
Article

Characterization and transformation
of unstructured control flow in bulk
synchronous GPU applications

Haicheng Wu, Gregory Diamos, Jin Wang, Si Li and
Sudhakar Yalamanchili

Abstract
In this paper we identify important classes of program control flows in applications targeted to commercially available
graphics processing units (GPUs) and characterize their presence in real workloads such as those that occur in CUDA
and OpenCL. Broadly, control flow can be characterized as structured or unstructured. It is shown that most existing
techniques for handling divergent control in bulk synchronous GPU applications handle structured control flow
efficiently, some are incapable of executing unstructured control flow directly, and none handles unstructured control
flow efficiently. An approach to reduce the impact of this problem is provided. An unstructured-to-structured control
flow transformation for CUDA kernels is implemented and its performance impact on a large class of GPU applications
is assessed. The results quantify the importance of improving support for programs with unstructured control flow on
GPUs. The transformation can also be used in a JIT compiler pass to execute programs with unstructured control flow
on the GPU devices that do not support unstructured control flow. This is an important capability for execution port-
ability of applications using GPU accelerators.

Keywords
branch divergence, GPU, unstructured control flow

1 Introduction

The transition to many-core computing has been

accompanied by the emergence of heterogeneous architec-

tures driven in large part by the major improvements in

Joules/operation and further influenced by the evolution

to throughput-oriented computing. This has coincided with

the growth of data parallel computation that has become a

pervasive and powerful model of computation. Its impor-

tance has been amplified by the rate at which raw data is

being generated today in all sectors of the economy and

rapidly growing in the foreseeable future. The emergence

of low-cost programmable GPU computing substrates from

NVIDIA, Intel, and AMD have made data parallel architec-

tures commercially available from embedded systems

through large scale clusters such as the Tsubame (Matsuoka

2008) and Keeneland systems,1 hosting thousands of NVI-

DIA Fermi chips. Major research foci now include the

development of programming models, algorithms, applica-

tions, performance analysis tools, productivity tools, and

system software stacks.

Emerging data-parallel languages that implement single

instruction stream multiple thread (SIMT) models (Rixner

et al. 1998) such as CUDA and OpenCL retain many of the

control flow abstractions found in modern high level

languages and simplify the task of programming these

architectures. However, when the SIMT threads do not fol-

low the same control path, performance suffers through

poor hardware utilization and dynamic code expansion.

This problem of branch divergence is critical to high per-

formance and has attracted hardware and software support.

The impact of branch divergence can be quite different

depending on whether the program’s control flow is struc-

tured (control blocks have single entry and single exit such

as if-then-else) or unstructured (control blocks have multi-

ple entries or exits such as those using goto statements). In

fact, some GPUs will only support (and hence their compi-

lers will only generate) structured control flow. Therefore,

it becomes important to understand the impact of unstruc-

tured control flow in GPU applications and performance

effects of techniques developed to deal with it. This

School of Electrical and Computer Engineering, Georgia Institute of

Technology, Atlanta, GA, USA

Corresponding author:

Haicheng Wu, School of Electrical and Computer Engineering, Georgia

Institute of Technology, 266 Ferst Drive, KACB 2316 Atlanta, GA 30332-

0765, USA

Email: hwu36@gatech.edu

The International Journal of High
Performance Computing Applications
26(2) 170–185
ª The Author(s) 2012
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342011434814
hpc.sagepub.com

understanding is critical to the development of new

techniques to improve the efficiency of support for unstruc-

tured control flow. This in turn can lead to the support of

advanced features in GPGPU programming that produces

unstructured control flow and are currently not supported

in GPU architectures, such as try/catch.

A second reason for understanding the impact of

unstructured control flow and the development of support-

ing compiler technology is the emerging importance of

portability in future heterogeneous many-core architec-

tures. Chips that support multiple instructions on a die, such

as Intel’s Sandybridge (AVX, x86, GEN), will be common.

Execution portability can be achieved via dynamic transla-

tion to support multiple GPU back-ends (Diamos et al.

2010). The ability to execute a GPU kernel on multiple

targets enhances portability and protects software invest-

ments. For example, transformations between unstructured

and structured control flow implementations are necessary

when one of the GPUs does not natively support unstruc-

tured control flow, e.g., AMD Radeon (Dominguez et al.

2011). In reality, there already exists programs such as

Optix (Parker et al. 2010) that have complex unstructured

control flow and need to be accelerated by GPUs. The cur-

rent limited bandwidth between GPUs and CPUs forbids

lots of data movement between them when running these

programs in a high-throughput system and makes the sup-

port of unstructured control flow on GPUs a desirable solu-

tion in these cases. The future change of the balance

between the bandwidth and the accelerator complexity may

alter the design decision, but it remains to see.

In this paper we seek to analyze the occurrence and

impact of unstructured control flow in GPU kernels. This

paper makes the following contributions:

� Assesses the occurrence of unstructured control flow in

several GPU benchmark suites.

� Establishes that unstructured control flow necessarily

causes dynamic and static code expansion for state-

of-the-art hardware and compiler schemes. It shows

that this code expansion can degrade performance in

cases that occur in real applications.

� Implements a compiler intermediate representation (IR)

transformation that can turn unstructured control flow

to a structured control flow implementation. This trans-

formation is useful for researching the performance of

arbitrary control flow on GPUs, and is also important

for execution portability via dynamic translation.

The rest of the paper is organized as follows: Section 2

introduces unstructured control flow and its specific mani-

festation in GPU codes. Section 3 describes transformations

for converting unstructured control flow to structured control

flow. The experimental evaluation section, Section 4,

assesses the impact of the transformations on several bench-

mark suites. Section 5 introduces the related work of this

paper. The paper concludes with some general observations

and directions for future work.

2 GPU control flow support

Compilers can translate high-level imperative languages

such as C/Cþþ or Java into an IR that resembles a low-

level instruction set. Typical examples of IR are LLVM

(Lattner and Adve 2004), parallel thread execution (PTX)

for CUDA GPU (NVIDIA 2009), or AMD IL for AMD

GPU (AMD 2009). In IR, a control flow graph (CFG) rep-

resents the execution path of the program. Every node of

the graph is a group of sequentially executed instructions,

and the edges are the jumps which are usually caused by

conditional/unconditional branches.

