Throughput Regulation in Multicore Processors via IPA

N. Almoosa, W. Song, S. Yalamanchili, and Y. Wardi

Abstract— This paper presents an online controller for reg-
ulating the throughput of instruction-sequences in multicore
processors using dynamic voltage-frequency scaling. The pro-
posed control law comprises an integral controller whose gain
is adjusted online based on the derivative of the frequency-
throughput relationship. This relationship is modeled as a
stochastic DEDS having no analytic functional form, and hence
its derivative is estimated by Infinitesimal Perturbation Analysis
(IPA). However, the DEDS is multi-class and hence the IPA
derivative is biased.

Biasedness of IPA is a common problem in multi-class DEDS
which has hindered the development of IPA as a general tool for
practical applications. However, recently it has been suggested
that as long as the relative bias has certain upper bounds,
optimization algorithms and control laws can still converge to
optimal or near-optimal parameters. The purpose of this paper
is to demonstrate this point for the aforementioned problem
of throughput regulation, thereby suggesting the potential
emergence of a new class of effective control laws in computer
architectures.

I. INTRODUCTION

Infinitesimal Perturbation Analysis (IPA) has been pro-
posed as a sample-path sensitivity-analysis technique for
stochastic Discrete Event Dynamic Systems (DEDS), and
especially queueing networks [11], [3]. In particular, it
computes the gradients (derivatives) of sample-performance
functions with respect to a Euclidean variable. Let us denote
this variable by # € R", and let J(0) : R" — R be a sample
performance function defined on a common probability space
(Q, F, P); the IPA gradient is the sample gradient V.J(0),
whose dependence on the sample w € € is suppressed in
the notation used. The utility of V.J () arguably can be had
in situations where it is desirable to minimize the expected-
value function ¢(0) := E[J(0)], E|-] denoting expectation
in (Q,F, P), but V((0) lacks a closed-form expression and
has to be estimated by the (sample) IPA gradient V.J(0).
This requires that V.J(#) be an unbiased statistical estimator
of V((0), namely that E[V.J(0)] = V((6).

IPA has the appealing property that its sample gradients
often require low-complexity algorithms, not only for simple
systems but also for networks of queues. However, soon
after its inception it was discovered that IPA typically yields
statistically-biased gradients for all but the simplest of sys-
tems [11], and this hindered its development and cast doubt
about its eventual use in applications. Although various ways
to circumvent this problem have been pursued, they typically
resulted in highly-complicated estimators and hence deemed
impractical (see [11], [3] and references therein). The search

School of Electrical and Computer Engineering, Georgia Institute
of Technology, Atlanta, GA 30332, USA, nawaf@gatech.edu, wjh-
song@ece.gatech.edu, sudha@ece.gatech.edu, ywardi@ece.gatech.edu.

for low-complexity unbiased IPA gradients has not yet had
an adequate solution suitable for a large class of practical
optimization and control problems.

Recently it has been suggested that the IPA gradients need
not be unbiased in order for an algorithm to converge to
a minimum value, but certain bounds on the bias would
be sufficient. Thus, if an unbiased but complex sensitivity
estimate can be replaced by a significantly — simpler IPA
gradient with a bounded bias, then optimization or control
algorithms could use it on practical problems. Experimental
evidence was observed in [4], [5], [19], and theoretical justifi-
cations are currently under investigation. This observation is
calling for a new approach to IPA by shifting its focus from
unbiased gradient estimators to low-complexity estimators
with bounded bias.

The purpose of this paper is to demonstrate this point on
the problem of regulating throughput performance of multi-
core processors. For example, the need arises in multimedia
applications where a fixed frame rate must be maintained
to avoid choppy video or audio. Another application is in
hard or soft real-time systems where constant throughput
processors enable task and thread schedulers to effectively
reason about the consequences of scheduling decisions and
thereby provide tight performance bounds.

However, there are several challenges precluding pre-
dictable throughput behavior in multicore processors. In gen-
eral, the degree of concurrency in an application instruction
stream, as measured by the instructions per cycle (IPC), is
time-varying and most often data-dependent. Furthermore,
instructions from multiple cores interfere in the caches,
the on-chip network, and memory controller queues adding
variability to instruction execution. This variability is am-
plified in asymmetric multicore processors where different
types of cores exhibiting different degrees of instruction
level parallelism and throughput capabilities are integrated
on chip.

