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Abstract—Hardware support for Global Address Spaces (GAS)
has previously focused on providing efficient access across remote
memories, typically using custom interconnects or high-level
software layers. New technologies, such as Extoll, HyperShare,
and NumaConnect now allow for cheaper ways to build GAS
support into the data center, thus making high-performance
coherent and non-coherent remote memory access available for
standard data center applications.

At the same time, data center designers are currently experi-
menting with a greater use of accelerators like GPUs to enhance
traditionally CPU-oriented processes, such as data warehousing
queries for in-core databases. However, there are very few
workable approaches for these accelerator clusters that both
use commodity interconnects and also support simple multi-node
programming models, such as GAS.

We propose a new commodity-based approach for support-
ing non-coherent GAS in accelerator clouds using the Hyper-
Transport Consortium’s HyperTransport over Ethernet (HToE)
specification. This work details a system model for using HToE
for accelerated data warehousing applications and investigates
potential bottlenecks and design optimizations for an HToE
network adapter, or HyperTransport Ethernet Adapter (HTEA).

Using a detailed network simulator model and timing mea-
sured for queries run on high-end GPUs [34], we find that
the addition of wider deencapsulation pipelines and the use
of bulk acknowledgments in the HTEA can improve overall
throughput and reduce latency for multiple senders using a
common accelerator. Furthermore, we show that the bandwidth
of one receiving HTEA can vary from 2.8 Gbps to 24.45
Gbps, depending on the optimizations used, and the inter-HTEA
latency for one packet is 1,480 ns. A brief analysis of the path
from remote memory to accelerators also demonstrates that the
bandwidth of today’s GPUs can easily handle a stream-based
computation model using HToE.

I. INTRODUCTION

Previous work in Partitioned Global Address Space (PGAS)
systems [4] has permitted for the definition of a system-wide,
shared address space that can be used to efficiently share
memory between nodes for high-performance clusters. Many
of these solutions have focused on creating software layers
that can be used to easily program large systems, including
the UPC language [30] and APIs that support PGAS on mul-
tiple hardware infrastructures, such as GASNet [3]. Explicit
hardware support for GAS has long been the provenance
of high-performance machines in the supercomputing arena
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[27], but emerging widespread, commercial solutions for GAS
include high-performance point-to-point interconnects such as
AMD’s HyperTransport (HT) and Intel’s QPI that allow for
coherent [21] and non-coherent remote memory accesses [13].
Concurrently, the HyperTransport Consortium’s HyperShare
platform [7] has focused on specifications that provide low-
level GAS hardware support for traditional data center fabrics
like HT, Ethernet, and InfiniBand. Taken as a whole we
refer to this new support for hardware GAS as “commodity
converged fabrics”, which means that these widely available
fabrics support a combination of typical on-board and on-chip
interconnects, such as PCIe, HyperTransport, and QPI, and off-
chip interconnects, such as Ethernet, InfiniBand, PCIe, and HT.
This definition of commodity converged fabrics also implies
widely available interconnects that are being marketed towards
data center usage. Cray’s HyperTransport-based SeaStar and
Gemini interconnects are related technology but would not be
“commodity” by this definition.

At the same time that commodity GAS is becoming viable
for supporting remote memory in the data center, new compute
accelerators have emerged as cost-effective and more efficient
multiprocessors for certain data center workloads. These accel-
erators, specifically general purpose graphics processing units
(GPGPUs) such as NVIDIA’s Fermi and AMD’s Fusion, have
introduced new types of compute platforms that contain on-
board memory but that are still limited by the bandwidth of
transfers to and from host-based memory (DRAM). GPUs
hold tremendous potential for accelerating certain data cen-
ter applications, including complex queries for in-core data
warehousing applications [34], but efficient movement of large
data sets between disks, DRAM, and GPUs still remains a
challenging performance optimization problem.