Previous work (zhang and D’Hollander 2004) classifies

control flow patterns into two categories, structured and

unstructured. In general, commonly used control flow pat-

terns, such as those shown in Figure 1, are structured.

These patterns correspond to hammock graphs in the CFG

which are defined as subgraphs having a single entry node

and a single exit node (Ferrante et al. 1987). In contrast,

unstructured control flow may have multiple entries or

exits. Figure 2 adds some extra edges (dotted line), which

may be caused by goto statements, to the structured control

flow in Figure 1 and turns them into unstructured control

flow. Based on the classification, Zhang and D’Hollander

Figure 1. Examples of structured control flow: (a) if-then-else, (b) for-loop/while-loop, and (c) do-while-loop.

Wu et al. 171

(2004) introduced a generic approach to transform

graphs with unstructured control flow to graphs possessing

structured control flow. This transformation is explained in

Section 3. The remainder of this section introduces the

common sources of unstructured control flow and how they

are supported in SIMT architectures.

2.1 Sources of unstructured control flow

One of the most common sources is the goto statement used

in C/Cþþ which allows control flow to jump to arbitrary

nodes in the CFG. Similarly, longjumps and exceptions are

two other sources of unstructured control flow.

However, even if the programming language forbids the

use of goto statements (such as OpenCL), the compiler may

also produce unstructured control flow in IR due to unin-

tended side effects of the language semantics. For example,

in the code segment of Figure 3(a), the compiler does not

need to evaluate all four conditions (which is known as

a short-circuit optimization) and the CFG of the generated

IR looks like Figure 3(b). This CFG has unstructured con-

trol flow because subgraph fB1, B2g and fB3, B4g both

have two exits.

Moreover, CFG optimizations performed by compilers

can also cause unstructured control flow (Cooper et al.

2001). Considering Figure 4(a), if function foo() is inlined

into the main() function, the early return statement in loop2

will create the second exit from the loop, which is shown in

Figure 4(b).

The first example highlights the difficulty in designing

language semantics that require non-existence of unstruc-

tured control flow, while the second example shows that

only a subset of existing compiler optimizations preserve

the structured property of CFGs. As a result, designers of

Figure 2. Examples of unstructured control flow: (a) if-then-else with extra outgoing edge, (b) if-then-else with extra incoming edge, (c)
loop with extra outgoing edge and (d) loop with extra incoming edge.

Figure 3. Example showing a compound condition that creates unstructured control flow: (a) code segment, (b) CFG having unstruc-
tured control flow generated by short-circuit optimization and (c) CFG used in AMD GPUs.

172 The International Journal of High Performance Computing Applications 26(2)

compilers for SIMD processors without hardware support

for unstructured control flow must decide between per-

forming existing optimization passes and then restructuring

the program or avoiding certain optimizations altogether.

This greatly increases the complexity of these compilers

and potentially eliminates opportunities for optimization.

Since the above examples are very common in modern pro-

gramming languages, normal programs usually have both

structured and unstructured control flow. The desires that

unstructured parts should be executed efficiently to avoid

hurting overall performance while not placing restrictions

on language semantics and retaining the ability to perform

arbitrary transformations on CFGs creates a clear advan-

tage to support unstructured control flow on general-

purpose SIMD processors.

In the above examples, if some edges are deleted, the

control flow will become structured. These edges are called

interacting edges (Zhang and D’Hollander 2004), since

they interact with two hammock graphs. There are two

types of such edges:

� An interacting out-edge leaves a hammock graph from

a point other than the exit block, such as edge E1 and

E2 in Figure 3(b). Edge E1 in Figure 4 is also an inter-

acting out-edge.

� An interacting in-edge enters a hammock graph from

a point other than the entry block. The dotted line in

Figure 2(b) and Figure 2(d) are two examples.

2.2 Impact of branch divergence in
modern GPUs

Modern programmable GPUs implement massively data

parallel execution models. In this paper we analyze GPU

kernels from CUDA applications compiled to NVIDIA’s

PTX virtual instruction set architecture. PTX defines an

execution model (see Figure 5) where an entire application

is composed of a series of multi-threaded kernels. Kernels

are composed of parallel work-units called cooperative

thread arrays (CTAs), each of which can be executed in

any order subject to an implicit barrier between kernel

launches. Threads within a CTA are grouped together into

logical units known as warps that are mapped to SIMD

units using a combination of hardware support for predica-

tion, a thread context stack, and compiler support for iden-

tifying re-converge points at control-independent code.

Since threads within the same warp have to execute the

same instructions, branch control flow can potentially

cause inefficiencies if the branch condition is not evaluated

identically across all threads in a warp. In this case, some

threads may take a fall-through edge and the others may

jump to the branch target, which is referred to as branch

divergence. This can be handled by a process of serially

enabling/disabling threads corresponding to the then/else

branch. This effectively splits the warp into smaller subsets

of threads which may then re-converge later in the

Figure 5. Execution model of NVIDIA CUDA PTX.

Figure 4. Example showing function inlining that creates unstruc-
tured control flow: (a) code segment and (b) CFG having unstruc-
tured control flow.

Wu et al. 173

execution. The execution model of other GPUs are similar,

though they use different terminology.

The implementation details of re-convergence differ

among GPUs. In AMD GPUs illustrated in Figure 6, its

IR language (AMD IL) uses explicit instructions such as

IF, ELSE, ENDIF, LOOP, ENDLOOP, etc., which means

it only supports limited structured control flow (AMD

2010). The mapping of these control flow to the hardware

is simple and fixed. It executes all of the possible paths of

the program (e.g. then part and else part for IF instructions)

in a lock-step manner, and threads re-converge at the END

instructions such as ENDIF or ENDLOOP. If the com-

pound condition code in Figure 3(a) is compiled for AMD

GPUs, it has to generate CFG like Figure 3(c) which uses

nested if-then-else to form a structured control flow imple-

mentation. The Intel GEN5 graphics processors work in a

similar manner (Intel 2009).

However, mapping parallel programs with arbitrary con-

trol flow onto SIMD units is a difficult problem because

there is generally no guarantee that different parallel

threads will ever be executing the same instructions. Thus,

the re-convergence point may impact the overall perfor-

mance. This will be discussed in the following section.

