Designing Configurable, Modifiable And Reusable
Components For Simulation of Multicore Systems

Jun Wang, Jesse Bey Sudhakar Yalamanchiliand Tom Conté
*School of Electrical and Computer Engineering
Georgia Institute of Technology, Atlanta, Georgia 303325@®
Email: {jun.wang, sudhg@ece.gatech.edu
tSchool of Computer Science
Georgia Institute of Technology, Atlanta, Georgia 303326%
Email: Jesse.Beu@gmail.com, Tom@conte.us

Abstract—A simulation system for modern multicore archi- dependency does not require its user to change at all, as long
tectures is composed of various component models. For such aas the interface stays unchanged. With these softwarerdesig
system to be useful for research purposes, modifiability is a key tactics we have made Manifold a highly extensible, modiéabl

quality attribute. Users, when building a simulation model, need d fi bl t that all t v adiust
to have the capability to adjust various aspects of a component, 210 configurabie system that allows users 1o easlly adjus

or even replace a component with another of the same type. Various aspects of the system for their research purposes.
Software design considerations can determine whether or not These tactics do not rely on any Manifold-specific features

a simulation system is successful in providing such capabilities. and should be useful to designers of similar systems.
This paper presents a few design tactics that we adopt in creating

configurable, modifiable, and reusable components for Manifold, Il. BACKGROUND
our parallel simulation framework for multicore systems. The Manifold
main example component is MCP-cache, a coherence cacheA' anifo

model. The ideas behind the tactics are general enough and Manifold [6] is a scalable parallel discrete event simaiati
should be useful to designers of similar systems. (PDES) framework for research of modern multicore computer
architectures. From a module point of view, Manifold is
composed of a parallel simulation kernel and a set of compute
Simulation is an important tool in computer architecturgrchitecture models. Users use these components to build
research. For a simulation system to be useful for reseakgfstem models for parallel simulations. Based on the needs
purposes, it must be designed in a way that allows thg the user community, there are three important goals that
components to be configurable and modifiable. This is becawganifold is designed to achieve: (1) PDES services should
the very nature of research means researchers, in theit qugs transparent to users. (2) the system must be open and
to gain insights from simulations, need constantly expenin allow the research community to make contributions either
with system configurations: changing the value of a parametgy porting exiting components or writing new components.
replacing one algorithm with another, mixing-and-matchin(3) users should be able to mix-and-match components from
components in the system model, and so on. A well designg@ component repository to build their system models.
system would allow users to make such configuration changeso achieve these goals, Manifold has adopted a layered
with relative ease, and may even allow users to modify configoftware architecture that separates the parallel siiulat
uration files only without re-compiling. A rigid design, onet kernel from computer architecture models (components), an
other hand, is usually characterized by hard-coded femtuté as a general rule, components are independent of each other.

tightly coupled components, making modification or extensi This is depicted in the software architecture view in Figiire
impossible without changing the source code. This paper

presents a few design tactics that have been proven sugced3f MCP-cache

for the Manifold project, at both the software architectignes| This section gives an overview of Manager-Client Pairing
and design level. Layered software architecture sepamate$éMCP) [2], and MCP-cache, a coherent cache model that im-
system into layers, thus allowing changes to be localizetl aplements MCP. MCP-cache is our main example component in
promoting reuse. Standardized interfaces make it posfible presenting design tactics for creating modifiable and fdesa
components of the same type to be interchangeable. Separatiomponents.

of concerns is an important design principle that divides th 1) MCP: MCP is a methodology for creating hierarchical
software system’s functionalities into different modul&his cache coherence in shared-memory multicore architectures
again allows changes to be localized and facilitates rddse. Its main purpose is to address the scalability issue of cache
pendency injection decouples a component and its depeydeoaherence.

such that the component only uses the dependency objectdCP maintains cache coherence through a hierarchy of co-
services without creating the objects. Changes made to tierence realms forming a tree structure, as shown in Figure 2

I. INTRODUCTION

request should propagate upward. Eventually, a response is
sent to the lower realm client to complete its request.

