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Abstract 

This paper presents a methodology for post-silicon 

thermal prediction to predict the transient thermal field a 

multicore package for various workload considering chip-to-

chip variations in electrical and thermal properties. We use 

time-frequency duality to represent thermal system in 

frequency domain as a low-pass filter augmented with a 

positive feedback path for leakage-temperature interaction. 

This thermal system is identified through power/thermal 

measurements on a packaged IC and is used for post-silicon 

thermal prediction. The effectiveness of the proposed effort is 

presented considering a 64 core processor in predictive 22nm 

node and SPEC2006 benchmark applications. 
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1. Introduction 

Characterization of the spatiotemporal variation of the on-

chip junction temperature (the transient thermal field) is 

crucial for thermal-aware design, assembly, and management 

for reliable in-field operation of a chip (die and package) [1, 

2]. The thermal field is generated by the interaction of time-

varying power pattern and the thermal properties (resistivity 

and heat capacity) of die and package materials. Further, the 

thermal properties of the die/package assembly [e.g. 

conductivity of thermal interface materials (TIM)] can vary 

between different instances of same IC (chip-to-chip variation) 

or over time (e.g. delamination in TIM [3]). Moreover, 

imperfections in the manufacturing process leads to die-to-die 

and within-die process variations in transistor leakage [1]. The 

leakage and temperature are positively correlated – a higher 

temperature results in higher leakage which further increase 

the temperature. Hence, for same dynamic power, chip-to-chip 

leakage variation leads to variation in on-chip temperature [4]. 

Fig. 1 illustrates the impact of process variation and leakage-

temperature interaction on thermal behavior of a chip using 

example simulations in predictive 22nm node. As the die-to-

die process variation increases with technology scaling, the 

post-silicon chip-to-chip variation in transient thermal field is 

also expected to increase. This challenge is further enhanced 

by many-core processor architectures running increasingly 

data intensive and unstructured workloads. As the power, 

performance, and lifetime reliability of processors depends on 

the transient temperature, in-field reliable operation of many-

core processors needs the accurate characterization of the 

interaction of workload variation and chip-to-chip/package-to-

package variations in thermal/electrical properties. This leads 

to a new challenge - post-silicon prediction of the transient 

thermal field. The objective of post-silicon thermal prediction 

is to predict the transient temperature of a particular instance 

of a packaged IC for various workload and considering chip-

to-chip and package-to-package variations in electrical 

(leakage) and thermal properties.  

The existing transient thermal simulation methods (finite 

element/volume or distributed RC), suitable for fine-grain 

design time transient thermal analysis, require accurate 

estimation of thermal resistivity and heat capacity of all 

materials [5-7]. Many works have studied on how to measure 

the thermal resistance and capacitance of thermal interface 

material (TIM), heat sink, convective, and heat spreader [8-

11]. Many steady-state method works are modeled after 

ASTM D5470 [8]. A. Poppe et. al presented dynamic 

electrical temperature measurement [9] and R. Campbell et. al 

presented the flash diffusivity method for accurate 

measurement of thermophysical property data [10]. The 

measurements of thermal resistance and capacitance suffer 

from repeatability, contamination, pressure, and inaccuracy 

Figure 1: Illustration of the need for post-silicon transient 

thermal analysis considering process variation: (a) the interaction 

of leakage (average for all input condition) and temperature in a 

NAND2 gate considering different process corners (HVT – High 

threshold voltage t i.e. low leakage corner, NVT – nominal 

threshold voltage, and LVT – low threshold voltage corner). We 

observe that different process corner results in different leakage 

temperature interaction. (b) the effect of such interaction for an 

example self-consistent thermal simulation (using distributed RC 

network) considering a square wave dynamic power profile (e.g. 

turning on and off a the chip after a time-interval) and leakage of 

10million NAND2 gate. We see that even for same dynamic 

power, LVT chips can have higher temperature than HVT chips.  

