
Designing Configurable, Modifiable And Reusable
Components For Simulation of Multicore Systems

Jun Wang∗, Jesse Beu†, Sudhakar Yalamanchili∗ and Tom Conte†
∗School of Electrical and Computer Engineering

Georgia Institute of Technology, Atlanta, Georgia 30332–0250
Email: {jun.wang, sudha}@ece.gatech.edu

†School of Computer Science
Georgia Institute of Technology, Atlanta, Georgia 30332–0765

Email: Jesse.Beu@gmail.com, Tom@conte.us

Abstract—A simulation system for modern multicore archi-
tectures is composed of various component models. For such a
system to be useful for research purposes, modifiability is a key
quality attribute. Users, when building a simulation model, need
to have the capability to adjust various aspects of a component,
or even replace a component with another of the same type.
Software design considerations can determine whether or not
a simulation system is successful in providing such capabilities.
This paper presents a few design tactics that we adopt in creating
configurable, modifiable, and reusable components for Manifold,
our parallel simulation framework for multicore systems. The
main example component is MCP-cache, a coherence cache
model. The ideas behind the tactics are general enough and
should be useful to designers of similar systems.

I. I NTRODUCTION

Simulation is an important tool in computer architecture
research. For a simulation system to be useful for research
purposes, it must be designed in a way that allows the
components to be configurable and modifiable. This is because
the very nature of research means researchers, in their quest
to gain insights from simulations, need constantly experiment
with system configurations: changing the value of a parameter,
replacing one algorithm with another, mixing-and-matching
components in the system model, and so on. A well designed
system would allow users to make such configuration changes
with relative ease, and may even allow users to modify config-
uration files only without re-compiling. A rigid design, on the
other hand, is usually characterized by hard-coded features and
tightly coupled components, making modification or extension
impossible without changing the source code. This paper
presents a few design tactics that have been proven successful
for the Manifold project, at both the software architecturelevel
and design level. Layered software architecture separatesa
system into layers, thus allowing changes to be localized and
promoting reuse. Standardized interfaces make it possiblefor
components of the same type to be interchangeable. Separation
of concerns is an important design principle that divides the
software system’s functionalities into different modules. This
again allows changes to be localized and facilitates reuse.De-
pendency injection decouples a component and its dependency
such that the component only uses the dependency objects’
services without creating the objects. Changes made to the

dependency does not require its user to change at all, as long
as the interface stays unchanged. With these software design
tactics we have made Manifold a highly extensible, modifiable,
and configurable system that allows users to easily adjust
various aspects of the system for their research purposes.
These tactics do not rely on any Manifold-specific features
and should be useful to designers of similar systems.

II. BACKGROUND

A. Manifold

Manifold [6] is a scalable parallel discrete event simulation
(PDES) framework for research of modern multicore computer
architectures. From a module point of view, Manifold is
composed of a parallel simulation kernel and a set of computer
architecture models. Users use these components to build
system models for parallel simulations. Based on the needs
of the user community, there are three important goals that
Manifold is designed to achieve: (1) PDES services should
be transparent to users. (2) the system must be open and
allow the research community to make contributions either
by porting exiting components or writing new components.
(3) users should be able to mix-and-match components from
the component repository to build their system models.

To achieve these goals, Manifold has adopted a layered
software architecture that separates the parallel simulation
kernel from computer architecture models (components), and,
as a general rule, components are independent of each other.
This is depicted in the software architecture view in Figure1.

B. MCP-cache

This section gives an overview of Manager-Client Pairing
(MCP) [2], and MCP-cache, a coherent cache model that im-
plements MCP. MCP-cache is our main example component in
presenting design tactics for creating modifiable and reusable
components.

1) MCP: MCP is a methodology for creating hierarchical
cache coherence in shared-memory multicore architectures.
Its main purpose is to address the scalability issue of cache
coherence.

MCP maintains cache coherence through a hierarchy of co-
herence realms forming a tree structure, as shown in Figure 2.



Fig. 1. Manifold software architecture.