2.3 Unstructured control flow on GPUs

Although supporting structured control flow is sufficient for

many graphics shading languages such as Microsoft DirectX

and Khronos OpenGL, the migration to general purpose

models such as OpenCL and CUDA that derive from C

makes it advantageous to support unstructured control flow.

Specifically, CUDA supports goto statements in the high

level language. In addition, its IR language, PTX, has many

features in common with RISC ISAs, which includes arbi-

trary branch instructions rather than explicit IF and LOOP

instructions. Consequently, as discussed in Section 2.1, com-

pilation of CUDA programs can employ common CFG opti-

mizations that are already widely used in other C/Cþþ
program compilation frameworks, and programmers do not

need to worry about introducing unstructured control flow

into programs that are not allowed on some GPU platforms.

The current state of the practice in determining re-

convergence points for divergent SIMD threads is referred

to as immediate post-dominator2 re-convergence (Fung

et al. 2007). By using this method, the re-converge point

is fixed for every divergent branch and can be calculated sta-

tically during compilation. For structured control flow, this

method would re-converge at the end of loops or if-else-

endif control blocks, which are as efficient as AMD GPUs.

However, it may execute inefficiently for unstructured con-

trol flow. For example, in Figure 7, assume the warp size is

seven and these seven threads take seven different paths as

shown in Figure 7(b), which is the worst case for this CFG.

The immediate post-dominator of all branches is the exit

node (see Figure 7(a)). Figure 7(c) shows how the SIMD unit

executes these seven threads for re-converging at the imme-

diate post-dominator. There are many empty slots in this

figure and on average only 3.25 threads are enabled. It is

also interesting to notice that the execution of the CFG of

Figure 3(c) is the same as Figure 7(c), which means AMD

GPUs are also inefficient for this example.

Dynamic code expansion occurs when different paths ori-

ginating from a divergent branch pass through common basic

blocks before the re-convergence point. For example, in Fig-

ure 7(c), time slots 7–1 are running dynamically expanded

code because B3, B4 and B5 have been already executed

in time slots 4, 5 and 6. This concept is defined against static

code expansion, which inserts new instructions and increases

the static binary size. During execution, dynamically

expanded instructions will use the same PC values while sta-

tically expanded instructions will use different PC values.

The solution that reduces dynamic code expansion is to

re-converge as early as possible. Figure 7(d) is an example

where re-convergence happens much earlier than the

immediate post-dominator. It saves execution time and has

much better hardware resource occupancy. To achieve

performance improvements as shown in Figure 7(d), the

compiler should be capable of identifying the potential

early re-converge points and inserting necessary check

instructions. It also needs the support from hardware to effi-

ciently compare the program counter (PC) of each thread to

check for re-convergence. There is no commercial technol-

ogy that can achieve the efficiency shown in this example

and thus there is still a great deal of room for improvement

in executing unstructured control flow in SIMD processors.

The inefficiency of re-convergence at immediate post-

dominators exacerbates the problem of branch divergence.

If unstructured control flow can be handled more effi-

ciently, some new language semantics, such as Cþþ try/

catch style exceptions, can be added to current program-

ming model. Furthermore, compilers do not have to gener-

ate structured control flow as in Figure 10(c) if hardware

more efficiently supports unstructured control flow.

2.4 Executing arbitrary control flow on
GPUs

Consequently, there are three ways to run programs with

arbitrary control flow on different GPU platforms in an

efficient (and, hence, portable) manner:

Figure 6. Example of AMD IL (a) C code and (b) corresponding
AMD IL.

174 The International Journal of High Performance Computing Applications 26(2)

� The simplest method is to let compilers have the option

to produce IR code only containing structured control

flow. This IR code then can be compiled into different

back-ends. This method may miss some optimization

opportunities, but it is simplest to implement.

� Use a just in time (JIT) compiler to dynamically trans-

form the unstructured control flow to structured control

flow online when necessary, i.e. the target GPU does

not support unstructured control flow. The dynamic

compilation may introduce some inevitable overhead.

� The most promising method is to develop a new tech-

nology (with support from both compiler and hard-

ware) to replace current approaches to fully utilize

the early re-convergence opportunity that is illustrated

in Figure 7(d).

This paper presents an approach to the second option

above: transformation of the unstructured control flow to

structured control flow in Section 3. The third option

remains as future work.

3 Control flow transformations

The principal result of Zhang and D’Hollander’s (2004)

work is that the repeated application of three primary trans-

formations can provably convert all possible unstructured

programs into a structured format. However, their tech-

nique only applies to the programming language level

instead of the IR level. To perform similar transformations

at the PTX IR level some extra work is needed and the three

original transformations have to be adapted because there is

no simple one-to-one mapping between CFG and syntactic

constructs. For example, syntactic constructs are flat but

CFG is a two-dimensional structure. The adapted transfor-

mations are conceptually and functionally equivalent to

those used in Zhang’s work (the detailed algorithm and cor-

rectness proof can be found in their original work) and can

be explained through the application of three primitive

transformations.

� Cut: The Cut transformation moves the outgoing edge

of a loop to the outside of the loop. For example, the

loop in Figure 8(a) has two unstructured outgoing

edges, E1 and E2. What Cut transformations do is as

follows: (i) using three flags to label the location of the

loop exits (flag1, flag2, and exit in Figure 8(b)); (ii)

combining all exit edges to a single exit node; (iii) using

three conditional checks to find the correct code to exe-

cute after the loop (Figure 8(c)). It should be noted that

after the transformation the CFG in this example is still

unstructured and needs other transformations to make it

structured.

� Backward Copy: Backward Copy moves the incom-

ing edges of a loop to the outside of the loop. For

instance, Figure 9(a) has an unstructured incoming

edge E1 into the loop. To transform it, the backward

copy uses the loop peeling technique to unravel the

first iteration of the loop (Figure 9(b)) and points all

incoming edges to the peeled part (Figure 9(c)). In this

example, the CFG after the transformation is also

unstructured. This transformation is rarely needed (see

the experiment part in Section 4) because usually nei-

ther programmers nor compilers would create loops

with multiple entries.

Figure 7. Example of mapping unstructured control flow into a SIMD unit: (a) unstructured CFG, (b) execution path, (c) re-converge at
the immediate post-dominator and (d) re-converge at the earliest point.

