-of-order model, a core can issue
instructions out of order to avoid stalling the pipeline, and
thus the instructions may complete not in order. The latter
core has higher performance at the expense of higher energy
per instruction. Consequently, each core type has different
values of Adatapath and Eunit.

3.3 Workload Representation
The simplest workload representation is a vector that

lists the count of each instruction type occurring during the
workload execution. It is simple to acquire either from a
trace or the output of multicore emulators [13]. However,
its usage is limited because of the vector size especially in
the tested x86 ISA environment. Alternatively, a few key
observations can be used to construct more compact forms
of workload vector. First, consider that every instruction
regardless of its type uses a common set of blocks such as
the instruction fetch units and decoders. In this case, a raw

instruction count can be used to estimate the baseline energy
of all instructions. Second, some instruction types use a
specific sequence of hardware blocks. For example, branch
instructions invoke branch prediction components, but other
computational instructions do not. Thus, the instruction
classes can be compressed to a greater degree without loss
of accuracy with respect to the energy estimation.

In this paper, we represented the workload vector, w(t),
as a set of 16 observed metrics that can be obtained from
an instruction stream. The key metrics are the number
of instructions (including macro and micro operations for
x86 instructions), operand type and length, and opcode.
The opcode does not list all of the operations but rather
enumerates the types that exercise a distinct set of processor
components such load, store, integer, floating-point, system
function, jump, call, etc. Thus, the workload is modeled
as the collection of activities that place demands on various
parts of the core.

3.4 Architecture Matrix
The architecture matrix is defined in conjunction

with the workload vector. Each element (i, j) of the
matrix corresponds to the number of accesses to the
processor component i invoked by the workload metric
j. This design assumes that the workload vector always
exercises the same set of microarchitectural components
and consequent energy dissipation, which is not always the
case. In order to understand the variances in the dynamic
energy dissipation of instructions, we empirically analyzed
instruction behaviors using a detailed x86 architecture
simulator integrated with the energy models [6, 8]. The
execution of every instruction was tracked through the
pipeline, and the diversity of energy behaviors was analyzed.
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Figure 2: Dynamic energy distributions of x86
computation (add) and memory (mov) instructions.

Figure 2 shows an example of dynamic energy
distributions for compute and memory instructions. The
instruction energy is normalized to the maximum possible
energy per instruction. As exemplified in the figure, we
found that the energy distribution of different executions
of an instruction is concentrated around the median value
despite the variations in physical execution paths and
microarchitectural state across each execution instance. For
instance, if an instruction has an operand dependency on
one of the preceding instructions, it drives the components
for scheduling, tag broadcasting, and data bypass, etc. If
there are no dependencies, the instruction then accesses
the register files for data fetch. The two cases are driving



different sets of components, but the energy variation
is only the energy difference between two alternatives,
which we found to be much smaller than the overall
energy dissipation. Thus, we found that disregarding
inter-instruction dependency does not significantly degrades
the accuracy, and the use of the most common execution
path results in good accuracy relative to the results
from detailed microarchitecture simulations. In addition,
assuming the worst-case execution path for each instruction
provides an upper bound of energy dissipation for the
workload, which is often of more interest.

Figure 3: Execution path example of add
<reg,mem> instruction in the out-of-order core
execution.

Such observations are used to construct the architecture
matrix in Equation 4. The alternative execution paths
of an instruction are rather small and can be analyzed
offline for different architectures, for example as in Figure
3. In this figure, highlighted functional blocks are in the
execution path of an example instruction add <reg,mem>.
This instruction follows the common execution path in the
fetch and decode stages. This operand has a register input
and output and thus reads and writes the register file, while
the other operand is fetched from the data cache through
scheduling in the load queue. This instruction drives
the ALUs for arithmetic and memory address calculations.
Such execution path information can be recorded in the
architecture matrix in Equation 4 by using four metrics
in this case: decoded micro-op counts, operation type,
operand counts, and operand types. However, we find that
tracing the energy of components in the low-level of the
architectural hierarchy (e.g., last-level cache, network) is
relatively harder using this approach. In microarchitecture
simulations, low-level components are not critical simulation
bottlenecks as cores, and thus a conventional counter-based
approach can still be applied to those components.

4. TRACING THE RUNTIME ENERGY
The proposed method was implemented for the x86 ISA

and compared with results from a detailed cycle-level timing
simulator. In both cases, the McPAT models were used

to model the block-level energy computation, Eunit [6].
The instruction-based energy estimator was constructed for
both in-order and out-of-order core models. For each core
type, the datapath was analyzed for different workload
metrics w(t) and represented in Adatapath. This energy
estimator was connected to the simulator front-end where
the instructions were decoded and emulated. It replaced
the cycle-level back-end timing model which was the major
bottleneck for simulation time. Comparisons were made at
this back-end stage to illustrate the accuracy and speedup
of the instruction-based energy model. The workload
metrics were collected from the executions of SPEC2006
benchmarks. The first 10 billion instructions were skipped
before starting the simulation, and the simulator was
warmed up by fast-forwarding the next 100 million clock
cycles before comparison experiments were begun.