[models | 2) MCP-cache: MCP-cache implements a cache system
<<layer> that consists of two levels of caches. The L1 cache is where
] .]] coherence is enforced and the L2 cache serves as the djrector
processor cache network memory Taking the cache-centric approach [7], the state of a canbe |

in L2 is the aggregation of its states in all the L1s. The L1
and L2 caches both have a hash table. To implement MCP,
the L1 cache has one client associated with each hash entry,
and the L2 cache has one manager for each hash entry.

o

— I1l. DESIGNTACTICS FORCOMPONENTS
simulation kernel
<<layerss In this section we present a few design tactics that we
adopted for Manifold to create modifiable and reusable com-

ponents. We use MCP-cache as the main example.

Fig. 1. Manifold software architecture. A Layered Architecture

Following a common practice [1], we start by identifying the

key quality attributes of MCP-cache and then select a softwa
architecture that can best achieve the qualities.
The most important design goal of MCP-cache is to provide
the user the ability to experiment with different coherence

protocols. This is stemmed from the basic purpose of MCP,
which, as mentioned above, is to allow coherence hierarchy
to be easily created where sub-realms of the hierarchy can
use different protocols. Therefore, the most importantitjua
attribute of MCP-cache is modifiability. The system should
be designed in such a way that state machines for different
coherence protocol are exchangeable, and, adding new state
achines only involves localized changes.
Based on this, we adopted the layered architectural style
, also known as the layers architectural pattern [3]. The
st important characteristics of this architectural estyds
Binted out in [3], include promoting modifiability, portéity
nd reuse, and achieving separation of concerns.

[ciientBo | [ciente1] [crientco'] | ciientcl |

Fig. 2. MCP Coherence Hierarchy.

Within each realm there is a manager-client pair at the rbot
the sub-tree: the manager manages coherence within time, rea
while the client acts as a representative of its realm in t
parent realm. Using MCP each realm can achieve cohere
using a different coherence protocol. This is made possi
by defining two generic interfaces, one for clients and ome f

Managers, as shown in Elgure 3. . . We divide MCP-cache into two layers, a protocol-
The client interface defines operations for the client tmkheindependent layer and a protocol layer, as shown in Figure 4
for permissions such as read permission. If it does not Have The protocol-independent layer implements basic cache-fun
permission, it sends a réquest to its manager. A manager. i<’ and does not have or require any knowledge of the
the other .hand’ Whgn receving a requgst from a lower real}?ﬂ:lrticular coherence protocol being used. The protocarlay
checks with its pairing client to determine whether or na trﬁmplements coherence protocols such as MESI in the form

of state machines. Obviously, for the protocol state mahin
to be interchangeable, they must share a common interface,

Clientinterface through which the protocol-independent layer accesses the
+ GelReadD() Managerinterface state machines to carry out the cache coherence operations.
+ GetWiteD() + GraniReadDy) This common interface, incidentally, is the generic inter-
' g:::i:’)) * GranthtitaDg faces that MCP defines for clients and managers, as shown
+ HaveReadP) :G(z;E;;:)) in Figure 3. The two base class&d i ent|nterface

+ HaveWriteP() + process_lower _client_request() and Manager | nt er f ace define a set of operations that

+ HaveBviclP() + process_lower_client reply() is considered common to all broadcast and directory-based
+ processy / T coherence protocols. Figure 3 also shows concrete subslass
/Q AY for coherence protocols such as MESI. The client and manager

MEI_client || |MESI_client MEI_manager ||| MES!_manager

in general are implemented as state machines. The internals
of the state machines such as the states and transitions are
obviously determined by the coherence protocol and imple-
Fig. 3. Client and Manager Classes. mented in the subclasses. For example, M&SI _cl i ent

L1 id = Conponent::Create<MES| _L1 cache>(...);

cache function (a)
— <<Iayer>;| L1_id = Conponent::Create<MEl _L1_cache>(...);
L1 cache L2 cache (b)
Fig. 6. Using different coherence protocols.
v . MCPReglnfc
coherence protocols <<interface=>
_| <<layers> _| MEPFquInic T
MES ME! get_addr) <<components» il
is_read() MCP-cache

)) Fig. 7. MCP-cache required interface.
Fig. 4. Layered architecture for MCP-cache.