 



 

 
 

 

  

problems. Even if we measure accurately the thermal 

resistances of TIM, heat sinks, and interface, in stacking 

condition those values are changed due to imperfect 

attachment and manufacturing. K. Kurabayashi et. al. presents 

that the die attach resistance differs substantially from the 

value predicted using the bulk thermal conductivity of the 

attachment material because of partial voiding and 

delamination [12]. Consequently, the fine-grain distributed RC 

based thermal simulators used during design time are difficult 

to adopt for post-silicon thermal analysis.  

2. Contributions and Novelty 

This paper presents a unique approach for transient 

thermal analysis that addresses the specific requirements of 

post-silicon thermal prediction. The proposed approach, 

referred to as Thermal System Identification or TSI, is based 

on principles of system identification, frequency domain 

signal analysis, and positive feedback system. We develop the 

mathematical principles of the proposed approach and 

demonstrate its effectiveness in post-silicon thermal analysis 

of a 64 core processor at predictive 22nm node [13]. The each 

core is modeled as close to Intel Nehalem [14] architecture 

running at 3.0GHz. This post silicon characterization of a 

multicore chips can be used by operating systems to schedule 

workloads since the identification of the chip thermal system 

enables schedulers to reason about the thermal consequences 

of scheduling a specific workload on a target chip. This 

understanding can also be exploited in configuring large 

system (e.g. data centers) via thermally compatible 

aggregations of multicore packages.  Fig. 2 shows the overall 

flow of the proposed post-silicon thermal prediction approach. 

This paper makes the following contributions:  

 High-level Transfer Function of the Thermal System 

including Leakage-Temperature Interaction: We 

provide a high-level abstraction of the thermal behavior 

of a chip as a multi-input multi-output (MIMO) system 

where power sources are system inputs and observed 

temperature values at different locations are the system 

outputs. The interaction of leakage and temperature is 

used as an integral part of this high-level MIMO system. 

We show that this thermal system can be represented in 

frequency domain as a filter matrix. In time domain heat 

diffusion equation represents a distributed RC network 

which behaves as a low-pass filter in frequency domain. 

This is augmented with a positive feedback path 

representing leakage-temperature interaction.  

 Thermal System Identification - Post-silicon Extraction 

of Transfer Function of the Thermal System and Fast 

Prediction of Transient Thermal Field: We present 

methodologies that can identify this thermal system (i.e. 

the thermal filters) after fabrication and packaging using 

sequences of on-chip power and temperature 

measurements. These methods allow one to construct a 

unique thermal system for each chip (thermal system 

identification or TSI).  

We present methods to accurately predict the chip-

specific transient thermal fields for varying workloads 

using the corresponding thermal filter matrix [H()]. The 

frequency response of the temperature variation over a 

time interval is computed from the Fourier transform of 

power pattern in that interval and the filter matrix 

[T()=H()P()]. The time-domain temperature is 

obtained from the temperature spectra.  

Several methods have been proposed in recent years for fast 

steady-state spatial thermal map (e.g. power blurring method 

in [15] and discrete cosine transform (DCT) based method in 

[16]), fast transient temperature simulations (e.g. [17-18]), and 

fast spatiotemporal analysis considering multilayers of power 

and materials (e.g. ThermalScope [19]). The TSI based 

approach provides important advantages in post-silicon 

thermal analysis over the above mentioned approaches used in 

fine-grain design-time thermal analysis. First, the proposed 

approach performs temperature prediction using the thermal 

transfer function extracted from the full thermal system (i.e. 

stacks of heat sink, spreader, TIM, and chip), instead of 

computing thermal resistance and capacitances of individual 

materials in isolation. Therefore, the effects of any non-

uniformity and/or uncertainty in the thermal properties of the 

materials are captured in the extracted transfer function. 

Moreover, as the leakage temperature interaction is considered 

as a part of the MIMO system, the effect of process variation 

of individual chips is also automatically considered. Second, 

the fast simulators mentioned earlier do not consider leakage-

temperature interaction. Currently, the transient temperature 

estimation considering leakage-temperature interaction is 

performed using distributed RC based simulators (e.g. Hotspot 

[21]) where leakage power is updated in each time-step based 

on the current thermal map [19-22]. Therefore, higher 

accuracy of the temperature estimation requires fine-grain 

time-step which in turn increases simulation time. In the 

proposed approach the leakage temperature interaction is 

incorporated in the system transfer function and temperature 

estimation is performed in the frequency domain. 