This problem is further complicated with in-core databases
that use large amounts of aggregated DRAM across multiple
nodes to minimize accesses to slower disk drives. In addition,
the cost and power requirements of current GPUs means that
equipment cost and Total Cost of Ownership (TCO) may lead
to a data center where not every blade has a local GPU but
rather must share one high-end GPU between multiple nodes.
In this case, the performance of these shared accelerators is
limited by the amount of on-board memory on the GPU, which
limits performance for large data sets that may need to be
copied to and from host memory or disk drives. NVIDIA has



greatly improved the speed and ease of data movement within
a node with the introduction of the GAS-like Unified Virtual
Address (UVA) space [8], but efficient and programmer-
friendly inter-node communication still remains an unsolved
problem.

This paper advocates and evaluates a system approach to
the use of GPU accelerators for large data problems in the
data center. Specifically, we are concerned with the following
problem: How can large data sets for in-core data warehousing
applications easily be moved between host memory and GPUs
in a multi-node environment, and how can we enable this
data movement with minimal changes to on-board hardware
and existing software stacks? Our approach has the following
elements: First, we propose the use of a system-wide, non-
coherent, global physical address space (GAS) where the
amount of physical host memory directly accessible to a
GPU accelerator can be dynamically changed by transparently
accessing remote DRAM. Second, we propose to implement
hardware support for this GAS using a new converged fabric
- HyperTransport over Ethernet (HToE). Third, we explore
the design of a HToE network interface card that enables the
preceding capabilities. Fourth, we evaluate the performance
of this network interface via detailed simulations driven by
workload specifications derived from our CUDA-based imple-
mentations of some of the queries of the TPC-H benchmark
suite.

The rest of this paper discusses our proposed system model
in more detail as well as a detailed simulation model of a clus-
ter based on the HToE specification. Section II discusses the
motivation for using HToE and converged fabrics in general
while Section IV introduces the basics of the HyperTransport
protocol and HToE. In Section V we describe our system
model and potential bottlenecks in accelerator and memory
clouds as well as the design of the network adapter. Section
VI discusses the experimental setup and specific optimizations
that were tested, and Section VII discusses results from
simulations that demonstrate the network adapter’s important
features and the effects of HTEA optimizations.

II. GAS AND CONVERGED FABRICS IN ACCELERATOR
CLOUDS

The recent proliferation of low-latency commodity intercon-
nects means that both traditional HPC clusters and newer data
centers can easily incorporate dedicated hardware support for
GAS-based memory sharing via one-sided put/get operations.
In addition to software-oriented stacks such as GASNet,
several recent specifications support dedicated hardware for
commodity GAS. The HyperShare platform includes three
such specifications: native HyperTransport [11], encapsulation
of HT over Ethernet [36], and HT over InfiniBand (HToIB)
[2]. Other groups have designed custom off-chip fabrics, such
as the EXTOLL group and associated corporation [13] and
NumaScale, which provides coherent HyperTransport support
between nodes with its NumaConnect adapter [21]. In addition
to these converged fabrics, a recent specification has proposed
the use of InfiniBand’s Verbs layer over Ethernet, also known
as RDMA over Converged Enhanced Ethernet (RoCEE) [5],

Figure 1. Logical Model of Accelerator Cloud Using
Converged Fabrics

and some companies have shown interest in using PCI Express
over Ethernet [28]. In fact, the new PCI Express 3.0 standard
alludes to this future of converged fabrics with the addition
of a “PMux” feature that supports sending packets from other
protocols over PCIe links.

Each of these protocols support the use of converged com-
modity fabrics, but we have focused on HToE due to Ethernet’s
importance in the data center and the open nature of the non-
coherent HyperTransport specification. As shown in Figure
1, our goal is to change the ratio of host memory available
to GPUs by aggregating memory across cluster nodes while
also enabling a simplified memory model for applications that
use remote memory or GPUs. Operationally, the non-coherent,
system-wide global address space means that transfers of data
from remote host memory to GPU memory now appear as a
NUMA memory access. This allows data center designers to
be able to size accelerator clouds for an appropriate, domain-
specific acceleration capacity and to scale these clouds without
worrying about coherency traffic constraints.

