
A Power Capping Controller for Multicore Processors

N. Almoosa, W. Song, Y. Wardi, and S. Yalamanchili+

Abstract— This paper presents an online controller for
tracking power-budgets in multicore processors using dynamic
voltage-frequency scaling. The proposed control law comprises
an integral controller whose gain is adjusted online based on
the derivative of the power-frequency relationship. The control
law is designed to achieve rapid settling time, and it’s tracking
property is formally proven. Importantly, the controller design
does not require off-line analysis of application workloads
making it feasible for emerging heterogeneous and asymmetric
multicore processors. Simulation results are presented for
controlling power dissipation in multiple cores of an asymmetric
multicore processor. Each core is i) equipped with the controller,
ii) assigned a power budget, and iii) operates independently
in tracking to its power budget. We use a cycle-level multi-
core simulator driven by traces from SPEC2006 benchmarks
demonstrating that the proposed algorithm achieves a faster
settling time than examples of a static setting of the controller
gain.

I. INTRODUCTION

The effective and efficient control of power and energy
has become central to the design and management of modern
computer systems. It is no longer just the domain of embed-
ded and mobile devices but is as important for enterprise-
class data centers and internet-server farms that can consume
tens of megawatts of power [?]. The prevailing design
methodology has been to design processors and systems
based on peak power dissipation corresponding to worst-
case application workloads. This approach has a number of
undesirable consequences. For example, a data center’s cool-
ing capacity and peak processor power dissipation together
determine the density of servers that can be placed within
the facility. However, rarely are all servers operating at peak
power or utilization, and consequently the center is over-
provisioned with a lower average performance per square
foot. Similarly, the packaging cost of a multicore processor
is determined by the target peak power dissipation. Higher
package costs incurred by high peak power dissipation targets
increases the cost of the processor, which is undesirable if
peak loads rarely occur in practice. Furthermore, as power
densities increase at future technology nodes [?], we will see
an increase in the relative inefficiency of designing systems
based on worst-case workload and peak power dissipation.
This trend is unsustainable. Rather, we must design for
sustainable design points enforced through suitable control
techniques.

+School of Electrical and Computer Engineering, 266 Ferst Dr., Georgia
Institute of Technology, Atlanta, GA 30332, USA, wjhson@gatech.edu,
nawaf@gatech.edu, sudha@ece.gatech.edu, ywardi@ece.gatech.edu. This
research was supported in part by the Semiconductor Research Corporation
(Task ID# 2084.001)

Researchers have observed that reducing the peak power
dissipation design target leads to relatively little drop in
execution performance, reflecting the non-linear relationship
between power and execution performance [?]. However,
suitable controls must be put in place to prevent a pro-
cessor from exceeding the power dissipation target, in the
unlikely event that a workload spike would increase the
power dissipation beyond this design target which in turn
can lead to disruptive chip failures. Consequently, to improve
the cost-effectiveness of the systems, several on-line control
techniques have emerged that adjust system parameters to
limit power consumption [?], [?], [?] (see also references
therein). These techniques are based on dynamic scaling of
the voltage and/or clock frequency for controlling the power
dissipated by a processor, in order to limit it to a certain
value called the power cap. For example, the authors in
[?] proposed a feedback controller for capping the power
of voltage islands in chip multiprocessors, whose parameters
are derived based on extensive off-line system analysis under
various workload conditions.

Similarly, for data-center applications, Reference [?]
proposed a proportional controller based on a linear system-
model. To the best of our knowledge, [?] contains the first
analysis of stability, convergence rate, and robustness of
a control system for a blade server level power capping
controller. The objective in that paper is to regulate the power
dissipated by blade servers in order to have them track given
reference values. The plant, comprised of the frequency-
power relationship, is assumed to be linear and memory-
less, and this assumption is backed by simulation tests for
some specific workloads under a variety of conditions. The
controller, relating the error (difference between the power-
reference value and the actual power) to the frequency, is
an integrator scaled by the reciprocal of the plant’s gain.1 If
the plant’s gain is known exactly, the control algorithm will
converge in a single step, namely the power will be equal
to its reference value in a single iteration. However, the gain
may not be known exactly, and therefore the paper carries out
convergence and robustness analysis to establish asymptotic
convergence of the control law and stability margins in terms
of bounds on the modeling error.