Consequently, the accuracy of the proposed method is less 

Figure 2: Overall methodology of post-silicon prediction of the 

transient thermal field. The method uses the time-frequency 

duality to extract thermal system in frequency domain using post-

silicon measurement and use that to predict transient temperature 

profile. 

 



 

 
 

 

  

sensitive to time-step allowing fast estimation of transient 

temperature.  

3. Mathematical Approach  

3.1. Modeling the MIMO Thermal System with Leakage-

Temperature Interaction 

In a MIMO system, the temperature of an observation 

point is affected by the multiple input power sources. Since a 

distributed RC network is a linear system, superposition 

principle can be applied here i.e. the temperature at one 

location is the additive response of all power sources in the 

system. Assume that there are M power sources organized into 

mm 2D grids. We further assume that there are L numbers of 

observation points organized in ll grids. The temperature at 

the observation point (i, j) in frequency domain can be 

estimated as: 
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Note Hijij() is defined as the self-transfer function of a 

location (i.e. the transfer function connecting power and 

temperature of a location (Hself)). Likewise Hpqij() (p,q  

i,j) is defined as the cross transfer function (Hcross) that 

connects power of one location and temperature of another. 

The above formulation leads to the 2D filter matrix for the 

MIMO system (Fig. 3):  

 

11 111 1

11

111 1
( ) ( )( ) ... ( )

( ) ( )( ) ... ( )
ll m mll m m l

m

l

m
T PH H

T PH H

  

  


 





    
    
    
   

      

     (2) 

We now estimate the self and cross transfer functions 

considering the leakage feedback. Without loss of generality, 

we explain this considering two sources and two locations. 

Consider leakage current (PL) depends on temperature as:  

0
( ) ( ) ( )

L L
TT TP P f                    (3) 

where PL(T0) is the leakage power at room temperature, and 

the function f(T) represents sensitivity of leakage power to 

temperature. First, we consider Hself i.e. the temperature of 

location i due to the power source of at location i. We obtain:  
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The last approximation assumes a linear interaction 

between leakage and temperature to improve analytical 

tractability. Both the room temperature leakage (PL0) and the 

coefficient () depends on leakage-temperature interaction. 

Note Pi()=PD()+PL() is the spectral response of power 

without leakage-temperature feedback (can be estimated from 

the workload). Now the thermal system model can be 

represented as (Fig. 3):  
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We now evaluate the temperature of location i due to 

power source at location k. We apply superposition principle 

during this evaluation estimate Ti() assume Pi()=0. But the 

heat generated in location k propagates to location i which 

increases the temperature of location i. Increase in temperature 

at location i triggers the leakage feedback loop at location i. 

This results in leakage power at location i and hence, increase 

temperature of location i. The temperature increase in core i 

due to power of core k is therefore estimated as (Fig. 2): 
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3.2. Methods for Thermal System Identification  

The principle discussed above requires frequency response 

of the self and cross transfer functions for each chip (i.e. TSI). 

To perform TSI on the MIMO system, one input power source 

is excited at a time and temperature is measured at all 

observation points considered. Hence, the equation (2) 

transforms to:     

 &  :  ( ) ( ) ( ) ( ) ( ) ( )
ij pq pq ij pq ij ij pq

i j T P H H T P     
 

       (7) 

The above equation can be used to estimate the thermal filter 

from all inputs power sources to all temperature observation 

points. As equation (7) is division of two complex numbers, 

both magnitude and phase of the filter response are extracted. 

For better accuracy it will be efficient to minimize the leakage 

of unselected locations.  

4. Applications of TSI to Thermal Modeling of Many-

Core Processors 

 

Figure 3: Mathematical principle of the proposed approach. The 

thermal system is considered as a MIMO system. The leakage 

temperature interaction is considered as a positive feedback for 

both self and cross transfer functions between power and 

temperature. 