We believe this layered architecture can well achieve the
—— major quality goal of the system, which is to allow new
T coherence protocols to be easily integrated with the exjsti
— nandle_;mm_mqmuJ infra;tructure. From Figures 1 and 4 we can see the layered
= handle_peer_and_manager_request() — architecture supports clean separation of concerns, Hﬂlps
senc_msg.lo_peer_or_I2() calize changes, and promotes reuse. It not only is appécabl
— at the overall system level, but at the component level as wel
sendmsgy)
B. Standardized Interfaces
"Esdm:am‘c"m oSl cache Figure 1 shows that the components in the models layer
sendmsg |

of Manifold are independent of each other. One of the most
important advantages of this independence is that it pesvid
Fig. 5. L1 cache. users the ability to mix-and-match components when bugldin
system models. Take the processor-cache interface as an
example. If a cache modél has a dependency on a processor
and MES| _manager classes together implement the MESiodel P1, then it's hard to build a system model witH
protocol. and another processor modeR without making changes to
The protocol-independent layer contains the L1 and Lfe source code, which is not always possible. On the other
caches. Class diagram for L1 is shown in Figure 5, with theand, ifC is independent of eitheP1 or P2, it can be easily
classes in the protocol layer in darker boxes. L2 cache ¥ v&{ssembled with eitheP1 or P2.
similar. In Manifold, it is the standardized interfaces that make the
From Figure 5 we can see, when adding a new coherengedel independence possible. For example, to make MCP-
protocol, on the L1 side, it only requires creating a sulxlagache work with more than one processor model, we define a
of L1_cache and a subclass ol i ent | nterface. The required interface [4] for MCP-cache, as shown in Figure 7.
major purpose of the former is to instantiate objects of thehe interface defines two functionget _addr () returns
latter, while the latter implements the coherence protocgle address of the cache request, arsd r ead() returns
state machine. For example, to implement the MEI proterue if the request is a load request. Any data type can be
col for MCP-cache, all we need to do is to create, sagent to MCP-cache from the processor model as long as
MEI _L1_cache as a subclass of1_cache, an abstract the two functions in the required interface are defined. With
subclass ofCl i entInterface called MEl _client and the standardized interface, MCP-cache can work with any

its subclasdvEl _L1_cache_cl i ent. The reason why we compliant processor models, making the processor models
need two subclasses Gf i ent | nt er f ace is because mes- interchangeable.

saging is separated from the state machine, following the

principle of separation of concerns, as discussed further ¢- Separation of Concerns

Section lI-C. The L2 side is very similar. Separation of concerns is “the process of separating a
With this design, the user would create amomputer program into distinct features that overlap incfun

MESI L1 cache object for L1 if MESI is the selected tionality as little as possible” [8]. The layered archilg®t, as

protocol, as shown in Figure 6(a). When the user wants afready mentioned, promotes separation of concerns. Here w

replace MESI with MEI, all that is required is to replace theescribe two more design choices that follow the princigle o

line in Figure 6(a) with the line in Figure 6(b). separation of concerns to promote reuse.

The first is the separation of the hash table from the caches.
The hash table manages address tags. Its responsibilities
include storing address tags, allocating new entries aoé L1_cache Destap L2_cache
entry when a set is full, and so on. By putting all these lookup(]
functionalities in a separate clasash_t abl e, as shown in \
Figures 5, not only do we freel _cache andL2_cache
from having to manage the hash table, but we can also reuse PageMap| |LineMap SimpleMcMap
the class and save development and testing time. In fadt, it i
used by both.1_cache andL2_cache.

Another case of separation of concerns is messaging. If
the clients and managers of MCP-cache are tightly coupled Fig. 8. L1 cache, L2cache, and DestMap.
with the underlying messaging system, then reuse is MOT |\ vaps mapping = new PageMap():
difficult. We have chosen to completely separate messaging L1 id = Conponent:: Create<MES| L1 cache>(rmapping);
from the clients and managers by making the messaging (@)
related function abstract in the state machines. Taking the Eii}g’hg*mnangginggt s gf;vatLLrleNNEhsr:(_) L:l_cache>(mppi)
client as an example, in Figure 5, thendnsg function in the (b)

MESI _cl i ent is made abstract. This allo&ESI _cl i ent

to focus on state transitions and leave out messaging. Thre ma

purpose of the subclas®ESI L1 _cache_client is to

implement messaging. Object of this class has a refererare to , .

