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System Diversity

Phase Change Memory
Amazon EC2 GPU Instances

Technology Diversity is

mainstream
Cray Blue Waters .
y Photonics
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Composing Memory

Power vs DIMM Size (Kingston
DDR3)
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Total DRAM (GB) s> DIMM sizes are most

. ] power-efficient
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Statistics generated for Supermicro X9DRL-3F Motherboard (8 DIMM slots)
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A Simple Model of Savings?

16 GB Total Power and Static Power Savings vs Number of Nodes
100 T T T T

1 (16GB + Sharing) vs. 20GB
MICRON DDR2

10 £ E!

Power (W)

1 2,1 42 8,4 16,8
Number of Nodes, Spill Applications

= 1.5 to 16 Watts per node on average
m Savings for a 10,000 core data center would be 3,540 Watts!
» Synthetic footprint traces from server applications

1HP Power Advisor utility: a tool for estimating power requirements for HP ProLiant server systems, 2009, http://h20000.www2.hp.com/bc/docs/support/
SupportManual/c01861599/c01861599.pdf

2J. Young and S. Yalamanchili, “Dynamic Partitioned Global Address Spaces for Power Efficient DRAM Virtualization,” IEEE Workshop on Work in Progress
in Green Computing, August, 2010
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Bandwidth Trends

Bandwidth vs. Time for Common

Interconnects
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Introduction Date

aDRAM to interconnect bandwidth ratio has been steadily
dropping
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Latency Trends

MPI Ping Latency vs. Time for Common

Interconnects
10000000
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Introduction Date

nMPI latency has steadily approached DRAM read latency
» Hardware switching times in the low hundreds of nanoseconds.

mNote progress in photonics

Extend the reach of a socket
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The Memory Wall
“Multicore Is Bad News

For Supercomputers”
Memory stacked on processor IEEE Spectrum 2008

Conventional architecture

sData intensive applications

sMemory bandwidth demand
is scaling faster than
memory interface capacity

Performance (seconds)

Processor cores
0045

“You can buy bandwidth but you cannot bribe God”
- unknown

Convert Network Bandwidth into Memory Bandwidth

I
Impact on Clustering

= Combine commaodity

(Gl v i .
interconnects and memory
HyperTransportT"’I Over systems
Ethernet ?mEfc'f'cam“ =Need flexible hardware
I et level composition of
IeEYoungTi(“;l:lgr:g:l;ylnsnm'e of reso u rces

Brian Holden — Hyper Transport

aThis is an old idea whose
time has come?

Some Examples

« Lim, et al. - Memory Blades for disaggregated memory

+ Tolentino, Cameron — Memory Miser OS level support

« Lefurgy, et al. — DRAM server power and DRAM consolidation
» RDMA - Liang 05 low-level implementation for page swapping
» Memscale — UoH, UPC

 Feng et. Al — Green Supercomputing

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY CASI, 8




Flattening Cluster Hierarchies

Observation I:
Everyone is getting closer and we

The World ls Flat

need better sharing but.....

THE TWENTY-FIRST CENTURY

Thomas L. Friedman
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Post Dennard Performance Scaling

Perf (ﬂ) = Power (W) x Efficiency .op >
S joule
Dally, Keynote IITC 2012 R a—

Operator_cost + Data_movement_cost

Y

v Three operands x 64 bits/operand

Specialization - heterogeneity and
asymmetry

Energy = # bits x dist — mm x energy — bit — mm
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Hardware Power-Performance Tradeoffs

N *
(LY. ]

freewebs.com

Customization is key to power

performance!
Xilinx Virtex 6
FPGA
=
Q] NVIDIA Tesla Model T
E TMS320671D
8_ freecaroffers.|
]
DSP (LP,

o ) In-Order Atom

Processor

( 000 Westmere-EP
Processor
>

Programmability/Flexibility
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Consolidation on Chip

Vector Extensions
Programmable AES Instructions Programmable
Pipeline (GEN6) 'i Accelerator

Intel Sandy Bridge

Multiple Models of Computation

Multi-ISA
16, PowerPC Intel Knights Corner
e
cores Accelerators
«Crypto Engine
*RegEx Engine Wawe | e haoRe
*XML Engine INTERPROCESSOR NETWORK
*CP<[press Engine e ‘e e

FIXED FUNCTION LOGIC

PowerEN
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COHERENT  COHERENT.
cacHe CAcHE

INTERPROCESSOR NETWORK
VETOR | VECTOR VECTOR
IACORE | IACORE . | iAcoRe

MEMORY and /O INTERFACES
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Consolidation in a System

Cray XE6 Cray XK6

perisofparallel.blogspot.com

So its not just memory that needs to be shared!