Our starting point is the control law that was proposed for
power regulation in multicore systems [1]. The considered
problem was to control the dissipated power by the clock
frequency, so as to have it track a given reference value.
In the feedback system shown in Figure 1, the reference
power is represented by the input 7, the power dissipated
is the output y, and the input to the plant, u, is the clock
frequency. Reference [13] proposes a proportional control
law and carries out an analysis of stability margins and
tracking-convergence rates, under the assumption of a linear,
constant-gain plant. Reference [1] derives for the plant a
detailed, accurate system-model based on physical principles,
and proposes an integral controller with an adaptive gain.

The purpose of adjusting the gain continually is to ensure
a wide stability range and a high convergence rate of the
control algorithm, thereby having the control law adjust well
to frequent changes in the program workload.

g T Controller Plant

Fig. 1. Closed-loop system.

The gain is computed, in real time, in the follow-
ing way. The plant is modeled as a nonlinear, (discrete)
time-varying, memoryless system having the functional
form y, = ¢n(un—1), the controller’s transfer function
is Ge(z) = Kn%, and the gain K, is defined by
K, = (g;l(un_l)) 71, with “prime” denoting derivative with
respect to u. We mention that any implementation of this
control law requires the computation of the derivative term
g, (t_1) in real time, and we showed that this was possible
for the considered problem.

Our objective in this paper is to apply a similar control
law to regulate the throughput performance, but the problem
is that the derivative of the frequency — throughput func-
tional relation must be computable in real time. However
this relation is based on a stochastic-DEDS model lacking
closed-form expression for the performance, and hence the
derivative term cannot be computed analytically, let alone
in real time. For this reason we propose to use IPA for
estimating the derivative, and despite its bias we are confident
that the robustness of the control law, argued for in [1], will
yield good convergence results.

Section II describes the computer-systems setting for
our problem and surveys the main existing approaches to
throughput-performance regulation. Section III describes our
IPA approach to the problem, Section IV presents simulation
results, and Section V concludes the paper.

II. PROBLEM SETTING AND ESTABLISHED APPROACHES
TO THROUGHPUT REGULATION

The target application domain is that of asymmetric mul-
ticore processors [12], [17], [10]. Cores can be classified
as in-order (IO) cores where instructions are executed and
retired in the order they are issued, and out-of-order (OOO)
cores which employ aggressive pipelining and speculation to
issue and execute instructions out of order. In this paper we
consider OOO cores which tend to have higher throughput
than IO cores.

The throughput of OOO cores may have a high degree
of variability due to their inherent parallelism, dependencies
between instructions in a given thread, and variable delays
in the cache hierarchy. While recent work has shown that
throttling the frequency of the cores can be effective in
reducing interference in the network and memory system,
relatively little progress has been made on robust throughput
stabilization for the cores. Consequently, in this paper we

focus on control schemes that adjust the voltage-frequency
of a core to maintain a stable throughput rate. In principle,
the operating point can be selected to minimize interference
between cores in the network and memory hierarchy, or to
achieve a balance between instructions throughput and power
dissipation.

The architecture that we consider consists of a separate
control loop for each core instead of having a single control
applied to all of the cores in the processor. This clearly
is advantageous since concurrent core-workloads may have
different characteristics and throughput requirements. This
implies that each core is in a separate voltage island, which
is not uncommon; for example, the Intel 48 core single chip
cloud computer has 8 voltage domains and 28 frequency
domains [2].

A key issue in the design of our control law is to have it be
applicable to a broad range of core types, and be independent
of the specific application programs. In this case the design
would be based not on extensive off-line analysis, but rather
on a fundamental frequency-throughput relationship that is
experienced across all application and core combinations.
Such a general approach may eventually render control an
integral part of a multicore design across a wide range of
applications and core types. The rest of this section surveys
the main existing approaches for this control problem.

Throughput stabilization has been proposed as a means to
improve the predictability of real-time embedded systems. In
this setting, a-priori guarantees on task completion times are
required prior to deployment. Traditionally, computation of
the Worst Case Execution Time (WCET) of a task is used
to ensure predictability [20]. The significant drawback of
this approach is that the WCET bounds are conservative —
peak performance is significantly reduced while in practice
these bounds may be rarely approached. Consequently, the
use of WCET analysis has generally been limited to the
application to in-order cores without caches. The successful
application to high performance OOO cores is much more
challenging. For example, as shown in [18], task execution-
time uncertainty increases significantly in OOO processors
due to the use of speculation in the control path compounded
by variability in the memory hierarchy, and related works
also underscore the difficulty of applying WCET-based meth-
ods [9], [21].