Fig. 2. MCP Coherence Hierarchy.

Within each realm there is a manager-client pair at the root of
the sub-tree: the manager manages coherence within the realm,
while the client acts as a representative of its realm in the
parent realm. Using MCP each realm can achieve coherence
using a different coherence protocol. This is made possible
by defining two generic interfaces, one for clients and one for
managers, as shown in Figure 3.

The client interface defines operations for the client to check
for permissions such as read permission. If it does not have the
permission, it sends a request to its manager. A manager, on
the other hand, when receiving a request from a lower realm,
checks with its pairing client to determine whether or not the

Fig. 3. Client and Manager Classes.

request should propagate upward. Eventually, a response is
sent to the lower realm client to complete its request.

2) MCP-cache: MCP-cache implements a cache system
that consists of two levels of caches. The L1 cache is where
coherence is enforced and the L2 cache serves as the directory.
Taking the cache-centric approach [7], the state of a cache line
in L2 is the aggregation of its states in all the L1s. The L1
and L2 caches both have a hash table. To implement MCP,
the L1 cache has one client associated with each hash entry,
and the L2 cache has one manager for each hash entry.

III. D ESIGN TACTICS FORCOMPONENTS

In this section we present a few design tactics that we
adopted for Manifold to create modifiable and reusable com-
ponents. We use MCP-cache as the main example.

A. Layered Architecture

Following a common practice [1], we start by identifying the
key quality attributes of MCP-cache and then select a software
architecture that can best achieve the qualities.

The most important design goal of MCP-cache is to provide
the user the ability to experiment with different coherence
protocols. This is stemmed from the basic purpose of MCP,
which, as mentioned above, is to allow coherence hierarchy
to be easily created where sub-realms of the hierarchy can
use different protocols. Therefore, the most important quality
attribute of MCP-cache is modifiability. The system should
be designed in such a way that state machines for different
coherence protocol are exchangeable, and, adding new state
machines only involves localized changes.

Based on this, we adopted the layered architectural style
[4], also known as the layers architectural pattern [3]. The
most important characteristics of this architectural style, as
pointed out in [3], include promoting modifiability, portability
and reuse, and achieving separation of concerns.

We divide MCP-cache into two layers, a protocol-
independent layer and a protocol layer, as shown in Figure 4.
The protocol-independent layer implements basic cache func-
tions and does not have or require any knowledge of the
particular coherence protocol being used. The protocol layer
implements coherence protocols such as MESI in the form
of state machines. Obviously, for the protocol state machines
to be interchangeable, they must share a common interface,
through which the protocol-independent layer accesses the
state machines to carry out the cache coherence operations.

This common interface, incidentally, is the generic inter-
faces that MCP defines for clients and managers, as shown
in Figure 3. The two base classesClientInterface
and ManagerInterface define a set of operations that
is considered common to all broadcast and directory-based
coherence protocols. Figure 3 also shows concrete subclasses
for coherence protocols such as MESI. The client and manager
in general are implemented as state machines. The internals
of the state machines such as the states and transitions are
obviously determined by the coherence protocol and imple-
mented in the subclasses. For example, theMESI_client



Fig. 4. Layered architecture for MCP-cache.

Fig. 5. L1 cache.

and MESI_manager classes together implement the MESI
protocol.

The protocol-independent layer contains the L1 and L2
caches. Class diagram for L1 is shown in Figure 5, with the
classes in the protocol layer in darker boxes. L2 cache is very
similar.

From Figure 5 we can see, when adding a new coherence
protocol, on the L1 side, it only requires creating a subclass
of L1_cache and a subclass ofClientInterface. The
major purpose of the former is to instantiate objects of the
latter, while the latter implements the coherence protocol
state machine. For example, to implement the MEI proto-
col for MCP-cache, all we need to do is to create, say,
MEI_L1_cache as a subclass ofL1_cache, an abstract
subclass ofClientInterface called MEI_client and
its subclassMEI_L1_cache_client. The reason why we
need two subclasses ofClientInterface is because mes-
saging is separated from the state machine, following the
principle of separation of concerns, as discussed further in
Section III-C. The L2 side is very similar.