The work reported here has been motivated by [?], but it
considers a more general model where the frequency-power
relationship is nonlinear and the core architecture may no

1Reference [?] defines the controller as the relationship between the
incremental error between consecutive samples and the corresponding
incremental power measures; as such the controller is proportional (linear).
However, viewed as the relationship between error and power, the same
controller is actually an integrator.

longer be homogeneous. Thus, we extend the results in [?] in
the following ways - (i) The frequency-power characteristics
are convex and not linear, and (ii) the controller is an
integrator with a variable gain as opposed to a constant gain.
We then consider the particular case of cubic polynomials for
the plant, supported by physical modeling, and show that
the controller’s gains are computable in an adaptive fashion
based only on on-line measurements and not on any off-line
analysis. This is a significant advantage since unlike previous
techniques, this controller can be packaged as part of the
operating system of a multicore blade server without any a
priori knowledge of the applications that are to be executed.
Finally, as in [?] we analyze the asymptotic convergence of
the control algorithm as well as its stability and robustness,
but as we shall see, this analysis is quite different from
the one in [?]. Finally, we demonstrate the efficacy of our
control law for benchmark programs executing on multicore
processors.

The rest of the paper is organized as follows. Section
II presents some of the main challenges arising in power
control in multicore systems. Section III describes the pro-
posed control law in an abstract setting and analyzes its
asymptotic convergence. Section IV describes the specific
control problem that is addressed in this paper, and Section
V presents simulation results. Finally, Section VI concludes
the paper.

II. SYSTEM MODEL AND CHALLENGES

The target application domain is that of multicore pro-
cessors. For example, the test case we consider is a four
core processor where each core has L1 instruction and data
caches and a private L2 cache. Cores communicate with each
other and with memory controllers and I/O devices through
an on-chip network. However, we are concerned with an
emerging class of multicore processors that are asymmetric
in the designs of the cores, i.e., not all cores on the chip are
of the same design [?], [?], [?].

In the example we evaluate in Section ??, there are two
types of cores. The first is a complex out-of-order (OOO)
core which employs aggressive pipelining and speculation
and can issue and complete multiple instructions in a clock
cycle [?]. Performance is typically measured as the number
of instructions executed per clock cycle and commonly de-
noted as the IPC. The second type of core is a simple in-order
(IO) core where instructions are executed and retired in order.
While multiple instructions can be issued in parallel, they
are executed and retired in-order leading to lower average
IPC. IO cores consume significantly less power than OOO
cores [?]. The emergence of asymmetric multicore processors
reflect an architectural approach to constraining the rapidly
growing power densities of future processors. OOO cores
can provide high performance for critical single thread or
serial segments of code (at higher power) while the IO cores
can provide significantly better energy and power efficiency
by executing parallel segments of code [?].

There are two issues when applying contemporary control
techniques. First, a single controller for all types of cores

is ineffective in such an architecture since the consequences
of changing the voltage-frequency setting is very different
for different types of cores. The natural choice is to have
each core and its private caches be separately controlled.
This implies that each core is in a separate voltage island
which is quite common. For example, Intel’s 48 core single
chip cloud computer has 8 voltage domains and 28 frequency
domains [?]. However, even then we have the second issue
- contemporary power capping controller designs that rely
on extensive offline analysis of applications to determine
parameters of the model present practical impediments for
deployment. The off-line analysis must be completed for all
combinations of core types and applications. Different core-
application combinations will most likely lead to controller
designs with different gain parameters and convergence
properties. This leads to the need for either i) restricting
the cores on which specific applications can be executed or
ii) the ability to change the controller gain as application
threads are scheduled on different cores. The former defeats
the purpose of having asymmetric multicore processors. The
latter is an ad-hoc solution that is still limited since all gain
values must be statically known.

We believe that the approach and design proposed here is
superior in that our controller does not rely on extensive off-
line analysis. We would observe that the controller design
is based on fundamental frequency-power relationships that
is experienced across all application and core combinations.
Thus, the controller can be an integral part of the multicore
design and be applicable across a wide range of applications
and core types. The following sections provide the details of
our approach.

