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System Diversity 

Cray Blue Waters 

Amazon EC2 GPU Instances 
Technology Diversity is 

mainstream 

Photonics 

Phase Change Memory 
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n While 8 GB DIMMs are 
most cost-effective, larger 
DIMM sizes are most 
power-efficient 
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Resource Sharing 
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Composing Memory 
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A Simple Model of Savings2 

1HP Power Advisor utility: a tool for estimating power requirements for HP ProLiant server systems, 2009, http://h20000.www2.hp.com/bc/docs/support/
SupportManual/c01861599/c01861599.pdf  

n 1.5 to 16 Watts per node on average 
n Savings for a 10,000 core data center would be 3,540 Watts1 
n Synthetic footprint traces from server applications  

(16GB + Sharing) vs. 20GB 
MICRON DDR2 

2J. Young and S. Yalamanchili, “Dynamic Partitioned Global Address Spaces for Power Efficient DRAM Virtualization,” IEEE Workshop on Work in Progress 
in Green Computing, August, 2010 
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Bandwidth Trends 

n DRAM to interconnect bandwidth ratio has been steadily 
dropping 
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Latency Trends 

n MPI latency has steadily approached DRAM read latency 
n Hardware switching times in the low hundreds of nanoseconds. 

n Note progress in photonics 
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The Memory Wall 

“You can buy bandwidth but you cannot bribe God” 
                           - unknown 

“Multicore Is Bad News 
For Supercomputers” 

IEEE Spectrum 2008 
 

n Data intensive applications 

n Memory bandwidth demand 
is scaling faster than 
memory interface capacity  

Convert Network Bandwidth into Memory Bandwidth 
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Impact on Clustering 

n Combine commodity 
interconnects and memory 
systems 

n Need flexible hardware 
level composition of 
resources 

n This is an old idea whose 
time has come? 
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•  Lim, et al. - Memory Blades for disaggregated memory 
•  Tolentino, Cameron – Memory Miser OS level support 
•  Lefurgy, et al. – DRAM server power and DRAM consolidation 
•  RDMA - Liang ’05 low-level implementation for page swapping 
•  Memscale – UoH, UPC 
•  Feng et. Al – Green Supercomputing 

Some Examples  
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Flattening Cluster Hierarchies 

Observation I:  
Everyone is getting closer and we 

need better sharing but….. 
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Post Dennard Performance Scaling  

Perf ops
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Dally, Keynote IITC 2012 

Operator_cost + Data_movement_cost 

Three operands x 64 bits/operand 
Specialization à heterogeneity and 

asymmetry 

Energy = #bits× dist −mm× energy− bit −mm
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Hardware Power-Performance Tradeoffs 

Programmability/Flexibility  
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TMS320671D  

Customization is key to power 
performance! 

freecaroffers.net 

Model T 

freewebs.com 
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OOO 
Processor 

Atom 
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Consolidation on Chip 
Vector Extensions 
AES Instructions 

Programmable 
Pipeline (GEN6) 

Intel Sandy Bridge 

Programmable 
Accelerator 

PowerEN 

16, PowerPC 
cores Accelerators 

• Crypto Engine 
• RegEx Engine 
• XML Engine 
• CP<[press Engine 
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Intel Knights Corner 

Multiple Models of Computation 
Multi-ISA 
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Consolidation in a System 

perisofparallel.blogspot.com 

NVIDIA Tesla 

So its not just memory that needs to be shared! 
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Post Dennard Performance Scaling  
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Scaling: Key Driver is Energy/Power 

15 

Embedded Platforms  

Goal: 1-100 GOps/w Goal: 20MW/Exaflop 

Big Science: To Exascale 

•  Sustain performance scaling through massive concurrency 
•  New execution models 

•  Data movement becomes more expensive than 
computation 

Courtesy: Sandia National Labs :R.  Murphy).  

Cost of Data Movement 
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Optimizing Locality 

Observation II:  
You can hide latency, but you 

cannot hide energy! 

registers 

ALU 

L1 $  

L2 $  

L3 $  
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A Data Rich World 

topnews.net.tz 

Waterexchange.com 

conventioninsider.com 

Mixed Modalities and levels 
of parallelism 

Trend analysis 

Pharma 
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Large Graphs 

Images from math.nist.gov, blog.thefuturescompany.com,melihsozdinler.blogspot.com 

Irregular, Unstructured 
Computations and Data 
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System Model 

System Abstractions 
e.g. GAS, Virtual DIMMs, etc 

Data Movement Optimizations 

Programming Models 

Large Graphs 

Cluster Wide Hardware Consolidation 

Compiler and Run-Time Support 

Domain  Specific Languages 
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Hardware Customization 
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Application: Data Warehousing 

n On-line and off-line analysis 
n Retail analysis 
n Forecasting 
n Pricing 
n ……  

n Combination of data queries and 
computational kernels 

n Current applications process 1 to 50 
TBs of data [1] 

n Potential to change a companies 
business model! 