With this design, the user would create an
MESI_L1_cache object for L1 if MESI is the selected
protocol, as shown in Figure 6(a). When the user wants to
replace MESI with MEI, all that is required is to replace the
line in Figure 6(a) with the line in Figure 6(b).

L1_id = Component::Create<MESI_L1_cache>(...);

(a)

L1_id = Component::Create<MEI_L1_cache>(...);

(b)

Fig. 6. Using different coherence protocols.

Fig. 7. MCP-cache required interface.

We believe this layered architecture can well achieve the
major quality goal of the system, which is to allow new
coherence protocols to be easily integrated with the existing
infrastructure. From Figures 1 and 4 we can see the layered
architecture supports clean separation of concerns, helpslo-
calize changes, and promotes reuse. It not only is applicable
at the overall system level, but at the component level as well.

B. Standardized Interfaces

Figure 1 shows that the components in the models layer
of Manifold are independent of each other. One of the most
important advantages of this independence is that it provides
users the ability to mix-and-match components when building
system models. Take the processor-cache interface as an
example. If a cache modelC has a dependency on a processor
model P1, then it’s hard to build a system model withC
and another processor modelP2 without making changes to
the source code, which is not always possible. On the other
hand, ifC is independent of eitherP1 or P2, it can be easily
assembled with eitherP1 or P2.

In Manifold, it is the standardized interfaces that make the
model independence possible. For example, to make MCP-
cache work with more than one processor model, we define a
required interface [4] for MCP-cache, as shown in Figure 7.
The interface defines two functions:get_addr() returns
the address of the cache request, andis_read() returns
true if the request is a load request. Any data type can be
sent to MCP-cache from the processor model as long as
the two functions in the required interface are defined. With
the standardized interface, MCP-cache can work with any
compliant processor models, making the processor models
interchangeable.

C. Separation of Concerns

Separation of concerns is “the process of separating a
computer program into distinct features that overlap in func-
tionality as little as possible” [8]. The layered architecture, as
already mentioned, promotes separation of concerns. Here we
describe two more design choices that follow the principle of
separation of concerns to promote reuse.



The first is the separation of the hash table from the caches.
The hash table manages address tags. Its responsibilities
include storing address tags, allocating new entries, replacing
entry when a set is full, and so on. By putting all these
functionalities in a separate classhash_table, as shown in
Figures 5, not only do we freeL1_cache andL2_cache
from having to manage the hash table, but we can also reuse
the class and save development and testing time. In fact, it is
used by bothL1_cache andL2_cache.

Another case of separation of concerns is messaging. If
the clients and managers of MCP-cache are tightly coupled
with the underlying messaging system, then reuse is more
difficult. We have chosen to completely separate messaging
from the clients and managers by making the messaging
related function abstract in the state machines. Taking the
client as an example, in Figure 5, thesendmsg function in the
MESI_client is made abstract. This allowsMESI_client
to focus on state transitions and leave out messaging. The main
purpose of the subclassMESI_L1_cache_client is to
implement messaging. Object of this class has a reference toan
MESI_L1_cache object, which is a subclass of Manifold’s
Component class. Eventually, it is the messaging function of
Component that is used byMESI_L1_cache_client. It
can be easily seen that this separation of concerns makes the
state machine classMESI_client completely independent
of Manifold, thus facilitating reuse. If MCP-cache is to be
ported to another system, the state machines need no modifi-
cation because the system-dependent messaging is decoupled.

D. Dependency Injection

Dependency injection [5] is a software design pattern that
decouples an object and its dependencies, and allows de-
pendency to be bound at run-time rather than compile time.
This pattern involves three elements: an object that uses
another object (dependency), an interface that specifies the
dependency, and an injector.