III. CONTROL LAW

PlantControllerP
s

e
n

P
n

-
+

φ
n

Fig. 1. Power Control System

Consider the discrete-time scalar system shown in Figure
1, where the plant is modeled as a memoryless, time-
varying nonlinear system of the form P = gn(ϕ); n denotes
(discrete) time and gn : R → R is the function defining
the system at time n. In the next section ϕn and Pn will
denote frequency and power, and this is the reason we are
using the unusual notation for the control variable and the
output signal, respectively. Suppose that the functions gn,
n = 1, 2 . . . , have a common domain, I := [ϕmin, ϕmax],
where the following assumption is in force.

Assumption 1: Each one of the functions gn is con-
tinuously differentiable, convex, and monotone-increasing
throughout I . Furthermore, there exist constants γ1 > 0 and
γ2 < ∞ such that, for every n = 1, 2, . . ., g

′

n(ϕmin) ≥ γ1,

and g
′

n(ϕmax) ≤ γ2 (‘prime’ denotes derivative with respect
to ϕ).

We implicitly assume that every point ϕ mentioned in the
sequel is contained in I .

Let Ps be a given reference input, and suppose that the
purpose of the controller is to regulate the output in the
sense that lim supn→∞ Pn and lim infn→∞ Pn are close to
Ps within a certain tolerance. To this end we use an integral
controller of the form

ϕn = ϕn−1 +Knen−1 (1)

for a suitable gain Kn > 0, where we recall from the plant
definition that

Pn = gn(ϕn), (2)

and it is evident from Figure 1 that

en = Ps − Pn, (3)

for all n = 1, 2, Thus, once the gains Kn, n = 1, 2, . . .
are specified, Equations (1)-(3) define the closed-loop system
in a recursive manner.

Suppose that at time n the function gn(·) is known, we
have a measurement of the control signal ϕn−1, and are able
to compute the derivative term g

′

n(ϕn−1). We now assume
that the latter computation is exact, and later will consider
approximations to it. We set the gain Kn to the following
value,

Kn =
1

g′
n(ϕn−1)

. (4)

We point out that if the plant is time invariant, namely
gn(·) = g(·) for some function g : R → R satisfying
Assumption 1, then the recursive computation of en, defined
by Equations (1) - (4), effectively is Newton’s method for
finding a zero of the equation e = Ps − g(ϕ) = 0. In this
case we have the following well-known result.

Proposition 1: Suppose that the plant is time invariant.
Then there exists a positive constant β < 1 such that, for
every n = 1, 2, . . .,

1) If en−1 ≥ 0 then en ≤ 0.
2) If en−1 ≤ 0 then

βen−1 ≤ en ≤ 0. (5)
As a corollary, it follows that the output tracks the refer-

ence input, since limn→∞ en = 0 and hence limn→∞ Pn =
Ps. Moreover, this convergence is exponential in the sense
that |en| ≤ Aβn for some A > 0 and β ∈ (0, 1).

Consider now the time-varying case, where the closed-
loop system is defined via Equations (1) - (4). The error
term en satisfies the following inequalities.

Proposition 2: There exists a positive constant β < 1 such
that, for every n = 1, 2, . . .,

1) If en−1 ≥ 0, then

en ≤ gn−1(ϕn−1)− gn(ϕn−1). (6)

2) If en−1 ≤ 0, then

βen−1 +
(
gn−1(ϕn−1)− gn(ϕn−1)

)
≤ en ≤ gn−1(ϕn−1)− gn(ϕn−1). (7)

Proof: Consider a differentiable convex function g :
R → R. By the definition of convexity, for every x ∈ R and
∆x ≥ 0, the following inequalities are in force:

g
′
(x)∆x ≤ g(x+∆x)− g(x) ≤ g

′
(x+∆x)∆x. (8)

By (4) and Assumption 1, Kn > 0 for every n = 1, 2,
Consider first part 1) of the proposition. Suppose that

en−1 ≥ 0. By the left inequality of (8), gn(ϕn−1 +
Knen−1) ≥ gn(ϕn−1) + g

′

n(ϕn−1)Knen−1, and hence, and
by (3), (1), and (4),

en ≤ Ps − gn(ϕn−1)− g
′

n(ϕn−1)Knen−1

= Ps − gn(ϕn−1)− en−1. (9)

Subtracting and adding gn−1(ϕn−1) to the Right-Hand Side
(RHS) of (9), and using (3) weith n−1, Equation (6) follows.