MESI L1 cache object, which is a subclass of Manifold'stq the L1 cache’s c_onstructor. If the user decides to use
neMap, only one line needs to be changed, as shown in

Conponent class. Eventually, it is the messaging function o:g!
Cogonent that is used bW)I;SI L1 cache gcl% ent. |t rigure 9(b). Note that L1 cache does not need to know what

can be easily seen that this separation of concerns makes%ﬁ@ir;f s_ubclasstez ﬁbzt Mi% ?X'St' I atnew sudbﬁlats; of .
state machine clas®ESI _cl i ent completely independent S p 1S created and used in a system model, nere 1s

of Manifold, thus facilitating reuse. If MCP-cache is to be'© change required facl_cache. With dependency injec-

ported to another system, the state machines need no modfi™" L1_cache (L2_cache as well) only uses the service

; h) L rovided by the mapping object and does not concern itself
cation because the system-dependent messaging is dmu@/?(t)h the instantiation of the object. This decouples theheac
D. Dependency Injection function and the mapping service and gives the client code of

Dependency injection [5] is a software design pattern thMCP-cache the freedgm of selecting its own mapping objects.
In Manifold, we divide the concerns into two classes:

decouples an object and its dependencies, and allows de€

pendency to be bound at run-time rather than compile timfg©Se concerning individual components, and those commeern
tem models. Any dependency that should not be tightly

This pattern involves three elements: an object that use® X e .
another object (dependency), an interface that specifies ﬁpupled with a component is injected from the outside when

dependency, and an injector. the system mode_l is being built. This, to a qertallin gxtenkefaa)
In MCP-cache, an L1 cache, when sending a request to g components independent and customizable, increasies t

L2 cache, needs to know the node ID of the L2 cache, fofusability, and gives the users the possibility of cuszimg

the given memory address, as there are multiple L2 slices Vifirlous aspects of the system.

a distributed shared cache. Similarly, when an L2 cachessend
a request to a memory controller, it needs to map the memory
address to the destination’s node ID. Clearly, it is not rdéxe Simulators for computer architectures must be configurable
to hard-code the mapping from address to node ID. Therefaed modifiable in order to best serve research purposes. To
we created an abstract class calleast Map, whose abstract produce such a system, software designers must make consci-
function | ookup returns a node ID for a given address. Aentious design choices that promote modifiability. In traper
few concrete subclasses Best Map were also created, aswe have presented a few design tactics, at both the software
shown in Figure 8. architecture level and design level, that have proven tp hel
The next question is where to create the concrete mappirgate flexible components and software systems. The dactic
object. If, for examplel.1_cache creates #ageMap object, have been successfully used in the Manifold project, result
then L1_cache is tightly bound toPageMap; it cannot in a highly modifiable simulation system where same-class
use a different mapping object to do the address-to-nodemponents are interchangeable, different components are
mapping. Using dependency injection, neithet _cache independent of each other, and features involving multiple
nor L2_cache instantiates the mapping object. Instead, theomponents are injected.
objects are created externally and injected into them. Fig-In the future, we plan to move as much system configuration
ure 9(a) shows a&ageMap object is created and passeds possible to configuration files and greatly reduce the need
to the Cr eat e function, which in turn, passes the objecto recompile, further improving Manifold’s usability.

lookup() lookup() lookup()

Fig. 9. Dependency injection when creating L1 cache.

IV. CONCLUSIONS ANDFUTURE WORK

(1]

[2]

(3]

(4]

(5]

(6]
(71

REFERENCES

Len Bass, Paul Clements, and Rick Kazma®oftware Architecture in
Practice. Addison-Wesley, 2nd edition, 2003.

Jesse G. Beu, Michael C. Rosier, and Thomas M. Conte. Maragnt
pairing: A framework for implementing coherence hierarchitse 44th
Annual |EEE/ACM International Symposium on Microarchitecture, pages
226-236, 2011.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sdaune
and Michael Stal.Pattern-Oriented Software Architecture: A System of
Patterns, volume 1. Wiley, 1996.

Paul Clements, Felix Bachmann, Len Bass, David Garlan, Sdvess,
Reed Little, Paulo Merson, Robert Nord, and Judith Staffofocu-
menting Software Architectures: Views and Beyond. Addison-Wesley, 2nd
edition, 2011.

Martin Fowler. Inversion of control containers and thepeéndency
injection pattern. http://www.martinfowler.com/articlegection.html.
manifold.gatech.edu. Manifold. http://manifold.gétesdu.

D.J. Sorin, M.D. Hill, and D.A. WoodA Primer on Memory Consistency
and Cache Coherence. Morgan and Claypool Publishers, 2011.

[8] Wikipedia.org. Separation of concerns. http://enipédia.org/wiki/

Separationof_concerns.