An early example of throughput stabilization is due to
Zhu et. al. [22], who proposed an algorithm for hard real-
time embedded systems using dynamic voltage-frequency
scaling. Their approach is described in the context of energy-
minimization. Tasks are executed on an in-order processor
and are scheduled using the earliest deadline first (EDF) pol-
icy. To concurrently minimize energy, the authors proposed
splitting each task into a fast subtask which is executed at the
maximum frequency setting, and a subtask running at a lower
frequency and therefore incurring a lower energy cost. An
offline-tuned PID controller is proposed to tune the length of
each subtask to ensure that the overall task meets its deadline.
Recently, Suh et. al. [18] proposed stabilizing the throughput
(measured in MIPS) of embedded OOO processors using

feedback control. The proposed algorithm is a PID controller
that adjusts the processor’s voltage-frequency setting to track
a MIPS setpoint. The parameters of the controller (values
of the gain of the proportional, integral, and derivative
components) are calculated offline using a task training set.
The authors claim reasonable MIPS-tracking performance
provided the workload does not vary significantly from the
training set, limiting application to known workloads. An-
other approach to throughput stabilization for multithreaded
processors was proposed by Lohn et.al [15]. The authors
propose a statistical model of the relationship between the
throughput of a thread and the time-slot in which the thread is
scheduled to execute. The model is used to set the parameters
of a proportional feedback controller that adjusts the time-
slot allocation for a thread such that desired throughput for
each thread is achieved.

The approach that we propose in the next section is
based on an integral controller whose gain is adjusted on-
line in a way that optimizes the tracking performance in
a sense defined below. Since it computes the gain on-
line, it is suitable to changing and unpredictable application
workloads and programs. The gain’s computation is based
on the gradient (derivative) of the frequency-throughput
relationship, which is derived from a fairly complicated
queueing model and hence has no analytic (closed-form)
formula. However, we use an IPA estimator which, though
biased, is simple to compute and has a bounded error that
yields good convergence results.

We close this section by mentioning that real-time schedul-
ing regulation and control problems have been considered
in the setting of soft real-time systems and web-server
applications; see [6], [16] and references therein. The control
laws proposed in these references are implemented at the
software and operating-system levels; in contrast, our ap-
proach is aimed at a hardware-level controller that adjusts the
processor frequency to regulate a throughput rate supplied by
the scheduler. Consequently the proposed control laws for the
hardware and software problems are different and could be
complementary for eventual applications.

III. CONTROL LAW FOR THROUGHPUT REGULATION

Consider the control system shown in Figure 1, where
the output signal y denotes the instruction throughput, the
reference input r is the target throughput, and the control
variable u is the clock frequency, henceforth also denoted
by ¢. The system is assumed to evolve in discrete time, and
hence we will use the notation y, and u, = ¢, for the
instruction throughput and clock frequency, respectively, at
time n.

The purpose of the feedback law is to achieve asymptotic
tracking of a given reference value r by the output signal
Yn, @ = 1,.... Suppose that the plant is a nonlinear, time-
varying, memoryless system represented by the functional
relation y, = gn(¢n), where g, : R — R is a function
that depends on time n (this assumption is justified in the
sequel). The error signal, e,, is defined by the difference
term e, := r — y,. In order to achieve tracking we use an

integral control, and hence the controller is defined by the
following relation,

¢n = ¢n71 +Knen717 (1)

where K, > 0 is its time-dependent gain.

This paper concerns multicore computer systems where
each core is controlled separately, and hence the system
shown in Figure 1 pertains to an instruction-throughput reg-
ulator at each core individually. Accordingly, for a particular
core, y, represents the average throughput over a given
number of instructions, say M, and r is the throughput-
reference value that is to be tracked. The control variable ¢,,
is the core-clock frequency, and the relations between the
error signal and the control signal are given by Equation (1).
The plant in Figure 1 represents the functional relationship
between the frequency ¢, and the throughput y,, during a
period defined by M consecutive instructions. The challenge
that we are facing is that the plant characteristics, defined via
the function g, are changing in unpredictable ways and there
are no closed-form functional expressions for them.