Next, consider part 2) of the proposition. Suppose that
en−1 ≤ 0. By (1) - (2),

en = Ps−Pn = Ps−gn(ϕn) = Ps−gn(ϕn−1+Knen−1).
(10)

We next apply Equation (8) with x = ϕn−1 +Knen−1 and
x +∆x = ϕn−1; note that ∆x := −Knen−1 ≥ 0. The left
inequality of (8) implies, together with (1), that

gn(ϕn−1+Knen−1) ≤ gn(ϕn−1)+g
′

n(ϕn)Knen−1. (11)

Consequently, and by (3) and (1),

en ≥ Ps − gn(ϕn−1)− g
′

n(ϕn)Knen−1. (12)

Subtracting and adding gn−1(ϕn−1) to (12) we obtain that

en ≥ Ps − gn−1(ϕn−1) + gn−1(ϕn−1)− gn(ϕn−1)

−g
′

n(ϕn)Knen−1

=
(
1− g

′

n(ϕn)

g′
n(ϕn−1)

)
en−1 + gn−1(ϕn−1)− gn(ϕn−1), (13)

where the last equality follows from (3) and (4). By (1),
ϕn−1 ≥ ϕn and hence g

′

n(ϕn) ≤ g
′

n(ϕn−1), namely
g
′
n(ϕn)

g′
n(ϕn−1)

≤ 1. By Assumption 1 there exists α ∈ (0, 1),

independent of n, such that g
′
n(ϕn)

g′
n(ϕn−1)

≥ α. Defining β =

1− α, the left inequality of (7) follows from (13).
The right inequality of (7) is proved in a similar way to

(6). By the right inequality of (8), we have that

en = Ps − Pn = Ps − gn(ϕn)

= Ps − gn(ϕn−1 +Knen−1)

≤ Ps − gn(ϕn−1)− g
′

n(ϕn−1)Knen−1 =

Ps − gn−1(ϕn−1) + gn−1(ϕn−1)− gn(ϕn−1)− en−1

= gn−1(ϕn−1)− gn(ϕn−1), (14)

thereby establishing the right inequality of (7) and complet-
ing the proof.

Proposition 2 implies that Pn can converge exponentially
fast toward a band (tolerance) around the target level Ps, and
the width of the band depends on how fast the plant-equation
(2) varies. To see this, suppose that there exists ε > 0 such

that for every n = 1, 2, . . ., |gn(ϕn−1)− gn(ϕn)| < ε. Then
Proposition 2 implies that, for every n ≥ 2,

− 1

1− β
ε ≤ lim inf

n→∞
en ≤ lim sup

n→∞
en ≤ ε. (15)

Certainly no perfect tracking can be obtained when the
system is time varying, but Equation (15) shows that when
the system varies slowly, namely ε is small, a narrow band
can be approached. In particular, when ε = 0, limn→∞ Pn =
Ps.

Now suppose that the controller’s gain Kn is not computed
exactly, but rather is estimated by a quantity K̄n > 0. In this
case the control equation (1) is modified to the following
equation,

ϕn = ϕn−1 + K̄nen−1. (16)

The following result is an extension of Proposition 2 and its
proof is similar and hence omitted.

Proposition 3: Let α ∈ (0, 1) be as in the proof of
Proposition 2, namely, for every ϕ1 ∈ I and ϕ2 ∈ I such

that ϕ2 ≥ ϕ1, and for every n = 1, . . ., g
′
n(ϕ1)

g′
n(ϕ2)

≥ α; by
Assumption 1 such α exists. For every n = 1, 2, . . .,

1) If en−1 ≥ 0, then

en ≤
(
1− K̄n

Kn

)
en−1 +

(
gn−1(ϕn−1)− gn(ϕn−1)

)
.

(17)
2) If en−1 ≤ 0, then(

1− α
K̄n

Kn

)
en−1 +

(
gn−1(ϕn−1)− gn(ϕn−1)

)
≤ en ≤

(
1− K̄n

Kn

)
en−1

+
(
gn−1(ϕn−1)− gn(ϕn−1)

)
. (18)

Observe that if K̄n = Kn then Equations (17) and (18)
reduce to (6) and (7) (with β = 1− α), respectively.