Further reasons for focusing on an implementation of the
HToE specification are outlined in detail in [35], but the
most relevant comparison points are: 1) Ethernet has a large
install base and many data center operators are well-versed
in its usage 2) For many data center operators, the latency
and bandwidth of 10, 40, and 100 Gigabit Ethernet may be
“good enough” for many of their applications 3) the HToE
specification is supported by “enhanced” Ethernet standards
[18] that provide features that make Ethernet more comparable
to InfiniBand (e.g., support for lossless operation). These new
standards have led vendors to create other new “converged”
specifications, including RoCEE and FibreChannel over Eth-
ernet (FCoE). 4) A low-level encapsulation protocol such as
HToE has several advantages related to overhead with respect
to other RDMA-based protocols, including RoCEE. These
advantages include a reduced need for OS-based data transfer
setup costs in the tens to hundreds of microseconds [9] and
easier programming due to a simpler API.

In short, while many of the previously discussed protocols
could support our proposed logical model for accelerator
clouds, we have chosen HToE due to its open, commodity
nature, its support for low-latency data transfer, and especially



for its simplified programming model.

III. RELATED WORK

Global address spaces and converged fabrics have tradi-
tionally been investigated in custom hardware built for super-
computers, including Cray’s coherent Opteron-based intercon-
nects, SeaStar, and its successor, Gemini [32]. Recently, other
research groups have been investigating fine-grained, high-
performance hardware support for GAS systems, specifically
the Extoll project [13] and the many variants of GASNet that
typically support UPC applications on a variety of “conduits“.
HyperTransport over Ethernet is comparable to the Extoll
interconnect in that both support fine-grained transfers and
non-coherent access for high-performance communication,
although EXTOLL favors a direct-connected network as op-
posed to using standard Ethernet switches. The creators of
EXTOLL also have their own in-core, non-coherent memory
database project called MEMSCALE [20] and an RDMA
software layer that supports remote CUDA execution for
accessing remote GPUs called rCUDA [10].

With regards to GASNet implementations and related in-
frastructure, we posit that HToE is more focused on providing
high-performance hardware to support varying GAS architec-
tures than on providing a full PGAS HW and SW stack as
is available using GASNet and UPC. An implementation of
HToE could be considered similar to a GASNet “conduit” as
discussed in [37].

Support for accessing remote accelerators has been greatly
improved through the efforts of the high-performance commu-
nity, specifically projects by NVIDIA and the MPI community.
NVIDIA has greatly simplified device memory addressing
through the use of their Unified Virtual Addressing in CUDA
4.0 and the inclusion of GPUDirect support that can facilitate
peer-to-peer transfers between GPUs (GPUDirect 2.0) [25] and
efficient transfers of data from the GPU to the NIC using
pinned pages in the host operating system (GPUDirect 1.0)
[26].

The MPI community has built on top of these improve-
ments in CUDA to provide a seamless layer that integrates
CUDA and MPI two-sided and one-sided transfer function-
ality. MVAPICH [33] and OpenMPI [31] have both provided
implementations that allow for using MPI to efficiently transfer
data between remote and local GPUs and remote memory.
However, due to the current limitations of GPUDirect, both
APIs must copy data through host memory when doing a
transfer between a local and a remote GPU. The MVAPICH
group also has started work on supporting standard data center
applications by creating an interposer library that hides the
complexity of the InfiniBand Verbs stack from the application
developer [24]

Other groups have also investigated optimizations for in-
core databases, most notably the RAMcloud project [23].
Oracle, SAP, and others also have commercial solutions,
typically based on TCP/IP implementations. However, this
work is one of the first to focus on the specific problem of
using a limited number of accelerators along with GAS to
improve the performance of in-core databases.