 



 

 
 

 

  

In this section we apply the TSI based approach to the post-

silicon thermal prediction of many-core processor. We 

consider one temperature sensor is present in each core. 

Therefore, the MIMO thermal system for many-core has 

power of each core as an input and temperature of each core 

as an output.  

4.1. Baseline Thermal Simulator used for Verification of the 

Proposed Approach 

We first describe the baseline thermal simulation platform 

used to verify accuracy of the TSI based approach. We 

consider 3D model of the thermal system including chip, TIM, 

heat spreader, and heat sink. 3D distributed RC grid is 

generated for the different regions of the system. We use 

circuit simulator, HSPICE, for solving the distributed RC grid 

in time-domain. The power profiles are applied as current 

sources. The chip is modeled as a homogenous 64 core 

processor with private cache designed in predictive 22nm 

technology (total chip area 400mm
2
, each core and private 

cache ~6.25mm
2
). Each core was modeled as close to Intel 

Nehalem architecture [14] running at 3.0GHz. We generate 

power traces of SPEC 2006 benchmark suites using cycle-

accurate architecture simulation for timing (Zesto [23]) and 

power (McPAT [24]) considering x86 architecture. Each 

benchmark was run or repeated for 0.5 seconds in real time. 

The above environment considers architectural inputs (e.g, 

cache sizes, instruction decode width, number of execution 

units, etc.) and device parameters at various technology nodes 

to estimate the physical features of the processor. The example 

power traces obtained from the simulation are shown in Fig. 4.     

4.2. Thermal System Identification for Many-Core  

The practical challenge in TSI of many-core processors is 

the generation of power spectra in equation (7). The accurate 

approach is to apply sinusoidal power waveforms of different 

frequency (small signal analysis). However, generating 

sinusoidal power waveform in hardware (in a chip) is 

challenging. We propose two alternative approaches. Power 

Spectra Generation with Core-Gating Control: First, we 

propose to control the core level power and clock gating (i.e. 

core-gating available in current processors [25-26]) to 

generate power pattern of desired frequency spectra. To 

illustrate this approach we perform SPICE simulation 

considering core gating (Fig. 5). We consider the core as 

hundreds of 15-stage ring oscillators to emulate dynamic 

power. Each core is controlled with a periodic sleep control 

signal of a given frequency which generates periodic power 

 

Figure 5: Core gating based approach to power spectra 

generation. (a) sleep transistor signal (5Mhz) and (b) power 

pattern (5Mhz). We can observe from SPICE based circuit 

simulation considering a core of  hundreds of 15-stage ring 

oscillators to emulate dynamic power. The cores are controlled 

with a sleep transistor and sleep control signal. The frequency of 

the sleep control signal is modulated to generate power variation 

of different frequency. The pseudo-periodic temperature response 

[similar to figure 1(b)] is measured to obtain the thermal filter 

response. 

 

 

 

Figure 4: Transient power traces of exemplary benchmarks for 

SPEC2006 applications (part a). The frequency response of the 

power traces are also shown in part (b) of the figure. The 

frequency response are used with the thermal transfer function to 

compute the temperature variations. 

 

 

Figure 6: The thermal filter extraction through small signal 

simulation (ideal approach for filter extraction) and sleep 

control based power/thermal measurement. We observe that 

the proposed practically feasible sleep control approach 

provides very good accuracy. The effects of the marginal 

differences between the two can be observed in error 

statistics of the estimated temperature shown in Figure 11. 



 

 
 

 

  

pattern of same frequency. Hence, by controlling the period of 

the sleep control signal we can modulate the spectral behavior 

of the generated power patterns. The on-chip power monitors 

can be used to sense the core level power [27]. Application 

Driven Power Spectra: The second approach is to run multiple 

test applications in individual cores and measure power and 

temperature to compute the filter response. As power profile 

generated by each application may not contain significant 

spectral power at all frequency, we consider average of the 

filter responses computed using different applications as the 

extracted filter.  