In MCP-cache, an L1 cache, when sending a request to an
L2 cache, needs to know the node ID of the L2 cache, for
the given memory address, as there are multiple L2 slices in
a distributed shared cache. Similarly, when an L2 cache sends
a request to a memory controller, it needs to map the memory
address to the destination’s node ID. Clearly, it is not desirable
to hard-code the mapping from address to node ID. Therefore
we created an abstract class calledDestMap, whose abstract
function lookup returns a node ID for a given address. A
few concrete subclasses ofDestMap were also created, as
shown in Figure 8.

The next question is where to create the concrete mapping
object. If, for example,L1_cache creates aPageMap object,
then L1_cache is tightly bound toPageMap; it cannot
use a different mapping object to do the address-to-node
mapping. Using dependency injection, neitherL1_cache
nor L2_cache instantiates the mapping object. Instead, the
objects are created externally and injected into them. Fig-
ure 9(a) shows aPageMap object is created and passed
to the Create function, which in turn, passes the object

Fig. 8. L1 cache, L2cache, and DestMap.

DestMap* mapping = new PageMap();
L1_id = Component::Create<MESI_L1_cache>(mapping);

(a)
DestMap* mapping = new LineMap();
L1_id = Component::Create<MESI_L1_cache>(mapping);

(b)

Fig. 9. Dependency injection when creating L1 cache.

to the L1 cache’s constructor. If the user decides to use
LineMap, only one line needs to be changed, as shown in
Figure 9(b). Note that L1 cache does not need to know what
concrete subclasses ofDestMap exist. If a new subclass of
DestMap is created and used in a system model, there is
no change required forL1_cache. With dependency injec-
tion, L1_cache (L2_cache as well) only uses the service
provided by the mapping object and does not concern itself
with the instantiation of the object. This decouples the cache
function and the mapping service and gives the client code of
MCP-cache the freedom of selecting its own mapping objects.

In Manifold, we divide the concerns into two classes:
those concerning individual components, and those concerning
system models. Any dependency that should not be tightly
coupled with a component is injected from the outside when
the system model is being built. This, to a certain extent, makes
the components independent and customizable, increases their
reusability, and gives the users the possibility of customizing
various aspects of the system.

IV. CONCLUSIONS ANDFUTURE WORK

Simulators for computer architectures must be configurable
and modifiable in order to best serve research purposes. To
produce such a system, software designers must make consci-
entious design choices that promote modifiability. In this paper
we have presented a few design tactics, at both the software
architecture level and design level, that have proven to help
create flexible components and software systems. The tactics
have been successfully used in the Manifold project, resulting
in a highly modifiable simulation system where same-class
components are interchangeable, different components are
independent of each other, and features involving multiple
components are injected.

In the future, we plan to move as much system configuration
as possible to configuration files and greatly reduce the need
to recompile, further improving Manifold’s usability.



REFERENCES

[1] Len Bass, Paul Clements, and Rick Kazman.Software Architecture in
Practice. Addison-Wesley, 2nd edition, 2003.

[2] Jesse G. Beu, Michael C. Rosier, and Thomas M. Conte. Manager-client
pairing: A framework for implementing coherence hierarchies.The 44th
Annual IEEE/ACM International Symposium on Microarchitecture, pages
226–236, 2011.

[3] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
and Michael Stal.Pattern-Oriented Software Architecture: A System of
Patterns, volume 1. Wiley, 1996.

[4] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers,
Reed Little, Paulo Merson, Robert Nord, and Judith Stafford. Docu-
menting Software Architectures: Views and Beyond. Addison-Wesley, 2nd
edition, 2011.

[5] Martin Fowler. Inversion of control containers and the dependency
injection pattern. http://www.martinfowler.com/articles/injection.html.

[6] manifold.gatech.edu. Manifold. http://manifold.gatech.edu.
[7] D.J. Sorin, M.D. Hill, and D.A. Wood.A Primer on Memory Consistency

and Cache Coherence. Morgan and Claypool Publishers, 2011.
[8] Wikipedia.org. Separation of concerns. http://en.wikipedia.org/wiki/

Separationof concerns.