Wu et al. 175

� Forward Copy: Forward Copy handles the unstruc-

tured control flow in the acyclic CFG. After Cut and

Backward Copy transformations, there are no unstruc-

tured edges coming into or going out of loops. As a con-

sequence, CFGs inside every loop can be handled

individually and all structured loops can be collapsed

into abstract single CFG nodes. Forward Copy elimi-

nates all remaining unstructured branches by duplicat-

ing their target CFG nodes when traversing the CFG

in the depth-first order. For example, in Figure 10(a),

Figure 8. Example of a Cut transformation: (a) unstructured CFG; (b) three flags are used to denote the loop exit location (flag1, exit
from B3 or not; flag2, exit from B4 or not; exit, loop terminates or not); (c) combine all exit edges to a single exit node and use three
conditional checks to find the correct code to execute after the loop.

Figure 9. Example of a Backward Copy transformation: (a) unstructured CFG; (b) use loop peeling to unravel the first iteration; (c)
point all incoming edges to the peeled part.

176 The International Journal of High Performance Computing Applications 26(2)

B5 needs to be duplicated because edge E2: B4!B5 is

unstructured (Figure 10(b)). Similarly, in Figure 10(b),

subgraph fB3, B4, B5 and B5’g also has to be dupli-

cated because edge E1: B2!B3 is unstructured

(Figure 10(c)). If Forward Copy is performed multiple

times, some subgraphs may be duplicated more than

once and it may eventually lead to exponential code

expansion. The final result shown in Figure 10(c) dupli-

cates B5 three times and duplicates B4 and B3 once,

respectively. Actually, every path between the entry

node and the exit node of Figure 10(c) is a possible

execution path of Figure 10(a).

Figure 11 compares the code duplicated by Forward

Copy and the dynamically expanded code caused by re-

convergence at the immediate post-dominator (Figure

11(b) and (c) use the same color to represent the same basic

block), it is interesting to see that they are exactly the same.

Moreover, the execution of the re-convergence at the

immediate post-dominator can be drawn as a tree (the red

Figure 10. Example of a Forward Copy transformation: (a) unstructured CFG; (b) CFG after duplicating B5; (c) structured CFG.

Figure 11. Relationship between Forward Copy and re-convergence at the immediate post-dominator: (a) unstructured CFG; (b)
result of Forward Copy/depth-first spanning tree; (c) re-convergence at the immediate post-dominator.

Wu et al. 177

tree in Figure 11(c)), where each path of the tree stands for

an execution path of the program. This red tree is also the

same as the CFG of Figure 11(b). This is not a coincidence

and can be generalized because they are both the depth-

first spanning trees of the original CFG. A simple proof

is like this: if all threads in a warp follow different paths,

which is the worst case of the execution, the warp would

diverge in every CFG node which is the same as traversing

the CFG in the depth-first order. Meanwhile, Forward

Copy duplicates all target node of the unstructured edges

in the depth-first order and finally no node (except the exit

node) has two or more parent nodes (otherwise, it is still

unstructured) and the transformed CFG becomes a binary

tree. Hence, Forward Copy, in general, can be used to

measure the worst case of dynamic code expansion of

immediate post-dominator re-convergence without run-

ning the program.

All of the above three transformations will cause static

code expansion since they insert new instructions into the

original program. In single instruction single data (SISD)

processors, static code expansion has disadvantages of

increased binary size and instruction cache footprint. This

code expansions is even more problematic for SIMD archi-

tectures because paths through duplicated blocks cannot be

executed in lock-step by threads in a warp since these

blocks use different PC values. Moreover, the cut transfor-

mation has to use several new variables to store flag values,

which introduces new register pressure. It needs to use

more conditional branches as well when exiting the loop,

which may cause more divergence in the GPU architecture

(see Section 2.2).

Only using the above three transformations is not suffi-

cient since program structure must also be maintained: such

as which basic blocks form a loop or the nesting level of a

control block. A data structure called a control tree (Much-

nick 1997) can provide this information, which basically

describes the components of all control flow patterns and

their nested structures. Figure 12(b) shows a CFG and its

corresponding control tree. It should be noted that all

unstructured control flow, such as subgraph fB1, B2,

B3g in Figure 12(b), are also included in the tree.

Including the control tree construction and the three pri-

mitive transformations, the process of transforming an

unstructured CFG to a structured CFG has four steps:

1. Build a control tree and identify unstructured branches

and some basic structured control flow patterns in the

CFG including if-then, if-then-else, self-loop, for-

loop and do-while loop,

2. Collapse the detected structured control flow pattern

into a single abstract node and update the control tree.

The aim of this step is to simplify the search space of

the following pattern matching steps.

3. If all of the children nodes of an unstructured node are

structured, use the three primitive transformations to

transform it into structured control flow. If the children

nodes still contain unstructured control flow, wait

until all children become structured. Otherwise, the

Figure 12. A complete example of unstructured to structured transformation (a) original CFG; (b) build the control tree; (c) collapses
the structured node and update the control tree; (d) Forward Copy transformation; (e) update the control tree; and (f) final result.

178 The International Journal of High Performance Computing Applications 26(2)

transformation would introduce more unstructured

parts into the CFG. For example, in Figure 10, edge

E2 must be transformed before edge E1.

4. Update the control tree to reflect the transformation. If

there is no unstructured part remaining, the process

finishes. Otherwise, go back to the second step to trans-

form the remaining unstructured parts.

Figure 12 shows all steps of transforming an unstruc-

tured CFG into a structured CFG. It first builds a control

tree and finds that subgraph B1, B2, B3 is unstructured

(Figure 12(b)). Second, it collapses the self-loop into a sin-

gle node and updates the control tree (Figure 12(c)). Third,

it uses Forward Copy to duplicate B3 (Figure 12(d)).

Finally, it updates the control tree and determines that there

are no more unstructured parts and the whole process is

completed (Figure 12(e)). Figure 12(f) is the final result.

This transformation is not only useful in characterizing

unstructured control flow as discussed above. It can also

be used in dynamic compilers which are used in heteroge-

neous systems. Since the support for unstructured control

flow in different GPU devices is different, this kind of

transformation allows the program to run on several differ-

ent back-ends which is very useful for large clusters com-

prised of different GPU backends.