Figure 6 shows the thermal filter extracted using the 

practical core-level control closely follows the one from the 

theoretically ideal small-signal analysis. We observe that the 

thermal systems behave as the 1st order low-pass filter. The 

cutoff frequency is located in the low frequency range. Hence, 

fast time-varying power input has less impact on the 

temperature while low frequency power variations are more 

critical. We next study the behavior of the extracted core-to-

core cross thermal filters. Fig. 7 shows frequency responses 

for different location of interest when a power source is 

applied at core D0. We observe that gain at the observation 

point continues to decrease in all frequency range as it moves 

away from the source. The decrease in gain due to spatial 

effect is larger at higher frequencies i.e. fast varying power 

 

Figure 7: Filter behavior of thermal system: distance 

between source core and observation node. We observe 

that both self (D1) and cross (D1, D2) transfer functions 

behave as low-pass filter. The strength of the cross transfer 

function reduces significantly with distance i.e. power 

spread in the distant cores will have minimal impact on the 

temperature of a core. We also see that the effect of cross 

transfer function is even less prononuced at higher 

frequency.  

 
Figure 8: Filter behavior of the thermal system: effect of 

the location of the source core. We observe that behavior 

of the self-transfer function depends on the location of the 

cores. Center cores have higher dc gain. 

 

 

Figure 9: Estimation error in transient variation of 

temperature for a typical core in the 64 core system. The 

simulations were performed considering random 

workloads created for all 64 cores using random 

assignments of benchmark applications for SPEC2006 

suites. 

 
Figure 10: Estimation error in instances of the spatial 

thermal field at different time points. The entire 

simulations consists of random workloads for running in 

all 64 cores for 500ms. The proposed method represents 

the estimation using system function extracted from 

power/thermal measurement. We observe that the 

proposed TSI based approach can successfully predict the 

spatial thermal field. 

 

 
Figure 11: The Estimation Error on :(a) Maximum 

temperature, (b) Spatial difference. The temperature 

estimated from the TSI based approach closely follows the 

distributed RC based thermal simulation.   

 



 

 
 

 

  

source has less impact on neighboring regions. Figure 8 shows 

filter response for different location of source core. The results 

show that gain at the observation point changes as the location 

of source core varies. A side/edge core has less gain in low 

frequency compared to center core. Since the area of heat 

spreader/sink is larger than the area of chip, the cooling from 

heat sink is more effective on edge/side cores. We further note 

that the filter response between a source and an observation 

node depends on the physical property of the material system 

that determines the heat flow. It is independent of the 

magnitude of the generated power, floorplan of the chip, and 

architecture. The latter factors modulate the power profile and 

hence, temperature profile but not the filter response.  

4.3. Accuracy of TSI based Thermal Prediction 

     We verify the accuracy of the post-silicon TSI based 

thermal models against the distributed RC based thermal 

simulator described in section 4.1. We first create several (60) 

workloads by randomly assigning the power trace of different 

application (0.5s of real time data) to different cores and use 

them for thermal analysis. The same patterns were also run 

through the baseline distributed RC based thermal simulator. 

Figure 9 compares the transient temperature variation for a 

typical core and Figure 10 compares example spatial thermal 

maps at different time instants generated from distributed RC 

based simulation and the proposed approach (with 

power/thermal measurement driven filter). It can be observed 

that both transient and spatial temperature variation are well 

captured. In Figure 11, we estimate errors on two critical 

thermal parameters of the chip: maximum temperature and 

spatial difference. Spatial difference is the difference between 

maximum and minimum chip temperature at a given time and 

represents the uniformity of temperature in space. We observe 

that the average estimation error on maximum temperature is 

less than 2
0
C and on spatial difference is less than 1

0
C. Figure 

12 shows the distribution of estimation errors considering 

temperature of all cores at all-time points, and all random 

patterns. We observe that average error is less than 1
0
C 

between detail RC based thermal simulation (SPICE) and 

proposed TSI based model (the ‘system function from 

power/thermal measurement’). We observe that proposed 

method reduces the prediction time by ~4X compared to 

Hotspot and ~5X compared to HSPICE based RC solver 

under same spatial granularity and number of power samples.  