Reference [1] considered a similar problem where the
output is the power dissipated in the core which, similarly
to this paper, is controlled by the clock frequency. Thus, y,
represents the throughput during the nth observation period.
In this case, the frequency-power relationship is given by an
explicit equation, y, = g, (¢,), where the function g,, was
derived from basic physical principles. The controller’s gain
K, was defined as

1
g;z (fn—1) ’
where “prime” denotes derivative with respect to ¢. More-
over, this gain was shown to be computable in real time, and
hence could be used in the control system.

Asymptotic tracking of such systems was proved, in an
abstract setting, under the assumption that the plant functions
gn (@) are convex. The results include convergence rate, error
analysis, and tracking robustness with respect to estimation
errors of g,,(¢,_1) and time-variability of the plant. Specifi-
cally, if the relative estimation error of g;l(qﬁn_l) is bounded
by any number o < 1, and if |g,—1(¢n—1) — gn(dn—1)| < ¢
for a given € > 0, then the asymptotic tracking error is in the
order of €. As a special case, if the plant is time invariant and
g := gn 1s known, then tracking is achieved despite relative
error of under an upper bound that is less than 100%.

The situation in this paper is different principally in the
fact that we have no analytic form for the function g,,(¢).
Instead, this function is defined as the measured instruction
throughput over M consecutive instructions (for a given M),
and its derivative g;L(ng) is computed by IPA from measure-
ments taken in real time.! The IPA derivative, described
below, is certainly biased, but we will argue that the relative

K, 2

'gn depends on the load-program and can be viewed as a random
function. However, since we are concerned with control and IPA, we
focus on its realizations along sample paths without having to specify their
underlying probability laws. Furthermore, a large M reduces the dynamic
effects of gn—1(¢) on gn(¢), and this justifies the view of the system as
static.

bias is small, far-less than 100%, and we will show that
this will not impede tracking in light of the aforementioned
robustness result concerning the relative error. The variability
of the plant, measured by |g,(¢n—-1) — gn—1(¢n—1)|, cannot
be predicted, and any tracking algorithm would have to
contend with the time-varying feature of the plant. It can
be controlled to some degree by the choice of M, the num-
ber of instructions underscoring the plant function, which
balances precision versus temporal properties of the control
system. The convexity assumption, made in [1], cannot be
ascertained, but the results in [1] regarding tracking also hold
true when the plant functions g,,(¢) are concave. If these
functions are neither convex nor concave then the closed-loop
system may be unstable, but this problem can be practically
overcome by imposing an upper bound on variations in the
control variable ¢ in each iteration. In our case this was
not necessary, and extensive simulation studies exhibited
concavity of these functions.

We next turn to describe the plant model and derive
its IPA derivative. Consider a sequence of instructions, I;,
1 = 1,2,..., that have to be executed by a core. When an
instruction I; arrives it is directed to a reservation station,
where it is stored until all of its operands become available.
At the same time an entry is made for it in the reorder buffer,
which guarantees that the instructions are dequeued (depart,
or committed) in the order of their arrivals. The reorder buffer
is called the queue, and the arrival time of the instruction to
it is called the enqueue time. Once all of the operands of
the instruction become available, it is issued to an execution
unit for processing. Following completion of execution it
remains stored until the instruction that had arrived before
it, I;_1, is dequeued, at which time I; can depart (dequeued)
from the system as well. The variables computed by I; can
become available as operands to other instructions once I; is
executed, and not when it is dequeued (which may happen
later). This sequence of events describes architectures that
allow for out-of-order execution while maintaining the order
of departure of instructions (dequeueing) according to their
arrival (enqueueing) order. This principle is described in [8]
and is currently implemented in many core architectures; see,
e.g., [7].

Let a; denote the arrival time (enqueue time) of I; at the
reorder buffer, and let «; denote the time it is directed to its
designated execution unit once all of its operands become
available. We assume that the execution units have enough
buffer to start execution of instructions without queueing
delays. Let §; denote the completion time of execution of
I;, and at that time, all the variables computed by it become
available as operands to other instructions. The dequeueing
time of /; from the system is denoted by d;.