Suppose that there exists numbers µ and η such that
0 < µ < η < 2, and suppose that µ ≤ K̄n

Kn
≤ η for all

n = 1, 2, Suppose also that there exists ε > 0 such
that, for every n = 2, . . ., |gn(ϕn−1) − gn(ϕn)| ≤ ε. Then
Equations (17) and (18) yield the following inequalities after
some simple algebra:

− 1

αµ
ε ≤ lim inf

n→∞
en ≤ lim sup

n→∞
en ≤ 1

µ
ε. (19)

Note that this equation reduces to (15) when the computation
of Kn is exact, namely K̄n = Kn and hence µ = η = 1.0.
Also, (19) is an extension of a tracking result in [?] where
the system is linear and ε = 0.

IV. MODELING AND CONTROL OF A MULTICORE POWER
REGULATION SYSTEM

Consider a processor driven by a supply voltage V and
operating at a frequency ϕ. The power dissipating at the
processor is a function of both voltage and frequency as
well as the workload, and denoted by P (ϕ, V, t), it has the
following form,

P (ϕ, V, t) = α(t)CV 2ϕ+ PL. (20)

This equation, derived from basic physical principles, has
been established in the literature; see, e.g., [?]. The first term
in its RHS, α(t)CV 2ϕ, is the dynamic power component
resulting from the switching activity, and the second term,
PL, is the static leakage power from all sources. The term
α(t) is a time-varying workload parameter representing the
switching activity of the processor’s logic gates, and C is
the total processor capacitive load. The leakage power PL

depends on temperature and voltage, but its time-variations
for the considered voltage range are much smaller than those
of α(t) and hence can be neglected, and PL is assumed to
have a constant value. Equation (??) presents an incentive
for selecting low supply voltages, since P depends on V
in a quadratic fashion. However, there exists a frequency-
dependent bound on how low V can be set. Reducing the
supply voltage of CMOS circuits generally increases their
propagation delay, and this may violate timing constraints
requiring all propagation delays to be less than the clock
period 1

ϕ . Therefore, manufacturers specify a mapping V (ϕ),
determined at design time, to guide the selection of voltage
levels as a function of frequency. This mapping is nearly
affine (linear plus a constant term) and can be adequately
approximated via the term

V (ϕ) = mϕ+ V0; (21)

please see [?], [?]. With this equation we can write P as a
function of ϕ and t, and Equation (20) becomes

P (ϕ, t) = α(t)CV (ϕ)2ϕ+ PL. (22)

The control law described in the previous section requires the
online calculation of the derivative term dP

dϕ , which by (22)

has the form dP
dϕ = α(t)C

(
V (ϕ)2+2V (ϕ)ϕdV

dϕ

)
. Generally

it is impractical to measure or compute α(t), but possible to
measure the power, voltage, and frequency, while the term
dV
dϕ can be obtained from the manufacturer or via simulation
[?], [?], and PL can be measured at design time. Now using
(22) with (20) yield the following equation,

dP (ϕ, t)

dϕ
=
(
P (ϕ, t)− PL

)(1

ϕ
+

2

V (ϕ)

dV (ϕ)

dϕ

)
, (23)

which can be used for on-line computation of the derivative
term dP

dϕ .
In discrete time, Equation (22) yield the following plant

equation,

Pn = gn(ϕn) = αnCV 2
nϕn + PL, (24)

where variations in αn correspond to the time-varying pro-
gram workloads. Equation (23) yields the following deriva-
tive term,

g
′

n(ϕn−1) =
(
Pn − PL

)(1

ϕn−1
+

2m

Vn−1

)
, (25)

and this equation was used in the controller we have tested
via simulation as described in the next section.

V. SIMULATION RESULTS

This section reports on the results of simulations of an
asymmetric multicore processor consisting of models of two
architecturally distinct types of cores - a complex out-of-
order core and a simpler two-way superscalar in-order core.

A. Evaluation Platform

The evaluation platform consists of a cycle-level x86
processor simulator [?] integrated with the McPAT [?] mi-
croarchitecture power models. The architectural and physi-
cal configurations of the simulated processor are provided
in Table ??. We simulated the execution of benchmarks
programs from the SPEC2006 suite by extracting program
traces to drive a 4 core multicore processor interconnected
in a 2x2 mesh configuration. The processor is an asymmetric
processor with 2 out-of-order cores and 2 in-order cores.
Power measurements (using the McPAT models) and con-
troller invocations occur every 5ms. Each core and associated
L1 and L2 caches have a separate controller. Power capping
of the interconnect and main memory is not addressed in
this paper. We evaluated the proposed adaptive-gain integral
controller and a set of fixed-gain integral controllers with
gain values given in K = [25,50,75,100,150,270,385,500]e6.
The initial frequency and supply voltage for each tracking
experiment is set to the 3GHz and 0.9V, respectively.