4 Experimental evaluation

This section evaluates how often unstructured control flow

occurs in real GPU programs and how they may impact the

performance over a large collection of CUDA benchmarks

from the CUDA SDK 3.2,2 Parboil 2.0 (Impact Research

Group 2009), Rodinia 1.0 (Che et al. 2009), Optix SDK

2.1 (Parker et al. 2010) and some third-party applications.

The CUDA SDK contains a large collection of simple GPU

programs. Parboil benchmarks are compute intensive.

Rodinia’s collection is chosen to represent different types

of GPU parallel programs which are more complex than

those in the CUDA SDK. Optix SDK includes several ray

tracing applications. The third-party GPU applications used

include a 3D renderer called Renderer,3 a radiative trans-

port equation solver called mcrad (Fernando 2004), and a

Monte Carlo simulator called mcx (Fang and Boas 2009).

As for the compilation tools, NVCC 3.2 is used to com-

pile CUDA programs to PTX code. Optix SDK benchmarks

are running under Optix’s own execution engine. A GPU

compilation infrastructure, Ocelot 1.2.807 (Diamos et al.

2010), is used for several other purposes: back-end code

generation, PTX transformation, functional emulation,

trace generation and performance analysis.

4.1 Static characterization

The first set of experiments attempts to characterize the exis-

tence of certain types of control flow in existing CUDA

workloads by using the unstructured to structured transfor-

mations introduced in Section 3. The transformation is

implemented as a static optimization pass in Ocelot, and it

is applied to the PTX code of all benchmarks. The optimiza-

tion can detect unstructured control flow and classify it by

the type of transformations used (Cut, Backward Copy, or

Forward Copy). The correctness of the transformation is ver-

ified by comparing the output results of the original program

and the transformed program. Table 1 shows the number of

applications having unstructured control flow in four exam-

ined GPU benchmark suites. Out of the 113 applications

examined, 27 contain unstructured control flow, indicating

that, at the very least an unstructured to structured compiler

transformation is required to support general CUDA applica-

tions on all GPUs. It is also the case that more complex

applications are more likely to include unstructured control

flow. Almost half of the applications in the Rodinia and

Optix benchmark suites include unstructured control flow.

Table 2 shows the usage of different transformations. The

second column is the number of branch instructions in each

benchmark. The third to the fifth columns show the number

of times each transformation is used for every benchmark.

The statistics show that Backward Copy appears to be non-

existent in current workloads which follows the common

practice that programmers rarely write a loop with multiple

entries. Cut transformations are necessary in programs that

involve loops, but the shallow levels of nesting of GPU pro-

grams, especially those simple programs, makes this opera-

tion less common. Forward transformations are used most

often. Further analysis shows that short-circuiting is the main

trigger of these transformations. As explained in Section 2.2,

short-circuiting does not run efficiently on the GPU platform.

The sixth and seventh column of Table 2 is the static

code size of the benchmarks before and after the transfor-

mation. Static Code size is calculated by counting the

PTX instructions of the benchmark. Usually the larger its

code size is, the more complex control flow the program

may have and the more transformations it needs. Bench-

marks that have one Cut and zero Forward Copy, such

as path_trace and heightfield, show that the number of

instructions inserted by Cut is small. However, this is not

the case for the Forward Copy. In the benchmark mum-

mergpu, its code size is almost doubled by 26 Forward

Copy transformations. The code size increment caused

by Forward Copy depends on the size of the shared CFG

nodes that need to be duplicated. Column eight is the rela-

tive static code expansion. Figure 13 shows the code

Table 1. Existence of unstructured control flow in different GPU
benchmark suites.

Suite
Number of
Benchmarks

Number of benchmarks
with unstructured

control flow

CUDA SDK 56 4
Parboil 12 3
Rodinia 20 9
Optix 25 11
Total 113 27

Wu et al. 179

expansion of those benchmarks using at least one Forward

Copy with an average of 18.68%. For those benchmarks

having a large number of transformations, such as mum-

mergpu, mcx, and Renderer, the static code expansion is

significant.

Among all of the benchmarks, Renderer has far more

transformations than the rest. Other graphics benchmarks

(particles, Mandlebrot, Optix SDK suite) also have more

unstructured control flow on average. It is fair to say that

graphics applications have great potential to improve

Table 2. Unstructured to structured transformation statistics.

Benchmark
Branch

Instruction Cut
Forward

Copy
Backward

Copy
Old Code

Size
New Code

Size
Static Code

Expansion (%)
Transformation
Overhead (ms)

CUDA SDK
mergeSort 160 0 4 0 1914 1946 1.67 0.085
particles 32 0 1 0 772 790 2.33 0.067
Mandelbrot 340 6 6 0 3470 4072 17.35 3.000
eigenValues 431 0 2 0 4459 4519 1.35 0.113
PARBOIL
bfs 65 1 0 0 684 689 0.73 0.036
mri-fhd 163 1 0 0 1979 1984 0.25 0.193
tpacf 37 0 1 0 476 499 4.83 0.042
RODINIA
heartwall 144 0 2 0 1683 1701 1.07 0.072
hotspot 19 1 0 0 237 242 2.11 0.038
particlefilter_naive 29 3 5 0 155 203 30.97 0.115
particlfilter_float 132 2 4 0 1524 1566 2.76 0.108
mummergpu 92 2 26 0 1112 2117 90.38 1.056
srad_v1 34 0 1 0 572 595 4.02 0.031
Myocyte 4452 2 55 0 54,993 62,800 14.20 7.677
Cell 74 1 0 0 507 512 0.99 0.076
PathFinder 9 1 0 0 136 141 3.68 0.024
OPTIX
glass 157 0 7 0 4385 4892 11.56 0.412
julia 1634 14 22 0 14,097 18,191 29.04 4.509
mcmc_sampler 101 0 3 0 4225 4702 11.29 0.319
whirligig 143 0 8 0 4533 5303 16.99 5.663
whitted 173 0 6 0 5389 5841 8.39 0.334
zoneplate 297 0 3 0 3397 3400 0.09 0.073
collision 101 0 4 0 2585 2595 0.39 0.034
progressive

PhotonMap
127 0 4 0 3905 3960 1.41 0.077

path_trace 29 1 0 0 1870 1875 0.27 0.028
heightfield 46 1 0 0 1761 1771 0.57 0.097
swimmingShark 51 1 0 0 1990 2000 0.50 0.067
mcrad 415 11 10 0 4552 5238 15.07 1.491
Renderer 7148 943 179 0 70,176 111,540 58.94 105.160
mcx 178 0 9 0 2957 5527 86.91 2.489

Figure 13. Static code expansion of benchmarks using Forward Copy.