4.1 Point-to-Point Energy Comparison
The proposed method was first tested with a single core

at a fine granularity by sampling the energy at every 100µs
period. The computed energy divided by the sampling
period is shown as the point-to-point power trace in Figure 4.
This figure shows three cases: the detailed simulation model,
common-path (the proposed instruction-based model), and
upper bound using the worst case energy path for each
workload metric. The upper bound case occurs when
the instructions invoke the most energy-hungry components
through the execution paths. The estimation error occurs
primarily due to 1) machine dependencies as explained in
Section 3.4 and 2) deviation of energy prediction in lower
level caches (i.e., L2 cache).
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4.2 ACMP Energy Comparison
The proposed method was extended to a larger scale.

Energy estimation was performed for an asymmetric
manycore processor model comprised of two different types
of cores operating at different clock frequencies as presented
in Table 1. Figure 5 shows the layout of a 16-core
asymmetric processor model used in this experiment with 4
out-of-order cores and 12 in-order cores. Each core executed
different SPEC2006 benchmarks. In this experiment, the
energy dissipation was computed for the entire simulation
time instead of point-to-point estimation.

Figure 5: 16-core asymmetric processor simulation
layout.

Figure 6 compares the total energy dissipation between
the detailed simulation model and proposed method for
the ACMP with each core in Figure 5 executing different
SPEC2006 benchmark suites (i.e., multi-programmed
mode). Most of the benchmarks match closely with an
average error of 2.94%, but cactusADM and bwaves deviate
up to 14.03%.

Figure 7 shows the simulation speedup of the dynamic
energy computation time of the proposed method over the
detailed simulation model. In this experiment, the speedup
was achieved by replacing the detailed but compute-heavy
back-end timing model with the instruction-based energy
estimator. The simulation speedup shown in the figure does
not include the common simulation overheads such as the
front-end instruction emulation and low-level architecture
components (e.g., memory controller, network, and last-level
cache). Consequently, the proposed method accelerated
the energy simulation speed by an average of 74.39X over
detailed microarchitectural simulations.

4.3 Summary
In this paper, we presented an instruction-based dynamic

energy estimation methodology. The proposed approach is
based on the empirical observations regarding the energy
behavior of instructions in cores; the variance in energy
dissipation is rather small even in an complex out-of-order
core. Consequently, using the principle of common
execution paths, we can construct a matrix-vector model
of dynamic energy dissipation at the instruction level with
little compromise in accuracy over detailed simulations.
The major features of the proposed approach include the

Figure 6: Total energy comparisons between the
proposed method (simple model) and detailed
model.

following.

• The decomposition of power into three contributing
factors (i.e., physical properties, microarchitectural
effects, and workload characterization) enables
the configurable implementation and exploration
for dynamic energy dissipation across various
microarchitecture designs and ISAs.

• One to two orders of magnitude speedup in the energy
calculation of programs with little sacrifice in accuracy
enables the fast exploration of energy behavior for high
core count processors.

• The approach is easily integrated into manycore
processor emulators and instruction-level simulators

• The workload information is characterized as in
Equation 4, and thus the energy or power estimate
fully reflects the properties of executed workloads.

Collectively, these features enable the fast design space
exploration of energy behaviors in high core count
architectures.

5. CONCLUSION
The manycore era has opened up a new dimension

of processor and system design that requires the rapid
and comprehensive explorations of design options. Such
explorations are limited by simulation speed and accuracy.
They must also include energy and power as the first class
entities to be modeled, and cores are the primary source
of energy and hence power dissipation in high performance
processors. Current techniques for modeling energy and
power rely on cycle-level microarchitectural models for
accuracy at the expense of long simulation times. This
approach is not sustainable to high core counts. In this



Figure 7: Speedup of dynamic energy estimation
time for the ACMP executing 16 SPEC2006
benchmarks.

paper, we proposed an instruction-based energy estimation
model and methodology that speeds up energy estimation by
1-2 orders of magnitude with marginal sacrifices in accuracy
over detailed simulation models.

The proposed instruction-based energy profiling method
decomposes the power into three contributing factors:
device and packaging characteristics, microarchitecture,
and workload properties. The strength of this approach is
that the implementation is configurable across various types
of microarchitecture designs and ISAs. Further the model
easily incorporates physical variations such as different core
types operating at different frequencies. The analytical
composition of the microarchitecture behaviors in response
to the workload enables the use of simple core models in
the manycore simulations to increase the simulation speed
while maintaing the accuracy of power estimation as close
as possible to that of detailed simulation models.
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