TABLE I
SIMULATED PROCESSOR CONFIGURATION

Parameters Out-of-order Core In-order Core
Architectural Configuration

ISA x86 IA32
Pipeline Depth 20 stages 16 stages
Fetch/Decode 4 instructions 2 instructions

Execution 6 ports 3 ports
L1 Cache 4-way 32KB 4-way 32KB
L2 Cache 8-way 512KB 8-way 512KB

Physical Configuration
Clock Frequency 1.85-3.75GHz
Supply Voltage 0.6-1.0V

Feature Size 45nm

TABLE II
POWER TRACKING PHASE FOR ASYMMETRIC PROCESSOR

Core Phase 1 Phase 2 Phase 3
Core0 (in-order) 6.5 W 5.5W 7.5W
Core1 (in-order) 6.5 W 7.5W 5.5W

Core2 (out-of-order) 12 W 10W 12W
Core3 (out-of-order) 12 W 14W 12W

B. Tracking Analysis

Equations 1-4 were implemented within the simulation
model configured as noted in Table ??. The activity fac-
tors were estimated by counting the number of executed
instructions in every sampling period. Figure ?? shows rep-
resentative runtime power tracking results of the SPEC2006

milc benchmark for i) adaptive gain, ii) high fixed gain
(K = 500), and iii) low fixed gain (K = 25) controllers.
Each core executed the same benchmark and the execution
was partitioned into three phases. For each phase the power
budget was changed for each core as shown in Table ??.
The power budgets are shown as dotted lines in the figure.
We can observe how well the adaptive gain and static gain
controllers track and maintain new power budgets.

(a) Adaptive gain controller

(b) High fixed gain controller (K = 500e6)

(c) Low fixed gain controller (K = 25e6)

Fig. 2. Runtime power tracking results of asymmetric cores.

The adaptive gain controller tracked the varying reference
signals with a time of around 15ms for both in-order and out-
of-order cores. The high fixed gain controller is as effective
as the adaptive gain controller for the in-order cores but inef-
ficient for the out-of-order cores. The performance difference

is due to the microarchitecture heterogeneity between the two
cores. The out-of-order core which has a wider and deeper
pipeline can execute more instructions. Thus when the power
budget is increased (and hence voltage-frequency) the high
gain causes significant overshoot. In contrast the in-order
core is limited in its ability to increase its execution capacity
and therefore the high gain is not disruptive as the power
budgets are increased. On the contrary, the inertia of the low
fixed gain controller prevents it from keeping up with the
rate of change of the power budgets. This effect is amplified
the case of the in-order core. The fact that power budgets
can change in unexpected manner as a function of workload
demand or even electricity prices (for example based on
time of day as is done in data centers), further limits the
applicability of fixed gain controllers.

Finally, in principle it may be observed that other static
gain values could have produced good tracking properties
and possibly better than the examples we have shown. The
general observation that a particular controller with a specific
gain value can provide good tracking, is of limited value
for several reasons. First, from a practical point of view one
cannot in general know the applications that will be executed
on a platform. Second, the operating system controls where
and when threads and processes are scheduled. Extending
thread and process schedulers with controller information
to constrain scheduling decisions is feasible, but must be
weighed against the loss in flexibility and performance that
is experienced by limiting the operating system’s choices.
Third, multicore processors will be executing parallel and not
serial applications. Characterization of the power behavior of
multithreaded applications on asymmetric processors is still
an area of research. Finally, we note that the power and exe-
cution time properties of an application can be significantly
affected by the input data sets that the applications process.
To be practical, extensive off-line analysis of applications
to determine the controller gain must cover all possible
combinations of core types, applications, and input data sets
(the sets that have significant impact on power behavior).
We argue that this requirement is limiting and impractical in
practice.