19 

 
[1] Independent Oracle Users Group. A New Dimension to Data Warehousing: 2011 IOUG Data Warehousing Survey.  
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Databases: Not a Traditional Domain of GPUs 

…… 

LargeQty(p) <-  

      Qty(q),  

      q > 1000. 

…… 

Relational Computations Over Massive Data Sets 
20 
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Database Applications on GPUs 

21 

n The good 
n Lots of potential data parallelism 
n If data fits in GPU mem, 2x—27x 

speedup has been shown 

n The bad 
n Very large data set (will not even fit in 

host memory) 
n I/O bound (GPU has no disk) 
n PCI data transfer takes 15–90% of the 

total time* 

n The Ugly 
n Irregular/unstructured accesses to data  
 

 

 

Order Price Discount 
0 10 10% 

1 20 20% 

2 10 15% 

3 51 14% 

4 33 13% 

5 22 10% 

…… …… …… 

* B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V. Sander. Relational query co-processing on graphics processors. In TODS, 2009. 
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Research Thrusts 

n I: Optimized implementations of primitives 
n Relational algebra 
n Data management within the GPU memory hierarchy 

n II: In-core processing 
n Cluster wide memory aggregation techniques 
n Change the ratio of host memory size to accelerator memory size 

n III: Data movement optimizations 
n Between hosts and (local or remote) accelerators 
n Within an accelerator 

22 
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I. Relational Algebra Primitives on GPUs 

23 

n Multi-stage algorithm (under 
review) 

n Push to memory-bound 

n Simple primitives are close to 
maximum performance 

n Improved primitives under 
development 

 

Raw Performance (C2050) 
          Fastest in GPU 

Practical 
MAX	
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Scale Well	

Can be optimized 10x 
by using specialized 

primitives	

Limit due to 
GPU memory! 
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TPC-H Query 1-Breakdown Normalized Performance 
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System Model 

System Abstractions 
e.g. GAS, Virtual DIMMs, etc 

Data Movement Optimizations 

Programming Models 

Large Graphs 

Cluster Wide Hardware Consolidation 

Compiler and Run-Time Support 

Domain  Specific Languages 
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Hardware Customization 
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II. In-Core Processing 

n Cluster-based memory aggregation 
n Hardware support for global non-coherent, physical address 
space system 

n Change the ratio of host-memory : GPU-memory 

27 

CPU (Multi Core) 
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Oncilla: Fabrics for  Accelerator Clouds  

n Goal: Efficient memory aggregation for accelerators in data 
centers  

n Solution: Use Global Address Spaces (GAS) and commodity 
fabrics (HT, QPI, PCIe, 10GE, IB)   

n Support in-core databases using software from Red Fox project 
28 
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Oncilla Infrastructure  

n  Low-latency, commodity hardware (Extoll) for efficient memory and GPU aggregation and 
Red Fox SW layer supports DB queries on remote nodes  

n  Collaboration with University of Heidelberg (UH), Polytechnic University of Valencia, AIC 
Inc., LogicBlox Inc.  

29 

Extoll NIC (UH) 

HT or 
PCIe 

GPU 

DRAM 

Extoll Optical 
Interconnect 

145 ns per hop 

2.4 GB/s 

Red Fox SW Layer 

Implements a system wide 
global (non-coherent) physical 

address space 
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Some Candidate Systems Concepts 

Extoll NIC 

HT or 
PCIe 

GPU 

DRAM 

Extoll Optical 
Interconnect 

145 ns per hop  / 

2.4 GB/s 

Virtual DIMMs 

Ocelot 

Extoll NIC 

HT or 
PCIe 

GPU 

DRAM 

Extoll Optical 
Interconnect 

145 ns per hop  / 

2.4 GB/s 

Local 
access Remote device 

Ocelot access 
GPUDirect 

remote access! 