NVIDIA Tesla amazon
webservices™
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Post Dennard Performance Scaling

ops . ops
Perf| 222 = Power (W) x Efficiency L

S joule
Dally, Keynote IITC 2012 R a—

Operator_cost + Data_movement_cost

Y

v Three operands x 64 bits/operand
Specialization - heterogeneity and
asymmetry

Energy = # bits x dist — mm x energy — bit — mm
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Scaling: Key Driver is Energy/Power

Embedded Platforms

100000
“*Now

Goal: 1-100 GOps
10000 2018-20
1000 "K ~-XGC 2018-20
100 H\ /H
10 \_‘7,—/_/—\

PicoJoules

Courtesy: Sandia National Labs :R. Murphy).

- Sustain performance scaling through massive concurrency
- New execution models
- Data movement becomes more expensive than
computation
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Optimizing Locality

registers
ALU
!
L1$
) Observation II:
L2 You can hide latency, but you
3 cannot hide energy!
L3 $
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Content “ o

A Data Rich World
LargEIBGraphS' ) - Media

topnews.netiiz.

A
)
7N

Mixed Modalities and levels
of parallelism

Irregular, Unstructured

facebook Computations and Data

'

/gnfagéréﬁm T gov blog ysfurestompany o
A\ J | B ) f. v ‘."l "

/

conventioninsider.com

Trend analysis
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System Model

Large Graphs

= -

people many
Communications £ ¢
Information i

Domain Specific Languages

System Abstractions Cluster Wide Hardware Consolidation
e.g. GAS, Virtual DIMMs, etc
@/@/ Hardware Customization

<
T‘\\ITD!A T‘\\ITD!A

A A
NVIDIA NVIDIA

©
@
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Application: Data Warehousing

\é(

Walmart

amazon com

71 and you're done.’

$ NASDAQ

facebook.

mOn-line and off-line analysis
m Retail analysis
= Forecasting
= Pricing

»Combination of data queries and
computational kernels

nCurrent applications process 1 to 50
TBs of data [1]

mPotential to change a companies
business model!

[1] Independent Oracle Users Group. A New Dimension to Data Warehousing: 2011 IOUG Data Warehousing Survey.
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Databases: Not a Traditional Domain of GPUs

(@

D

LargeQty(p) <-
Qty(q),
q > 1000.

Walmart

amazoncom

7] and you're done”

facebook.

Relational Computations Over Massive Data Sets
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5 NASDAQ
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Database Applications on GPUs

= The good mmo@@m
1

u Lots of potential data parallelism 0 10%0

= If data fits in GPU mem, 2x—27x 1 20 20%
speedup has been shown 2 10 15%

3 51 14%

=The bad 4 33 13%
= Very large data set (will not even fit in 5 2 10%

host memory)
= I/O bound (GPU has no disk)

m PCI data transfer takes 15-90% of the
total time*

= The Ugly
= Irreqular/unstructured accesses to data

I B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V. Sander. Relational query co-processing on graphics processors. In TODS, 2009.
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Research Thrusts

n]: Optimized implementations of primitives
= Relational algebra
= Data management within the GPU memory hierarchy

nII: In-core processing
» Cluster wide memory aggregation techniques
» Change the ratio of host memory size to accelerator memory size

nIII: Data movement optimizations
» Between hosts and (local or remote) accelerators
= Within an accelerator
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I
l. Relational Algebra Primitives on GPUs

Raw Performance (C2050)

Fastest in GPU -Mul_tl-stage algorithm (under
review)
1407 Theureu'ca;l I I
@) 44 SreamCopy ... Rragticah...i s Push to memory-bound
§ | a= PROECT - s
D 1001k SELECT : >
H . - . -y =
con et : "aSimple primitives are close to
£ 60 e (OIN : maximum performance
: = | p
B 40 ;
! N .
el | ! =Improved primitives under
- . development
10 10 10 10

=o
o,

Relation size (bytes)
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I
TPC-H Query 1-Overall Performance

1800 1

1600

!