180 The International Journal of High Performance Computing Applications 26(2)

performance if unstructured control flow could be handled

more efficiently.

The ninth column lists the transformation time of each

benchmark. The overhead is basically proportional to the

number of taken transformations. Most of the benchmarks

uses less than 1 ms to finish the transformation. Only Ren-

derer takes more than 0.1 s because it has more than 8000

unstructured branches. Considering the fact that the trans-

formation is a one time investment and complex programs

usually run for a long time (e.g. tested ray tracing pro-

grams can run forever), this overhead is affordable even

if applied in runtime.

4.2 Dynamic characterization

4.2.1 Impact of IPDOM. In the absence of support for re-

convergence for unstructured control flow versus immediate

post-dominator, we use the functional emulator provided by

Ocelot to count the number of instructions executed due to

the lack of earlier re-convergence. For example, the instruc-

tions executed in the red circle of Figure 14. We perform

measurements over code segments that meet three require-

ments: (i) start with an unstructured branch; (ii) the threads

are divergent; (iii) ends with the immediate post-dominator

of the unstructured branch. The instructions satisfying above

three requirements can be optimized by re-converging at the

earlier point.

To find these instructions, we first determined the basic

blocks (CFG nodes) between an unstructured branch and its

immediate post-dominator by using our static transforma-

tion. These basic blocks might be dynamically expanded

at runtime (such as B3, B4, and B5 in Figure 14). Then,

we used the emulator to count the number of times these

basic blocks will run in a divergent warp. For example,

in Figure 14, B3 and B4 each run twice in the divergent

warp and B5 runs four times. Assuming each basic block

has one instruction for the simplicity of counting instruction

number, we can say at most eight instructions may miss the

early re-convergence (actual number of dynamic expanded

instructions is five, executed in time slots 7–11). Although

this method overestimates the performance degradation, the

overestimated part is limited to the initial execution of these

instructions. Taking Figure 14 as an example, the overesti-

mated part is time slots 4–6 during which B3, B4 and B5 are

executed for the first time.

Table 3 shows the upper limit of dynamic code expan-

sion for benchmarks using Forward Copy. Some bench-

marks are not included because the emulator cannot

correctly execute them yet. The results vary greatly. Four

simple benchmarks of CUDA SDK have very low values

because the unstructured part is executed infrequently or

warps do not diverge when executing them. However,

other benchmarks, such as Renderer and mcx, have a

significant value meaning the application repeatedly exe-

cutes these unstructured control flow. In this case, not

having earlier re-convergence will impact the perfor-

mance significantly. It is also interesting to notice that

benchmark tpacf has low static code expansion but high

dynamic code expansion, which means the unstructured

part is executed very frequently.

4.2.2 Performance evaluation of the transformation. In

this experiment, we compare the performance of bench-

marks listed in Table 3 before and after the non-structural

to structural transformation to explore its impact. In Figure

15, IPDOM uses IPDOM to re-converge those unstruc-

tured benchmarks, STRUCT first applies the proposed

transformation and then use IPDOM to re-converge. The

performance result shows that STRUCT is slightly worse

than IPDOM due to the execution of static code expansion.

The benchmarks such as mergeSort have no noticeable dif-

ference between two methods since they do not spent much

time in unstructured code as shown in Table 3 and do not

need to apply lots of transformations. IPDOM works over

1% better than STRUCT for the benchmarks such as Ren-

derer since they stayed in the unstructured part longer than

the other benchmarks.

5 Related work

SIMD architectures have been designed with basic support

for control flow since their large-scale deployment in the

1960s. Since that time, new designs have been incremen-

tally augmented with compiler-assisted hardware support

for non-nested and eventually all structured control flow.

These designs have culminated in support for all forms of

unstructured control flow without any static code expan-

sion since they allow arbitrary branches instead of being

restricted to the nested structured control flow. However,

to the best of the authors’ knowledge, all schemes employed

Figure 14. Example of measured dynamic code expansion
statistics

Wu et al. 181

in existing designs experience dynamic code expansion

when executing unstructured control flow. A recently pro-

posed technique, dynamic warp formation, introduced by

Fung et al. (2007) potentially addresses this problem. How-

ever, it requires fully associative comparisons across at least

all warps on a multi-processor that cannot be feasibly imple-

mented in modern power-limited designs.

ILLIAC IV (Bouknight et al. 1972), which is in general

considered to be the first large-scale SIMD supercomputer,

was designed around the concept of a control processor that

maintained a series of predicate bits, one for each SIMD

lane. Its instruction set could be used to set the predicate

bits to implement simple common structured control flow

such as if-then-else blocks and loops.

The primary limitation of a single predicate register is

its inability to handle programs with nested control flow.

In 1982 the CHAP (Levinthal and Porter 1984) graphics

processor introduced the concept of a stack of predicate

registers to address this problem. CHAP includes explicit

instructions for if, else, endif, do, while statements in the

high-level language. This is currently the most popular

method of supporting control flow on SIMD processors

and is also used by the AMD Evergreen and Intel GEN5

graphics processors.

To support unstructured control flow, a technique

referred to as immediate post-dominator re-convergence

was developed, which extends the concept of a predicate

stack to support programs with arbitrary control flow (Fung

et al. 2007). This is done by finding the immediate post-

dominator for all potentially divergent branches and insert-

ing an explicit re-converge instruction. During execution,

predicate registers are pushed onto the stack on divergent

branches and popped when re-convergence points are hit.

In order to resume execution after all paths have reached

the post-dominator, the program counter of the warp

executing the branch is adjusted to the instruction immedi-

ately after the re-converge point.

All of the previous techniques have been implemented

in commercial SIMD processors. Dynamic warp formation

is a technique originally described by Fung et al. (2007)

that increases the efficiency of immediate post-dominator

re-convergence by migrating threads between warps if they

are executing the same instruction. This scheme takes

advantage of the fact that most programs executed by GPUs

Table 3. Upper limit of dynamic code expansion.