Remote GPU Access 

1) Young, J., Yalamanchili, S., Dynamic Partitioned Global Address Spaces for Power-Efficient DRAM Virtualization, WIPGC at IGCC, 2010 

Estimated two-way latency is on the 
order of 2.24 µs for 64B cache line read1 
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Oncilla 

n DRAM to DRAM transfers build on top of existing 
EXTOLL libraries and hardware 

n GPUDirect and CUDA 5.0 P2P API allow for low-
latency transfers from host memory to GPUs and 
between NICs and GPUs 

n Oncilla manages one-sided data movement and 
optimizations between different memory locations and 
then exports this information to the Red Fox scheduler. 

n  The Oncilla GAS run-time simplifies memory management and enables low-latency scheduling 
across all types of memory. 

n  Combines best features of NVIDIA’s UVA, EXTOLL hardware provides a simplified API to 
scheduler to describe available compute and memory resources 

n  This API will be used to research how data movement and query management can be 
used to  optimize data warehousing applications with remote accelerators.  

31 
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System Model 

System Abstractions 
e.g. GAS, Virtual DIMMs, etc 

Data Movement Optimizations 

Programming Models 

Large Graphs 

Cluster Wide Hardware Consolidation 

Compiler and Run-Time Support 

Domain  Specific Languages 
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Hardware Customization 
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III. Data Movement Optimizations 

CPU (Multi Core) 
2-12 Cores 

MAIN MEM 
~128GB 

GPU 
~512 Cores 

GPU MEM 
~6GB 

Intra-node and inter-node transfers 

Transfers through the 
memory hierarchy 

Kernel Fusion – Aggregate 
computation to reuse data 

 
Kernel Fission – Overlap 

computation with data 
transfer 
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+/- 

Kernel Fusion 
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Kernel Fusion Benefits 

35 

§  Smaller Data Footprint 
§  Reduction in Memory 

Accesses 
§  Temporal Data Locality 
§  Reduction in Traffic 
§  Larger Input Data 

§  Larger Optimization Scope 
§  Common Computation 

Elimination 
§  Improved Compiler 

Optimization Benefits 

SELECT SELECT

JOIN

(a)

SORT

SORT(data0)
SORT(data1)
SORT(data2)
data3 <- SELECT(data0)
data4 <- SELECT(data1)
data5 <- JOIN(data3,data4)
data6<-JOIN(data5,data2)
SORT(data6)

(b)

data0 data1

data3 data4

data5

SORT SORT

data2

SORT

JOIN

data6
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Common RA Combinations of TPC-H 

36 
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Domain Specific Compilation: Red Fox 

37 

LogicBlox Front-End 

Datalog-to-RA 
(nvcc + RA-Lib) 

Red Fox RT 

src-src 
Optimization 

IR 
Optimization  

Datalog Queries 

RA 
Primitives 

Language 
Front-End 

Translation 
Layer 

Machine Neutral 
Back-End 

•  Targeting Accelerator 
Clouds for meeting the 
demands of data 
warehousing applications 

•  In-core databases 

Joint with LogicBlox Inc. 

Kernel IR 
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Time and Space Gains 

Avg= 2.98X  

No PCIe transfers With PCIe Transfer  

Avg= 1.98X  

38 
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Memory and Optimization Scope 

Impact of Optimization 
Scope – O3 vs. O0 Memory Accesses 

39 
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TPC-H Queries 
Query 1 Query 21 

Avg= 1.25X (3.18X w/o SORT and PCIe ) Avg= 1.22X 

40 
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Example of Kernel Fission 

CTA0

CTA1

CTA2

GPU MEM

CPU->GPU

GPU 
Computation

GPU->CPU CPU->GPU

GPU 
Computation

GPU->CPU

Cycle 0 Cycle 1

41 

1.37x speedup 

Reminiscent of 
Software Pipelining 

PCIe Noice 
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People 

Gregory Diamos 
Dynamic optimizations 

(Harmony, Ocelot, LLVM 
Bridge) 

Andrew Kerr 
Program Transformations & 

Optimizations for Data Parallel 
Computation (Ocelot, LLVM 
Bridge, VSIPL) 

Jeff Young 
Integrated Networks-

Memory, Oncilla 

Haicheng Wu 
Dynamic Opytimizations 

(Ocelot) 

Si Li 
Correctness & Emulation 

Tools, GP architectures 
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Summary 

n Refactor cluster architectures for  
n Flexible hardware composition of resources and 
n Migrate to a communication-centric model of algorithms, 
systems, and optimizations 
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