IV. HYPERTRANSPORT AND HYPERTRANSPORT OVER
ETHERNET

The HyperTransport 3.1 specification [6] defines require-
ments for a low-latency, high-bandwidth interconnect for
coherent memory access between sockets with a maximum
one-way bandwidth of 25.6 GB/s. A non-coherent variant of
HyperTransport can also interact with I/O devices connected
to a motherboard by an HyperTransport eXpansion (HTX)
connector, such as with the network adapter discussed in this
work. HT packets contain either a 4 or 8 byte command word
and up to 64 bytes of data, and each HT packet is classified
according to one of three virtual channels: posted (no response
needed), non-posted (response needed), and response packets
(return data or notifications). Command and data packets are
transmitted between HT devices using a credit-based flow
control where one credit matches up with one physical buffer
for either a command or data packet. Credits and changes in
the link status are transmitted using HT NOP packets.

Due to HT’s usage as an I/O protocol that requires deadlock-
free messaging, the specification defines an ordering protocol
that allows for a semi-relaxed ordering between packets in
different virtual channels. For instance, non-posted packets can
be defined to be part of a ordered sequence, and packet trans-
mission must maintain virtual channels from different sources
and destinations do not have any dependencies on ordering
and may be reordered at will. This HT ordering requirement
is important for HToE in that packets from the same source
node must following ordering constraints. However, packets
from different sources can be reordered with respect to each
other, and the proposed receiver-based optimizations in Section
VI-B take advantage of this feature.

A. HyperTransport over Ethernet

The HyperTransport over Ethernet specification [36]
presents a basic framework for an L2 implementation of GAS
hardware support for data centers using a non-coherent HT
interconnect with 10, 40, or 100 Gigabit Ethernet. However,
this specification leaves implementation details up to indi-
viduals or institutions that wish to build HToE hardware,
which means that many performance-enhancing details can
be specified based on the desired application. Our proposed
system model is the first design to implement performance-
related features for the HToE specification.

The unique properties of normal (lossy) Ethernet as well
as the credit-based semantics of the HyperTransport protocol
present unique challenges in designing high-performance hard-
ware. While a related paper presents [35] the requirements in
more detail, the requirements for flow control and ordering in
the HToE adapter are listed here.

HToE uses credit-based flow control where one physical
buffer corresponds to the space required to hold one HT
command word (8 to 12 B) and one full HT data packet
(up to 64 B). HToE flow control requires one standard HT
credit for each HT packet that is encapsulated into an Ethernet
frame. Flow control is managed using source-destination pairs
(each with a unique MAC address), called Virtual Links (VL),
and each Ethernet packet can contain multiple HyperTransport



Figure 2. Four Node System Overview

packets and HT credits (NOPs) up to the maximum MTU.
HT packets are queued at the sending HTEA in physical
buffers while waiting for credits, and a lack of credits results
in queuing from the sending HTEA back up to the sending
processor or device on the local node. However, a lack of
credits for one VL does not preclude packets from another
VL being sent, as long as the sending VL has enough credits
for the packets it is encapsulating.

Although HToE can take advantage of some of the newer
IEEE Data Center Bridging or Converged Enhanced Ethernet
standards such as as per-flow flow control [15], the HToE
specification relies on a simpler end-to-end retry algorithm
(Go-Back-N) to ensure that Ethernet packets encapsulating HT
packets can operate over standard lossy Ethernet links purely
at the link layer (L2 layer).

Since the HToE specification is designed mainly to support
GAS-type memory sharing in data centers, it does not specify
requirements on TCP/IP support for the HToE adapter. The
HToE specification does provide for an EtherType flag to sup-
port handling both memory traffic and higher level protocols
using the same adapter, and other hardware vendors, such
as Mellanox, have already implemented similar solutions for
their multi-protocol hardware [19]. For this reason, we do not
investigate this requirement further.