All of these epochs can be expressed in terms of the clock
cycle time, denoted by 6, as follows. Let £(i) denote the
clock-cycle count of the enqueue time a;, and hence

a; = £(i)0. 3)

Furthermore, let k(i) denote the index of the instruction

computing the last operand required for execution of [;; then,

®; = max {ai, 5k(i)} + 6. 4)
Next, consider the execution (processing) time of instruction
I; at its execution unit. We call instructions that are not
memory fetches synchronous, and their execution times can
be approximated well by n(i)f, where n(i) is an integer
constant, typically under 10, that depends on the execution
unit where the instruction is processed. For memory accesses
to the cache, we have a similar formula where the range of
n(i) depends on the level of cache (L1, L2, or L3), and is
typically under 100. For memory fetches from other storage
devices such as RAM, the major part of the latency can be
approximated by a term T, that typically is in the order
of hundreds of clock cycles or larger. We assume that this
term does not depend on 6 because such memory systems
use a different clock than the one used in the core.? Thus,
the following is an approximate formula for ¢;:

a; +n(i)f, synchronous instruction or cache
0; = memory fetch
@; + Tinem, other memory fetches.

)
Finally, the dequeueing time of I; is given by the following
formula,

Let y := M/dy; denote the instruction throughput for
a given integer M > 0. We note that in the control law
described in the sequel the throughput will be observed from
the system rather than computed by Equations (3) - (6),
and the purpose of these equations is to compute the IPA
derivative y/ (6) that will play a role in the control algorithm
via Equation (2).

To compute the IPA derivative y (#) we first present a
recursive algorithm for the terms d,(6), i = 1,..., M. To
this end we define the following two quantities, v (i) and
m(t), as follows:

0, if I; is a memory fetch that is not
v(i) = from cache

n(i), otherwise,
and

max {m <4 : I, did not stall following

its execution}.

The following proposition yields the terms d;(6). Its proof
follows from Equations (3) - (6) after some algebra, and will
be omitted.

2This is an approximation. Tyner, has components that depend on 6
but these are sublinear and hard to model. However, as we shall see, our
controller works well with this approximation.

Proposition 1: The following Equations, (7) and (8), are
in force for all : = 1,..., M.

iy (0) + v k(i) + 1, if T; stalls
(0 upon arrival
0 if I, does not stall
upon arrival.
@)

and

di(0) = oy (0) + v(m(i) +i —m(i) +2. (SD)

Now the IPA derivative ' (6) is given as

v©) = 2:(2) du). ©)

The control law that we use is based on Equations (1) in the
following manner. The duration of an application program
is divided into a sequence of observation periods consisting
each of a given number of M instructions. During the nth
observation period the control parameter, namely the clock
frequency ¢, is fixed, the throughput y,, is measured, and
its sample derivative y;(@q,) is computed, online, via (8)
and (9). At the end of the period the error e, := 7 — y,
is computed, the gain K,,,; is computed by the formula
Ky :=1/y. (¢y,), and the clock frequency is updated via
the equation ¢,,+1 = ¢, + K, +1€,. Notice that this is the
integral controller described by Equations (1) and (2), with
9, (én) replaced by the term y,, (¢ 1).

IV. SIMULATION RESULTS

The IPA controller, derived in the last section, is tested and
evaluated on an example using a detailed x86 microprocessor
simulator [14], Zesto. Figure 2 illustrates the functional data
flow within the core microarchitecture, and we consider a
system consisting of four cores connected by a ring network
and sharing an L2 cache. Our evaluations are based on the
SPEC2006 benchmark suite executing in multi-programmed
mode; each core is assigned a distinct application.

\-Cache Instruction Branch
Fetch Predictors

Instruction Queue

Instruction
Decoder

Instruction
Predecoder

| Network |

Micro-op Queue

Micro-op Micro-op
Scheduler Sequencer
I
->EEI_}EIII [IT1T}
ommit

Reorder Buffer

Load Queue

Store Queue

Execution Units

Fig. 2. Functional data flow in the out-of-order execution core.

Each core model implements the [PA-based throughput
controller, defined via Equations (7)-(9). The voltage and
frequency were adjusted approximately every 100,000 in-
structions to regulate the throughput. The period of 100,000
instructions was empirically chosen to be long enough to
mask local, inconsequential high frequency variations in
throughput yet long enough to be effective in tracking
aggregate throughput. This period is refined dynamically to
ensure that there are no instruction dependencies that exist
from one interval to the next, and hence the exact sampling
interval (observation period) may vary by a few tens of
instructions.