Benchmark
Dynamic code expansion

area (number of instructions)
Original dynamic
instruction count

Dynamic code
expansion area (%)

Mandelbrot 86,690 40,756,133 0.21%
mergeSort 0 192,036,155 0.00%
particles 8 277,126,005 0.00%
eigenValues 7100 628,718,500 0.00%
heartwall 749,028 121,606,107 0.61%
mummergpu 11,947,451 53,616,778 22.28%
tpacf 2,082,509,458 11,724,288,389 17.76%
Myocyte 205,924 7,893,897 2.61%
Renderer 462,485,018 279,729,298 84.21%
mcx 13,928,549,604 20,820,693,588 66.90%

Figure 15. Dynamic instruction count before and after the transformation (normalized to IPDOM)

182 The International Journal of High Performance Computing Applications 26(2)

are SPMD programs where all threads in all warps begin

from the same program entry point. This makes it likely

that threads from different warps will be at the same PC

in the program at the same time. Fung et al. suggest adding

hardware support for detecting this case and dynamically

creating a new warp from a pool of threads at the same

PC. In cases with where warps have many disabled threads,

this can lead to significant performance improvements.

However, the power and complexity of the hardware support

required to perform fully associative comparisons across

active warp PCs every cycle coupled with changes to the

register file structure may potentially outweigh the perfor-

mance advantages. Like post-dominator re-convergence,

this scheme supports all program control flow. In the new

extension of the dynamic warp formation, Fung et al. pro-

pose the concept of Likely-Convergence Points (Fung and

Aamodt 2011), which is basically the probable earlier re-

convergence points, without giving a practical approach to

find these points. They found speedup when iterating

Likely-Convergence Points with IPDOM and their dynamic

warp formation framework.

Very recently, Diamos et al. (2011) for the first time

systematically addressed the problem of unstructured con-

trol flow in SIMD processors by replacing IPDOM with a

technique called thread frontier, which includes a static

algorithm to find earlier re-convergence points and a hard-

ware framework to let the program re-converge at these

points. To get its best performance which is 1.5–633%
speedup over IPDOM, their method relies on a specific

scheduling order which may not be possible to get statically

and custom hardware support. Their findings prove the

argument of this work that this is an area worth more atten-

tion and research investment.

As to the area of GPU application characterization,

Kerr et al (2009) and Goswami et al. (2010), respectively,

characterized a large number of GPU benchmarks by using

a wide range of metrics covering control flow, data flow, par-

allelism, and memory behaviors. Goswami et al. (2010) also

researched the similarities between different benchmarks.

Their studies are valuable for future GPU compilation and

microarchitecture design. Our work differs from theirs in that

we target the execution of unstructured control flow in GPUs

and provides insight, characterizations, and suggestions for

future GPU designs.

6 Conclusions

This work addresses the problem of running arbitrary pro-

grams on any GPU device. The current state of practice is

not satisfactory since the support of unstructured control

flow is very poor. Some GPU devices do not support

unstructured control flow at all, while others do not support

it efficiently because they will miss the earliest re-converge

point. We propose an IR level control flow transformation

that can turn an unstructured control flow into a structured

one. This transformation is used to characterize the exis-

tence of unstructured control flow in a large number of

benchmarks. The result verifies the importance of the prob-

lem. Further, the transformation is also useful in a dynamic

compiler used in heterogeneous systems.

In the future, we focus on automatically finding earliest

re-convergence points in an unstructured control flow

graph by using different compiler and hardware techniques

to improve execution efficiency of arbitrary programs on

GPUs. Moreover, we are also considering a structured to

unstructured transformation. The motivation of this reverse

transformation is that if we have the technique to re-

converge at the earliest point, the performance of an

unstructured CFG is better than its functionally equivalent

structured CFG (see Section 2.3). The process is simple: it

continuously finds identical subgraphs and then merges

them. The difficulty here is searching identical CFG sub-

graphs which needs to compare the register name and poin-

ter value of all of the instruction operands.

Acknowledgements

We would like to thank Andrew Kerr, Tri Pho and Naila

Farooquie for helping us set up the experiments. Tips from

the anonymous referees also greatly helped shape this

paper.

Funding

This research was supported by the NSF (grant numbers

IIP-1032032, CCF-0905459 and OCI-0910735), by Logic-

Blox Corporation, and equipment grants from NVIDIA

Corporation.

Notes

1. See https://keeneland.gatech.edu/.

2. The immediate post-dominator of a branch in a CFG, infor-

mally, is the node through which all paths from the branch pass

and which does not post-dominate any other post dominator.

3. See http://users.softlab.ece.ntua.gr/*ttsiod/.

References

AMD (2009) Compute Abstraction Layer (CAL) Technology:

Intermediate Language (IL), 2.0 edition. AMD Corporation.

AMD (2010) Evergreen Family Instruction Set Architecture

Instructions and Microcode. AMD Corporation.

Bouknight W, Denenberg S, McIntyre D, Randall J, Sameh A and

Slotnick D (1972) The Illiac IV system. Proceedings of the

IEEE 60: 369–388.

Che S, Boyer M, Meng J, Tarjan D, Sheaffer JW, Lee S-H, (2009)

Rodinia: A benchmark suite for heterogeneous computing. In

IEEE International Symposium on Workload Characteriza-

tion, 2009 (IISWC 2009), vol. 9, pp. 44–54.

Cooper KD, Harvey TJ and Kennedy K (2001) A Simple, Fast

Dominance Algorithm. Technical report.

Diamos G, Ashbaugh B, Maiyuran S, Wu H, Kerr A and Yala-

manchili S (2011) SIMD re-convergence at thread frontiers.

In Proceedings of the 44th Annual International Symposium

on Microarchitecture.

Diamos G, Kerr A, Yalamanchili S and Clark N (2010) Ocelot: A

dynamic compiler for bulk-synchronous applications in

Wu et al. 183

heterogeneous systems. In Proceedings of PACT’10. New

York: ACM Press, pp. 353–364.

Dominguez R, Schaa D and Kaeli D (2011) Caracal: Dynamic

translation of runtime environments for gpus. In Proceed-

ings of the Fourth Workshop on General Purpose Process-

ing on Graphics Processing Units. New York: ACM Press,

pp. 5–11.