V. SYSTEM MODEL

Our proposed system includes N nodes which each have
some amount of host memory on each node. Of these N
nodes, a smaller subset will have a high-end GPU. While
all nodes could be provisioned with GPUs, equipment cost
and power as part of TCO means that many data center
operators are unlikely to be able to provision GPUs with large
amounts of on-board memory, such as NVIDIA Tesla GPUs,
for each node. Every node has a fast on-chip network, such
as HyperTransport, that allows for non-coherent data transfers
as well as a standard off-chip network, such as 10 or 40 Gbps

Ethernet. We assume that a standard switched topology is used
with 24 - 32 nodes connected by a single Ethernet switch. In
addition, data transfers to GPU memory are performed using
HT posted writes exclusively and any data notifications, such
as communicating whether the transfer finished, are handled
by software protocols, as needed.

The data warehousing application in this model assumes
that data tables are stored in host memory and can be either
segregated to one table per node or striped across multiple
nodes. A query application runs on one node, presumably
close to the node containing a high-end GPU, and it initiates
the transfer of input data for the query using GAS put/get
commands to access remote memory.

In addition to these network characteristics, we also pro-
pose two changes to the handling of data at the receiving
node. To preserve the host memory (DRAM) to be used for
additional in-core database space with our application, we
propose that each “accelerator” node will participate in peer-
to-peer communication with an enhanced NIC that implements
our converged fabric specification (i.e., HToE). This allows
the NIC to copy data directly from its buffers to the GPU’s
memory without needing to pin pages in the host and without
needing to interact with the operating system (except to set
up the transfer). This model is very similar to that proposed
by NVIDIA’s GPUDirect 2.0 [25] except that the peers are a
GPU and a NIC, instead of two GPUs. To further optimize the
movement of data for our data warehousing application, we
propose that an asynchronous streaming model [1] be used
so that the GPU can execute the kernel using input data as
it becomes available in the GPU’s global memory. Since the
output of the queries for our particular application tend to be
small, this allows computation and data movement to overlap,
especially for queries which are reasonably trivial to execute
(e.g., select on a large data set).

A four node example of the complete system model is
shown in Figure 2. Note that this figure presents two alternate
interconnects connected to the HTEA, one for HyperTransport
which connects directly to a northbridge based on the AMD
Opteron, and one that routes data through an I/O Hub (IOH)
that supports the PCI Express protocol. Future adapters could
feasibly support either the HTX motherboard slot or a standard
PCI Express slot by performing the needed HT to PCIe trans-
formation in the HTEA. However, this work only addresses
the former configuration (HTX-based).

As part of this system model, we are also interested in
specific bottlenecks that result from sharing high-end GPUs
between multiple nodes. A simple diagram of bottlenecks for
our system model is shown in Figure 3. Several possible
bottlenecks include 1) the link bandwidth of the Ethernet link
2) the incoming processing speed of the adapter and the size
of the buffers in the HTEA, 3) the return rate of credits
to “sending” nodes and 4) the transfer bandwidth of PCI
Express to the GPU on the “accelerator” node. The total rate
of data flowing through each of these links must not exceed
the size of the GPU’s global memory and 5) the rate of data
consumption by the GPU once a query kernel is launched.
The experiments in the next section use measurements from
current implementations on GPU hardware for 4) and 5) and



Figure 3. Potential Bottlenecks in Shared Accelerator
Cloud System Model

a combination of published numbers and detailed simulation
numbers to investigate bandwidth- and latency-limiting factors
for accelerator clouds.

A. Application Workload

The data warehousing application that is addressed in our
system model and the associated system model is based on
our implementation of the TCP-H benchmark suite [29] using
a database language, Datalog [14] and NVIDIA’s CUDA
programming language to run queries on a GPU as part of
our single-node Red Fox infrastructure [34]. Two TCP-H
queries, Query 1 and Query 21, are used to simulate workloads
from a large in-core data warehousing application where the
database table is striped across multiple nodes. Traditional
query processing on the GPU requires that the entire input
dataset be copied into the on-board memory of the GPU, but
we assume that asynchronous processing [1] can be used to
handle processing of a stream of input data with the same
query. The network adapter does overlapped “read” or “get”
operations to transfer the database from remote DRAM to the
local accelerators.

Query 1 (Q1) performs a query based on one large table
named “lineitem” that can be very large, but the query
operation is relatively simple. Query 21 (Q21) performs a
more complex query across multiple input tables but where
“lineitem” is the largest table and could potentially be split
across multiple nodes.