By focusing on i) how applications affect fundamen-
tal, technology dependent behaviors, namely the frequency-
power relationship, and ii) on-line measurement, the adaptive
gain controller presented here suffers from none of the
preceding drawbacks. Its operation is agnostic to specific
applications and core types and thus is a candidate for
integration into hardware platforms. However, it does rely on
the capability of on-line power measurements. Currently, this
is generally not available to user programs at a fine enough
granularity in commodity processors. However, there is no
significant technical impediment to doing so.

VI. CONCLUSIONS

This paper introduced an online controller for processor-
power tracking using dynamic voltage-frequency scaling.
The proposed control law comprises an integral controller
that adjusts its gain in response to changes in the workload to

ensure effective regulation and fast settling time. Gain adjust-
ment relies on a novel application-agnostic characterization
of the derivative of power that can be cost-effectively done
online using power measurements and offline knowledge
of the platform’s voltage frequency relationship. Tracking
property of the proposed algorithm is shown to hold provided
that the voltage versus frequency relationship is convex.
Simulation results using a cycle-accurate microprocessor
demonstrate that the proposed algorithm achieves faster
settling times than integral controllers with static gains. The
approach holds out as a promising basis for flexible strategies
for managing power consumption in the new generation of
multicore processors that are asymmetric in the designs of
the individual cores.

REFERENCES

[1] R.H. Katz, “Tech titans building boom,” IEEE Spectrum, Vol. 46, no.
2, 2009.

[2] S. Lin and K. Bannerjee, “Cool Chips: Opportunities and Implications
for Power and Thermal Management,” IEEE Transactions on
Electron Devices, vol. 55, no. 1, 2008.

[3] C. Lefurgy, X. Wang, and M. Ware, “Power capping: A prelude to
power shifting,”Cluster Computing, vol. 11, no. 2, June 2008.

[4] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu,
“No power struggles: coordinated multi-level power management for
the data center,” SIGARCH Comput. Architecture News, Vol. 36, pp.
48-59, 2008.

[5] A.K. Mishra, S. Srikantaiah, M. Kandemir, and C.R. Das, “Cpm in
cmps: Coordinated power management in chip-multiprocessors,” in
Proc. Intl. Conference on High Performance Computing, Networking,
Storage and Analysis, pp. 1-12, 2010.

[6] R. Kumar et al. Heterogeneous chip multiprocessors. IEEE Computer,
38(11), 2005.

[7] T. Morad et al., “Performance, power efficiency and scala-
bility of asymmetric cluster chip multiprocessors,” Compute
Architecture Letters, 2006.

[8] M. Hill and M. Marty, “Amdahls law in the multicore era. IEEE
Computer,” IEEE Computer, 41(7), 2008.

[9] J. Hennessey and D. Patterson, “Computer Architecture: A Quantita-
tive Approach,” Morgan Kaufmann (pubs.), 2012.

[10] A. Fedorova, J. C. Saez, D. Shelepov, and M. Prieto, “Maxi-
mizing Power Efficiency with Asymmetyric Multicore Systems,”
Communications of the ACM, vol. 52, no. 12, December 2009

[11] M. Baron, “The Single Chip Cloud Computer,”, in Micrprocessor
Report, April 2010.

[12] M. Gillespie, “Preparing for the Second Stage of Multicore HardwareL
Asymmetric (Heterogeneous) Cores,” White Paper, Intel Corp., 2008.

[13] M. Floyd, S. Ghiasi, T. Keller, K. Rajamani, J. Rawson, F. Rubio,
and M. Ware, “System power management support in the ibm power6
microprocessor,” IBM Journal of Research and Development, Vol. 51,
no. 6, 2007.

[14] T. Burd, T. Pering, A. Stratakos, and R. Brodersen, “A dynamic
voltage scaled microprocessor system,” in Proc. Solid-State Circuits
Conference, 2000.

[15] R. McGowen, C.A. Poirier, C. Bostak, J. Ignowski, M. Millican, W.H.
Parks, and S. Naffziger, “Power and temperature control on a 90-nm
itanium family processor,” IEEE JSSC Vol. 41, pp. 229-237, 2006.

[16] G.H. Loh, S. Subramaniam, and X. Yuejian, “Zesto: A cycle-level
simulator for highly detailed microarchitecture exploration,” in Pro-
ceedings IEEE International Symposium on Performance Analysis of
Software and Systems pp. 53-64, 2009.

[17] S. Li, J. Ho Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “Mcpat: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proc. IEEE
MICRO, pp. 469-480, 2009.