Fang Q and Boas D (2009) Monte Carlo simulation of photon

migration in 3D turbid media accelerated by graphics process-

ing units. Optics express 17: 20178–20190.

Fernando R (2004) GPU Gems: Programming Techniques,

Tips and Tricks for Real-Time Graphics. Pearson Higher

Education.

Ferrante J, Ottenstein K and Warren J (1987) The program depen-

dence graph and its use in optimization. ACM Transactions on

Programming Languages and Systems 9: 319–349.

Fung W and Aamodt T (2011) Thread block compaction for effi-

cient simt control flow. In 2011 IEEE 17th International Sym-

posium on High Performance Computer Architecture (HPCA).

IEEE, pp. 25–36.

Fung WWL, Sham I, Yuan G and Aamodt TM (2007) Dynamic

warp formation and scheduling for efficient GPU control flow.

In MICRO’07: Proceedings of the 40th Annual IEEE/ACM

International Symposium on Microarchitecture. Washington,

DC: IEEE Computer Society, pp. 407–420.

Goswami N, Shankar R, Joshi M and Li T (2010) Exploring

GPGPU workloads: Characterization methodology, analysis and

microarchitecture evaluation implications. In 2010 IEEE Inter-

national Symposium on Workload Characterization (IISWC).

IEEE, pp. 1–10.

Impact Research Group (2009) Parboil benchmark suite. http://

impact.crhc.illinois.edu/parboil.php.

Intel (2009) Intel G35 Express Chipset Graphics Controller Pro-

grammers Reference Manual.

Kerr A, Diamos G and Yalamanchili S (2009) A characterization

and analysis of PTX kernels.

Lattner C and Adve V (2004) LLVM: A compilation framework

for lifelong program analysis and transformation. In Proceed-

ings of the 2004 International Symposium on Code Generation

and Optimization, pp. 75–86.

Levinthal A and Porter T (1984) Chap - a SIMD graphics proces-

sor. SIGGRAPH Computer Graphics 18(3): 77–82.

Matsuoka S (2008) The road to TSUBAME and beyond.

In High Performance Computing on Vector Systems 2007,

pp. 265–267.

Muchnick S (1997) Advanced Compiler Design Implementation.

Morgan Kaufmann Publishers.

NVIDIA (2009) NVIDIA Compute PTX: Parallel Thread Execu-

tion, 2.1 edition. Santa Clara, CA: NVIDIA Corporation.

Parker S, Bigler J, Dietrich A, Friedrich H, Hoberock J, Luebke D,

et al. (2010) OptiX: a general purpose ray tracing engine. ACM

Transactions on Graphics 29(4): 1–13.

Rixner S, Dally W, Kapasi U, Khailany B, López-Lagunas A,

Mattson P, et al. (1998) A bandwidth-efficient architecture for

media processing. In Proceedings of the 31st Annual Interna-

tional Symposium on Microarchitecture. Los Alamitos, CA:

IEEE Computer Society Press, pp. 3–13.

Zhang F and D’Hollander EH (2004) Using hammock graphs to

structure programs. IEEE Transactions on Software Engineer-

ing XX: 231–245.

Author’s biographies

Haicheng Wu is a PhD student in the Computer Architecture

and Systems Lab at the Georgia Institute of Technology,

under the direction of Professor Sudhakar Yalamanchili.

He received his BS in Electrical Engineering from Shanghai

Jiao Tong University in 2006 and his MS in Electrical and

Computer Engineering from the Georgia Institute of Tech-

nology in 2009. He used to focus on the dynamic thread

management in the mainframe computers. Currently, he is

moving and extending his prior research results to the het-

erogeneous architectures.

Gregory Diamos is a PhD student in the Computer Archi-

tecture and Systems Lab at the Georgia Institute of Tech-

nology, under the direction of Professor Sudhakar

Yalamanchili. He received his BS and MS in Electrical

Engineering from the Georgia Institute of Technology in

2006 and 2008, respectively, where he focused on architec-

ture techniques for controlling PVT variations. His current

research interests follow the industry shift from ILP to

many core architectures, where mounting communication

requirements place increasing demands on on-chip inter-

connection and the ability to tightly integrate heteroge-

neous architectures offers the potential for dramatic

improvements in efficiency at the cost of increased design

complexity; his research is directed toward maintaining this

efficiency while reducing design complexity.

Jin Wang is pursuing her PhD under the direction of Professor

Sudhaka Yalamanchili in Georgia Institute of Technology.

She received her BS in Electrical Engineering from Shanghai

Jiao Tong University in 2007 and her MS in Electrical and

Computer Engineering from the Georgia Institute of Technol-

ogy in 2010. Her research interests are simulator and compi-

ler support for heterogeneous computer architecture.

Si Li is a PhD student at Georgia Institute of Technology

working in the area of computer architecture. His research

interests involve the impact of on-chip interconnect on the

unique memory demand and cache systems in the mas-

sively parallel environment of general purpose GPU archi-

tecture. His other interests include power and performance

in the domain of computer architecture.

Sudhakar Yalamanchili earned his PhD degree in Electrical

and Computer Engineering in 1984 from the University of

Texas at Austin. Until 1989 he was a research scientist at

Honeywell’s Systems and Research Center in Minneapolis.

He joined the ECE faculty at Georgia Tech in 1989 where

he is now a Joseph M. Pettit Professor of Computer

184 The International Journal of High Performance Computing Applications 26(2)

Engineering. He is the author of VHDL Starters Guide (2nd

edition, Prentice Hall, 2004), VHDL: From Simulation to

Synthesis (Prentice Hall, 2000), and co-author with J.

Duato and L. Ni of Interconnection Networks: An Engi-

neering Approach (Morgan Kaufman, 2003). His current

research foci lie in addressing the software challenges of

heterogeneous architectures and solutions to power and

thermal issues in many core architectures and data centers.

Since 2003 he has been a Co-Director of the NSF Industry

University Cooperative Research Center on Experimental

Computer Systems at Georgia Tech. He continues to con-

tribute professionally with service on editorial boards and

conference program committees. His most recent service

includes General Co-Chair of the 2010 IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO) and Pro-

gram Committees for the 2011 International Symposium on

Networks on Chip (NOCS) and 2010 IEEE Micro: Top

Picks from Computer Architecture Conferences.

Wu et al. 185

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