The TSI based approach is limited by the accuracy of the 

temperature sensors used in transfer function extraction. To 

understand the impact of the measurement error, we study the 

effect of inaccuracy in the temperature sensor on the estimated 

temperature. A uniform distribution of sensor error in the 

range of -3
o
C to +3

0
C is considered. We first added sensor 

errors into measured temperature data and re-extract transfer 

function. Figure 12 shows that, even with relatively large 

sensor error that results in errors in transfer function 

extraction, the average estimation error increases marginally. 

Repeated power/thermal measurements can be used to further 

reduce the effect of sensor errors. The accuracy of the analysis 

also depends on the granularity of the transfer function in the 

frequency domain. A challenge comes from the practical 

limitations on controlling the frequency components in the 

power spectra. Limited number of frequency components 

degrades the accuracy of proposed approach. This is also 

shown in Fig. 12 where we observe that if the system transfer 

function is extracted using small-signal analysis (i.e. applying 

multiple sinusoidal power waveform with a single frequency), 

the estimation error is reduced (the red curve). The fine-grain 

spectral analysis however requires larger number of 

power/temperature measurement and increases the 

characterization time.  

5. Application to Post-Silicon Thermal Prediction  

 

Figure 12: Accuracy of the proposed approach considering 

random workload: core level error statistics considering 64 

cores and 60 random workloads. The statistics were 

computed considering errors in all cores in all simulation 

time points. We observe that a transfer function from small 

signal analysis provides marginally better accuracy 

compared to that from power/thermal measurements. We 

also see that even high errors in the sensors (assumed to be 

uniformly distributed between -30C to +30C) have 

relatively less impact in the accuracy of transient 

temperature estimation.    

 
Figure 13: The application of TSI based approach on the 

prediction of impact of process variation on transient 

temperature. The effect of leakage-temperature interaction is 

captured in the extracted filter (part-a) showing a higher 

gain for low-Vt process corners compared to high-Vt 

corners. Hence, for same workload and dynamic power 

pattern we observe higher temperature for low-Vt chips than 

high-Vt chips (part-b). The power pattern represents 

workloads using SPEC2006 benchmarks. The thermal 

conductivity was kept constant in the three simulations 



 

 
 

 

  

5.1. Capturing the effect of Process Variations and TIM 

Conductivity on Thermal Prediction 

After verifying the accuracy of TSI based thermal 

prediction, we next study its effectiveness in post-silicon 

thermal prediction. We study the ability of TSI in predicting 

the effect of variations in process corners and thermal 

conductivity. In this analysis, low-Vt implies a negative 

100mV Vth shifts for all devices in a chip while high-Vt 

implies positive 100mV Vth shifts. The low-Vth dies have 

much higher leakage and stronger leakage temperature 

interaction. Fig. 13(a) and 14(a) shows that proposed method 

captures the effect of chip-to-chip variations in leakage and 

thermal conductivity of the thermal stack consisting of TIM, 

heat spreader, and heat sink on the extracted thermal filters. 

We observe that low-Vt die and lower conductivity thermal 

stack increase the gain in the low-frequency range of the filter 

transfer function. To illustrate the impact of these variations in 

filter response, we consider Normal random die-to-die 

variation of Vth. Each Vth point generated from this Normal 

distribution represents a unique die for the same many-core 

processor. For each of such die we consider three different 

thermal conductivities. TSI is next used to extract the thermal 

system for all of these die/package condition. The extracted 

filters for each such instance of the packaged dies are unique. 

The same workload pattern is applied to all such unique 

thermal systems to study the effect of process and thermal 

conductivity variation on chip temperature. Fig. 13(b) and 

14(b) show time-domain temperature variation for a typical 

core for a chip running the same workload but moved to 

different Vth and thermal conductivity corners.  

6. Conclusion 

We have presented a methodology or post-silicon thermal 

prediction. The proposed method first identifies the frequency 

domain response of the thermal system of a packaged die. The 

extracted filter is used that for fast chip-specific analysis of 

transient thermal field considering leakage-temperature 

feedback. The capabilities of post-silicon characterization of 

the thermal system can benefit thermal design and 

management at chip as well as large system level.  
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