The subject of our simulation experiments is a four-
core system executing two SPEC2006 benchmarks, milc and
GemsFDTD, that can typically achieve two distinct levels of
instruction throughput. Core0Q and corel executed the milc
benchmark with target throughput of 1.6 x 10° and 1.2 x 10°
instructions per second, respectively, and core2 and core3
executed the GemsFDTD benchmark with target throughput
of 0.8 x 10 and 0.5 x 10 instructions per second, respec-
tively. In all experiments, throughput remains unregulated
for the first 2ms during which time each core executes at
a constant frequency of 3.0GHz. At time ¢ = 2ms each
core was assigned its target throughput, the controls were
activated (the loops were closed), and the core throughput
was regulated. The comparison was made against small fixed
gain (K,, = 0.5) and large fixed gain (X, = 5.0) controllers.

In Figure 3, we observe that the adaptive-gain IPA
controller regulates the throughput and achieves tracking
quite rapidly. In contrast, the small fixed-gain controller is
sluggish in regulating the throughput especially with the
lower throughput benchmarks, while the large-gain controller
overshoots especially with the high throughput benchmark.

We conclude this section with comments about the relative
bias of the IPA derivative estimators. Generally biasedness
of IPA is associated with discontinuities of the sample per-
formance functions [11], [3], and in the setting of this paper,
these tend to arise primarily from memory-fetch instructions.
To gauge the relative bias of the IPA derivatives, we com-
pared finite-difference terms, obtained from simulations with
a common seed at various values of the variable parameter,
to their approximations that are derived from IPA via linear
interpolation. Extensive simulations on 15 programs from the
SPEC2006 benchmark suite yielded relative errors (between
the two terms) of 30% in one case, 21% in another case,
and under 6% in all other cases. As mentioned earlier, we
expect the control algorithm to work well under such error
conditions, and this was verified by simulation experiments.

V. CONCLUSIONS

This paper presents an online controller for regulating the
throughput of individual cores in a multicore processor using
dynamic voltage-frequency scaling. The proposed control
law is comprised of an integral controller whose gain is
adjusted online based on the derivative of the frequency-
throughput relationship. This derivative is estimated by IPA.
The performance of the controller is demonstrated on a

x 10

» unregulated throughput : regulated throughput Passing and DVFS for Performance and Power Scaling”, J. of Solid-

core0 target throughput __: Poefei: R & State Circuits, Vol. 46, pp. 173-183, 2011.
W [3] C.G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, Kluwer Academic Publishers, Boston, Massachusetts, 1999.
[4] C.G. Cassandras, Y. Wardi, B. Melamed, G. Sun, and C.G. Panayiotou,
“Perturbation Analysis for On-Line Control and Optimization of

kS
T

AAAALA, Abdt 5A

R et target throughput Ealinn Stochastic Fluid Models,” IEEE Transactions on Automatic Control,
i zc‘"e‘: Vol. AC-47, No. 8, pp. 1234-1248, 2002.

1 : e:::; 1 [5] C.G. Cassandras, “Stochastic Flow Systems: Modeling and Sensitivity

Analysis,” in Stochastic Hybrid Systems: Recent Developments and

<-core3
= Research Trends, Eds. C.G. Cassandras and J. Lygeros, CRC Press,

New York, New York, pp. 139-167, 2006.
[6] T. Cucinotta, L. Laopoli, and L. Marzario, “Stochastic feedback-based

?~8 core2 target throughput

throughput [instructions/sec]

o6 % i
.................. o . - T SN SN cpntrol of QoS in soft real-time systems”, in Proc. 43rd CDC, Atlantis,
04 cores target throughput | ; ; ; Bahamas, December 2004.
05 ! tima [ms] 3 e [7] A. Fog, “The Microarchitecture of Intel, AMD, and VIA CPUs,”
www.agner.org/optimize/microarchitecture.pdf, 2012.
(a) IPA-based dynamic gain controller [81] J'. Hennessey B;EId D. Patterson, “Computer Architecture: A Quantita-
x10° unregulated throughput regulated throughput tive Approach, Morgan Kaufmann (puhs.), 2012.