Limit due to

1400 1 GPU memory!

1200 1 Scale Well

800 | Can be optimized 10x
by using specialized
primitives

milliseconds
)
o
o

600 -

400 -
200 -
()} : , , , , , , :
16K 32K 64K 128K 256K 512K iM 2M
Row Number
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TPC-H Query 1-Breakdown Normalized Performance

1.2 §
Hothers ®reduce ®sort ¥ join ¥ pcie

o 1]
E
=
S os | Spends
= most time
§ o | in JOIN
s and SORT
(]
E 0.4 -
S Solutlons (TBD)

0.2 -

Radlx Sort

64K 128K 256K 512K
Row Number
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System Model

Large Graphs

= -

Domain Specific Languages

System Abstractions Cluster Wide Hardware Consolidation
______eg. GAS, Virtual DIMMs, etc

@/@/ Hardware Customization

A A

NVIDIA NVIDIA

©
@
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II. In-Core Processing

GPU GPU GPU GPU
~512 Cores ~512 Cores ~512 Cores ~512 Cores

GPU MEM GPU MEM GPU MEM GPU MEM
~6GB ~6GB ~6GB ~6GB

MAIN MEM MAIN MEM MAIN MEM MAIN MEM
~128GB ~128GB ~128GB ~128GB

CPU (Multi Core) CPU (Multi Core) CPU (Multi Core) CPU (Multi Core)
2-16 Cores 2-16 Cores 2-16 Cores 2-16 Cores

nCluster-based memory aggregation

mHardware support for global non-coherent, physical address
Space system

nChange the ratio of host-memory : GPU-memory
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Commodity
Converged
Fabric

48 GB of Aggregated DRAM

mGoal: Efficient memory aggregation for accelerators in data
centers

mSolution: Use Global Address Spaces (GAS) and commodity
fabrics (HT, QPI, PCle, 10GE, IB)

m Support in-core databases using software from Red Fox project

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY
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Oncilla Infrastructure

Red Fox SW Layer

4

Extoll NIC (UH)

HTor Q Extoll Optical
PCIe Interconnect

[Implements a system wide
Global (non-coherent) physigg
address space

145 ns per hop 2 4\‘
P \.\‘4
2 4 GBIs S8
%

» Low-latency, commaodity hardware (Extoll) for efficient memory and GPU aggregation and
Red Fox SW layer supports DB queries on remote nodes

» Collaboration with University of Heidelberg (UH), Polytechnic University of Valencia, AIC
Inc., LogicBlox Inc.
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Some Candidate Systems Concepts

Estimated two-way latency is on the

Virtual DIMMs order of 2.24 ps for 64B cache line read’
GPU -

=
Extoll NIC Extoll Optical

Interconnect Q \ v

145 ns per hop /

2.4 GBIs %

1) Young, J., Yalamanchili, S., Dynamic Partitioned Global Address Spaces for Power-Efficient DRAM Virtualization, WIPGC at IGCC, 2010

Remote GPU Access

Local

access { Ocelot Remote device GPUDirect

Ocelot access remote access!

7 Extoll NIC Extoll Optical

§\A T or Q Interconnect ‘Q < y
DRAM / o Lo ~

! 145 ns per hop / A g

2.4 GBIs
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Host to GPU
Data Transfer

Oncilla
_Nodel __ __ __________________. Node2 _ _ _ _ _ __ _______________
Red Fox g™ |
Runtime I
Oncilla GAS Runtime i Oncilla GAS Runtime
andAPl @& !

i | and API

Ors.

seinediler:
CASL
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System Model

Large Graphs _ 0" eontent S,

social :w
Media b2

Sy
rategicCommunications §
ew

[ .information i¢

System Abstractions Cluster Wide Hardware Consolidation
e.g. GAS, Virtual DIMMs, etc

A A
NVIDIA NVIDIA
A A
NVIDIA NVIDIA
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Hardware Customization
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[ll. Data Movement Optimizations

CPU (Multi Core)

2-12 Cores p———

‘ Kernel Fusion — Aggregate

MAIN MEM GPU MEM i
12868 ecs computation to reuse data
A

—
/ Kernel Fission — Overlap
computation with data
transfer

2\

Transfers through the
memory hierarchy

Intra-node and inter-node transfers
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Kernel Fusion