TCP-H represents a type of application that has a large
input data set but typically a relatively small resultant data
set, so we are focused on the input data set rather than the
small resultant data set. Additional timing information for both
queries is presented in Section VI-A.

B. HTEA Implementation

The HToE specification does not specify the implementation
details for an HTEA. Therefore we propose the following
design for supporting data warehousing application traffic: 1)
Both the outgoing and incoming paths for the HTEA have a
queuing module that buffers packets from the on-package HT
system interface (outgoing) or the Ethernet link (incoming).
Packets are queued in FIFO order, and packets are dequeued
on a per-VL basis using a round-robin algorithm as credits
are available for each specific destination. 2) HT Packets
and credits are packed into Ethernet frames using a block-
based algorithm that collects P packets before a payload is
sent to be encapsulated. Multiple payloads can be constructed

Figure 4. HTEA bottlenecks

and buffered at the same time, but only M payloads can
be encapsulated for transmission, where M is the number of
Ethernet MACs and TX queues that are available to the HTEA.
3) Buffer sizing in the HTEA is based on recent network
adapters with on-chip buffering as opposed to using DRAM-
based buffering of data. We use 64 MB split equally between
the outgoing and incoming path to buffer all HT packets.

Figure 4 shows a simplified diagram of the HTEA along
with the following potential bottlenecks that can affect adapter
throughput and overall performance: 1) Outgoing HT packets
must receive credits (via NOPs) to be dequeued, and each
group of HT packets must pass through an HToE encapsulation
(header and CRC generation) module in FCFS order. 2)
Outgoing packets must be encapsulated by an Ethernet MAC
in FCFS order, and frames that contain NOP credits may be
queued with other outgoing traffic. 3) Incoming packets must
be deencapsulated both by the Ethernet MAC and the HToE
deencapsulation module before HT packets can be sent to the
local HT system interface and before credits can be processed
for packets on the outgoing path. This last scenario is most
relevant to accelerator clouds since often there are a large
number of senders transmitting data to a single receiving node
as shown in Figure 2.

VI. EXPERIMENTAL SETUP

The simulations investigating the design of an HTEA are
built on top of the NS-3 event-driven network simulator. NS-3
provides support for building Ethernet-like topologies and also
contains a basic switch model. This study does not incorporate
a DRAM simulator since it assumes a “sending” node can
fully saturate the outgoing HT system interface with data from
DRAM.

Our simulations use 2, 4, and 8 nodes, with one “acceler-
ator” node in each simulation and a 1 GB data set (about 16
million HT packets, each with a payload of 64 B) striped over
the remaining nodes. For example, this means that the 2 node
case has the entire 1 GB data set on one node while the 8 node
case spreads the data set across 7 nodes equally. This setup
allows us to test the full capabilities of the network adapter
and also to compare optimizations discussed in Section VI-B.



Module Latency (ns)
HToE mapping, queuing 192

HToE credits, retry, encap 244
Ethernet MAC (out) 122

Eth switching and link 244
Ethernet MAC (in) 298

HToE deencapsulation 222
HToE queuing (in) 156

Total 1480

TABLE I. Estimated latency for HToE, one HT pkt

A. Simulation Timing

Timing models for each stage and critical path element in
the HTEA were derived from previous FPGA prototypes [37]
and the hardware implementation developed by the EXTOLL
project, which is estimated to run at 300 MHz with a critical
path latency in the low hundreds of nanoseconds [22]. Packet
generation rates for reading each piece of a database table
from DRAM and sending it to the HTEA are based on a 3
GHz processor and the maximum bandwidth of a HT 3.1 link
with 16-bit lanes, 12.8 GB/s [6]. As mentioned previously,
this simulation assumes a direct path from the HTEA to the
destination accelerator via a network like PCIe (bypassing OS
memory with the use of a peer-to-peer transfer through the
IOH).