: . . i [9]1 A. Hergenhan, and W. Rosenstiel, “Static timing analysis of embedded
1gp-ooocoreotarget throughput | | oecaemeooess.c] software on advanced processor architectures,” Design Automation and
R P Test in Europe, 2000.
[10] M. Hill and M. Marty, “Amdahls law in the multicore era,” IEEE
Computer, 41(7), 2008.
[11] Y.C. Ho and X.R. Cao, Perturbation Analysis of Discrete Event Dy-
namic Systems, Kluwer Academic Publishers, Boston, Massachusetts,

-©-core0

L Acored | 1991. - -
=core2 [12] R. Kumar et al. “Heterogeneous chip multiprocessor,” IEEE Computer,
-9-core3d| 38(11), 2005.

& core2 target throughput

[13] C. Lefurgy, X. Wang, and M. Ware, “Power capping: A prelude to
power shifting,” Cluster Computing, vol. 11, no. 2, June 2008.

[14] G. H. Loh, S. Subramaniam, and X. Yuejian, “Zesto: A cycle-level
i - simulator for highly detailed microarchitecture exploration,” in Proc.

i - + \ ISPASS, Apr. 2009.

time [ms] x10° [15] E. Lohn, M. Pacher, and U. Brinkschulte, “A Generalized Model to

Control the Throughput in a Processor for Real-Time Applications,”

(b) Small fixed gain controller (K, = 0.5) 14th International Symposium on Object/Component/Service-Oriented

: Real-Time Distributed Computing (ISORC), March 2011.

[16] C. Lu, Y. Lu, T.E. Abdelzaher, J.A. Stankovic, and S.H. Son, “Feed-
back Control Architecture and Design Methodology for Service Delay

\ 1 Guarantees in Web Servers”, IEEE Trans. Parallel and Distributed

throughput [instructions/sec]

core3 target.th
0.5 1 15

x 10

s unregulated throughput regulated throughput

»n
kS

[l
N

| |4-coret

8 Systems, Vol. 17, pp. 1014-1027, 2006.
[17] T.Y. Morad, U.C. Weiser, A. Kolodnyt, M. Valero, and E. Ayguade,

; il

core0 target throughput

K “Performance, power efficiency and scalability of asymmetric cluster
K chip multiprocessors,” Computer Architecture Letters, Vol. 5, pp. 14-

1 17, 2006.
[18] J. Suh, and M. Dubois, “Dynamic MIPS rate stabilization in out-of-
(l order processors,” SIGARCH Computer Architecture News, vol. 37,

corel tar-get throughput

-
:
P
o=
_

target th

throughput [instructions/sec]
Y
7

no. 3, June 2009.
g \g-e-.?s—’ [19] Y. Wardi and G.F. Riley, “Infinitesimal Perturbation Analysis in Net-
2 works of Stochastic Flow Models: General Framework and Case Study
0 gorestarethrugpu' X ‘ ‘ ‘] of Tandem Networks with F!ow Control,” Discrete-Event Dynamic
o5 1 2 25 3 35 2 Systems: Theory and Applications, Vol. 20, No. 2, pp. 275-305, 2010.
time [ms] x10° [20] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D.
. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
(c) Large fixed gain controller (K, = 5.0) 1. Puaut, P. Puschner, J. Staschulat, and P. Stenstrom, “The worst-case
execution-time problem - overview of methods and survey of tools,”

Fig. 3. Tracking analysis of throughput regulation. ACM Trans. Embed. Comput. Syst., vol. 7, no. 3, May 2008.

[21] T. Yudong and V. J. Mooney, “Timing analysis for preemptive multi-
tasking real-time systems with caches,” Design, Automation and Test

in Europe, 2004.
cycle-level x86 multicore simulator executing SPEC2006 [22] Y. Zhu, and F. Mueller, “Exploiting synchronous and asynchronous

benchmarks, and rapid tracking and stable throughput were DVS for feedback EDF scheduling on an embedded platform,” ACM
noted for each core Transactions on Embedded Computing Systems, vol. 7, no. 1, 2007.

REFERENCES

[1] N. Almoosa, W. Song, S. Yalamanchili, and Y. Wardi, “A Power
Capping Controller for Multicore Processors,” Proc. ACC, Montreal,
Canada, June 27-29, 2012.

[2] J. Howard, S. Dighe, S.R. Vangal, G. Ruhl, N. Borkar, S. Jain, V.
Erraguntla, M. Konow, M. Ripen, M. Gries, G. Droege, T. Lund-
Larsen, S. Steibl, S. Borkar, V.K. De, and R. Van Det Wijngaart, “A
48-Core IA-32 Processor in 45 nm CMOS Using On-Die Message-