~ I - R

Kernel A

- I8~ E1E0 ~ B

Kernel B

Result
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Kernel Fusion Benefits

= Smaller Data Footprint
= Reduction in Memory

Accesses
= Temporal Data Locality sontianan
= Reduction in Traffic
= Larger Input Data )

= Larger Optimization Scope

= Common Computation @
Elimination

= Improved Compiler
Optimization Benefits
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Common RA Combinations of TPC-H

CASL 35

I
I
I
I
(A1) |

I
| (A2

Geeen (4] [#e]
| C+ > C=D
I

ey (Cvon D [43]
I

Gaeen)!  Cson D
|
I
‘ XD

ErosecD,
|
I

(@) i (b)
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Domain Specific Compilation: Red Fox

Datalog Queries Joint with LogicBlox Inc.

LogicBlox Front-End Language
Front-End

7 ) [I]j]] )

B + Targeting Accelerator
SIC-SIC Datalog-to-RA T |ati .
| Optimization (nvee + RA-Lib) RA > raE:yeie:on Clouds for meetlng the

U 7" Primitives demands of data

mﬁ]] Kemel IR 7 warehousing applications

m 3 ¢ In-core databases
- R . | Red Fox RT
| Zptimization Machine Neutral

>  Back-End
=~ |£| 8688
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Time and Space Gains

GaeDi[a] (2]
s Con [5])

@ () (d) (e)
No PCle transfers With PCle Transfer
10 45
9 Avg= 2.98X 4 Avg= 1.98X
s 7.89 o 35 mPCl @ Compute
: £
a T 25
3 6 N 2
g ©
g s £ 15
o, 2 1
0
2 T T T T T T T T T T
a8 a8 a3 a8 28
11 22 22 2 2 I
& < < & <
0l S S [} 5} S
2z z z 2z z
a b c d e
a b c d e
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Memory and Optimization Scope

Impact of Optimization

Memory Accesses
y Scope — O3 vs. O0
%0% 35
-f
s0% | 75.20% 3 2.80 290 Mnon-fused
s 67.69% DFused
£ 0% 25 2450 | 53
3 60% 56.12%
T a
E E 178
b Q
8 1.37
< 29.46% fas .08 2 109
gm - I 1.00
S 20% 1 13.43%
0.5
10%
a b c d e a b c d e
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TPC-H Queries
Query 1 Query 21
Date Supplier
Price © Select @ Join Status Date1 Date2
—— a0 Sort ® Arithmetic
O Aggregate @O Unique Nation

Tax CD Fusion

Discount
I
anti

Qu:’tl

Flag
——

Status
——

(a)
Avg= 1.25X (3.18X w/o SORT and PCle )
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(b)
Avg= 1.22X

CASI, 40
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Example of Kernel Fission

GPU MEM
— oml = V=T 1
| = | GpPu>cpPu | | CPU>GPU |
oEm—— @ - — — — — — - 4 - ————. 4
cTA1 : D — : S | Reminiscent of
" -> . P
L Computation | L ' Software Pipelining
—— _—_—_—_—_—_-i _—_—_—_—_—_'{
craz | CPU->GPU l GPU
| | | Computation |
] @ 4 e Jd
Cycle 0 Cycle 1
1.37x speedup

PCle Noice

\J

——fission ——no fission

o = N
o v oA ;N b oW
.

Throughput (GB/s)

500 1000 1500 2000 2500 3000 3500 4000
Number of Elements (million)
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People

2

A —
Gregory Diamos Andrew Kerr Haicheng Wu
Dynamic optimizations Program Transformations & Dynamic Opytimizations
(Harmony, Ocelot, LLVM Optimizations for Data Parallel (Ocelot)
Bridge) Computation (Ocelot, LLVM
Bridge, VSIPL)

Jeff Young
Integrated Networks- o
Memory, Oncilla SiLi

Correctness & Emulation
Tools, GP architectures
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Summary
.................. 100000
“Now
10000 2018-20 s
é 1000 ‘K ~-XGC 2018-20 /—\
£ — :
Y g 100 \-'K /‘q/_
-
10 \—W/—
The World Is Flat . _—
THE T Pt eruR & & ¢ &S & &
Th |.F & S & & @'@& I
omas L. Friedman \ & E

mRefactor cluster architectures for
nFlexible hardware composition of resources and

= Migrate to a communication-centric model of algorithms,
systems, and optimizations
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