Timing for the Ethernet MAC is based on results from EB
Engineering [12] and Ethernet switching times are based on
the best-case latency for 10 Gbps switches, 200 ns [17].

The timing numbers for the PCIe transfer time and query
computation time on the GPU are calculated from running
TCP-H queries number 1 and 21 on a single node using
an NVIDIA C2070 GPU with varying amounts of input
data. Queries are written in Datalog and then the Red Fox
framework [34] uses a dynamic compiler to convert each query
to NVIDIA’s PTX representation, which can then be run on
the GPU. Transfer and computation time is extrapolated from
these results based on a linear model that was built from the
measured results. The PCIe transfer time for Query 1 with
1 GB of data was 0.175347 seconds while the transfer time
for Query 21 was 0.331495 seconds. Query 1 took 0.002844
seconds to run on the GPU while Query 21 took 0.069619
seconds.

B. Tested Optimizations

As Figure 4 showed, the HTEA adapter design has many
constraints that can affect the performance of certain applica-
tions, especially as in our data warehousing application where
many large chunks of a database are copied to one receiver
node. In an effort to improve the performance of the network
adapter we test two specific optimizations and characterize
their effects on overall throughput.

The first optimization deals with how long credits (HT
NOPs) are buffered. While a single credit can be encapsulated
in a single Ethernet frame (lowest latency), we varied the
number of NOPs that were buffered before encapsulating

Figure 5. Link Utilization vs. HT Payload Size

Figure 6. Average Number HT Credits vs. HT Payload
Size

them in an Ethernet frame to determine what effect this
had on available credits for senders. The second optimization
focuses on addressing the bottlenecks in the encapsulation and
deencapsulation process with wider pipelines for the outgoing
and incoming HToE modules as well as the use of dual-
port Ethernet MACs, such as Intel’s 82599 10 Gbps Ethernet
MAC, which supports two full-duplex 10 Gbps ports [16]. This
particular MAC is currently in use in 4 port Ethernet adapters,
and this optimization assumes that each TX/RX port is either
connected directly to the switch (requiring 4 cables) or a 40
Gbps link is used to multiplex packets from 4 virtual TX/RX
queues in the adapter. Also note that each VL must use the
same ingress or egress port (VL number modulo P ports) to
satisfy HT packet ordering requirements.

VII. RESULTS

Table I shows the combined timing for one HT packet
passing through a sending and receiving HTEA based on our
simulations and the Ethernet MAC timing from [12]. The end-
to-end latency is reasonably low for an encapsulation-based
adapter with an end-to-end latency of about 1.5 µs. It should
also be noted that the most timing-intensive functions are on
the receiving path. This delay is due to the need for comparing
headers and validating checksums on each received Ethernet
frame and HToE payload.

In Figure 5, the link utilization is shown for one sending
HTEA and one receiving HTEA with varying HT packet
payload sizes: 1 to 20 data packets in an Ethernet frame and
1 to 50 NOP packets in a frame. The low utilization for the



Figure 7. Average HTEA Delays vs. HT Payload Size

Figure 8. Link Utilization vs. NOP Payload Size for 4
Nodes

base case (1 HT packet) and the other 1 NOP cases result
from the same phenomenon. In both cases, HT packets are
encapsulated and sent as fast as possible. When the size of
the sender’s HT packet payload exceeds the size of bulk credit
acknowledgments from the receiver, the sender quickly runs
out of credits.

As the size of the bulk credit acknowledgments and the
size of the HT data payload increases, the average number of
available credits for the sending HTEA increases, as shown
in Figure 6. Both 10 and 50 NOPs in an acknowledgment
payload result in the same average number of credits available
at the sender. This indicates that the encapsulation process
for HT data packets takes slightly longer than processing
received credits and that the bulk NOP size doesn’t need to
be dramatically larger than HT data payload size. However, it
should be noted that use of the bulk NOPs decreases link
bandwidth slightly (Figure 5) because it reduces the total
number of Ethernet frames (and associated overhead) that are
sent in the same amount of time.

Figure 7 demonstrates that using smaller or larger payloads
can also affect delay within the network adapter. The outgoing
path represents the delay that results when an HT packet
has a credit but must wait to be encapsulated due to the
FIFO nature of an unoptimized HTEA. Similarly, the incoming
path delay results from the latency required to deencapsulate
Ethernet frames and HToE payloads. Delay for outgoing HT
data payloads ranges from a low of 390.84 ns (20 HT packet
payload) to 48.26 ms (1 HT packet payload), and delay
for incoming payloads ranges from 154.74 ns (1 HT packet

Figure 9. Link Utilization vs. NOP Payload Size for 8
Nodes

payload) to 17.90 ms (20 HT packet payload). Small packet
payloads have higher delay on the outgoing path due to head-
of-line blocking, but they also are processed faster at the
receiver.

Figures 8 and 9 show link utilization with the use of our
dual-MAC (4 parallel processing stages) pipeline optimiza-
tions for either the incoming path (deencapsulation), outgoing
path (encapsulation), or for both paths. These graphs for 20 HT
packet payloads and varying bulk NOP payload sizes illustrate
two important concepts: 1) Pipeline width optimizations can’t
make up for a mismatch in the speed of NOPs returning
from the receiver to senders, even though the wider outgoing
pipeline reduces the average wait time for encapsulation
of NOPs from 42.29 ms to 1774 ns. 2) Deencapsulation
pipelining affects performance much more than encapsulation
pipelining, potentially boosting bandwidth up from 3 Gbps to
24.45 Gbps. This improvement results from optimizing deen-
capsulation, which is a much more time-intensive operation
(Table I). In some cases, aggressive encapsulation pipelines
can actually reduce bandwidth as shown by the unoptimized,
50 NOP case (6.99 Gbps) and the outgoing optimization, 50
NOP case (2.80 Gbps). This reduction in bandwidth seems to
be due to an unusual case where the optimized sender fills
the receiving HTEA’s buffers and must wait until the receiver
processes some of the incoming Ethernet frames before it can
accept more frames from the sender.

In summary, the use of wider pipelines can definitely
provide much better performance for the HTEA but only
in conjunction with the use of bulk NOPs. Bulk NOP ac-
knowledgments allow the rate of HT packets from senders to
increase (assisted in part by wider pipelines) while making
sure that the overhead of processing credits does not delay the
encapsulation process.

A. Evaluating System-wide Bottlenecks

Finally, we check our HTEA design and optimizations
against the potential bottlenecks described in Figure 3. As seen
in Figure 10, our maximum link bandwidth was about 24 Gbps
(labeled as 8Nd) over a 40 Ethernet Gbps link, which means
that the “optimized” implementation would not be limited by
the available Ethernet bandwidth. At the receiving HTEA, the
incoming bandwidth onto the local HT system interface maxed



Figure 10. Relative Bandwidths of HTEA, Networks,
and GPU

out at 3.69 Gbps, meaning that the incoming packet stream is
more limited by the HTEA than by the HT system interface.
Finally, the query processing bandwidth of the TCP-H Q1 and
Q21 queries was much higher (2,747 Gbps and 112 Gbps)
than the PCIe transfer bandwidth (44.55 and 23.57 Gbps),
so we can safely assume that in our system model the only
potential limitation is at the network adapter. However, as the
discussed optimizations prove, there is still a great deal of
potential performance in the development of future converged
commodity fabrics.

VIII. CONCLUSIONS

This work proposes the use of a commodity, converged fab-
ric for incorporation into future data centers that act as memory
and accelerator clouds for data warehousing applications.
Using experiments run on GPUs and a detailed simulator,
we have demonstrated the design of a HToE-based network
adapter to support these types of applications. The results
showed the importance of using bulk credit acknowledgments
to ensure a steady stream of credits as well as the usefulness
of having a wider receiving pipeline in the HTEA to help
mitigate long deencapsulation times. Future work will focus
on extending these optimizations to further reduce delays in
the HTEA.
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