
Optimizing Data Warehousing Applications for GPUs Using Kernel Fusion/Fission

Haicheng Wu∗, Gregory Diamos†, Jin Wang∗, Srihari Cadambi‡, Sudhakar Yalamanchili∗, Srimat Chakradhar‡
∗Sch. of ECE, Georgia Institute of Technology, Atlanta, GA. {hwu36,jin.wang,sudha}@gatech.edu

†Nvidia Research, Santa Clara, CA. gdiamos@nvidia.com
‡NEC Laboratories America, Princeton NJ. {cadambi,chak}@nec-labs.com

Abstract—
Data warehousing applications represent an emergent appli-

cation arena that requires the processing of relational queries
and computations over massive amounts of data. Modern
general purpose GPUs are high core count architectures that
potentially offer substantial improvements in throughput for
these applications. However, there are significant challenges
that arise due to the overheads of data movement through the
memory hierarchy and between the GPU and host CPU. This
paper proposes a set of compiler optimizations to address these
challenges.

Inspired in part by loop fusion/fission optimizations in
the scientific computing community, we propose kernel fusion
and kernel fission. Kernel fusion fuses the code bodies of
two GPU kernels to i) eliminate redundant operations across
dependent kernels, ii) reduce data movement between GPU
registers and GPU memory, iii) reduce data movement between
GPU memory and CPU memory, and iv) improve spatial and
temporal locality of memory references. Kernel fission parti-
tions a kernel into segments such that segment computations
and data transfers between the GPU and host CPU can be
overlapped. Fusion and fission can also be applied concurrently
to a set of kernels. We empirically evaluate the benefits
of fusion/fission on relational algebra operators drawn from
the TPC-H benchmark suite. All kernels are implemented in
CUDA and the experiments are performed with NVIDIA Fermi
GPUs. In general, we observed data throughput improvements
ranging from 13.1% to 41.4% for the SELECT operator and
queries Q1 and Q21 in the TPC-H benchmark suite. We present
key insights, lessons learned, and opportunities for further
improvements.

Keywords-data warehousing; relational algebra; GPU; com-
piler; optimization;

I. INTRODUCTION

The use of programmable GPUs has appeared as a po-
tential vehicle for high throughput implementations of data
warehousing applications with an order of magnitude or
more performance improvement over traditional CPU-based
implementations [1], [2]. This expectation is motivated by
the fact that GPUs have demonstrated significant perfor-
mance improvements for data intensive applications such as
molecular dynamics [3], physical simulations [4] in science,
options pricing [5] in finance, and ray tracing [6] in graphics.
It is also reflected in the emergence of accelerated cloud
infrastructures for the Enterprise such as Amazon’s EC-2
with GPU instances [7].

However, the application of GPUs to the acceleration
of data warehousing applications that perform relational

CPU (Multi Core)

2-8 Cores

Main MEM

~128 GB

GPU

~512 Cores

GPU MEM

~6 GB

5
-2

0
G

B
/s

PCIe

4-16GB/s

8
-3

3
0

G
B

/s

Figure 1: Memory hierarchy bottlenecks for GPU accelerators

queries and computations over massive amounts of data
is a relatively recent trend [8] and there are fundamental
differences between such applications and compute-intensive
HPC applications. One of the factors that make the use
of GPUs challenging for data warehousing applications is
efficient GPU implementations of basic database primitives,
e.g., relational algebra operators. A second challenge that
is fundamental to the current architecture of GPU-based
systems is the set of limitations imposed by the CPU-GPU
memory hierarchy, as shown in Figure 1. Internal to the GPU
there exists a memory hierarchy that extends from GPU core
registers, through on-chip shared memory, to off-chip global
memory. However, the amount of memory directly attached
to the GPUs is limited, forcing transfers from the next level
which is the host memory that is accessed in most systems
via PCIe channels. The peak bandwidth across PCIe can be
up to an order of magnitude or more lower than GPU local
memory bandwidth. Data warehousing applications must
stage and move data throughout this hierarchy. He et al.
observed that 15-90% of the total execution time is spent
in moving data between CPU and GPU when accelerating
database applications [2]. Consequently there is a need for
techniques to optimize the implementations of data ware-
housing applications considering both the GPU computation
capabilities and system memory hierarchy limitations.

To address the data movement overheads described above,
we propose and demonstrate the utility of kernel fusion and
kernel fission in optimizing performance of the memory hi-
erarchy. Specifically, kernel fusion is analogous to traditional
loop fusion and reduces transfers of temporary data through
the memory hierarchy and reduces the data footprint of each
kernel. Such transformations also increase the textual scope

of compiler optimizations. Kernel fission is a transformation
explicitly designed to partition data parallel kernels into
smaller units such that data transfers between host and GPU
can be fully overlapped. Both fusion and fission can be
applied concurrently to the set of kernels. In this paper,
we henceforth refer to kernel fusion and kernel fission as
“fusion” and “fission” respectively.

This paper demonstrates the impact of kernel fusion
and fission for optimizing data movement in patterns of
interacting kernels found in the TPC-H benchmark suite.
The goal of this paper is to provide insight into how and
why fusion/fission works with quantitative measurements
from actual implementations. The fusion and fission trans-
formations are manually performed on CUDA implementa-
tions of operators mimicking a compiler-based optimization.
However, the CUDA kernels themselves are not manually
optimized after fusion/fission. Thus we expect that results
reported in this work reflect the potential of the automated
implementation within our compiler framework which is
under development.

II. RELATIONAL ALGEBRA OPERATORS

Relational algebra (RA) operators can express the high
level semantics of an application in terms of a series of
bulk operations on relations. These are the building blocks
of modern relational database systems. Table I lists the com-
mon RA operators and a few simple examples. In addition
to these operators, data warehousing applications perform
arithmetic computations ranging from simple operators such
as aggregation to more complex functions such as statistical
operators used for example in forecasting or retail analytics.
Finally, operators such as SORT and UNIQUE are required
to maintain certain ordering relations amongst data elements
or relations. Each of these operators may find optimized
implementations as one or more CUDA kernels. All of these
kernels are potential candidates for fusion/fission. Demon-
strating that this is indeed the case and understanding and
quantifying the advantages of fusion/fission is the goal of
this paper. It should be noted that the kernel mentioned
here is different from the concept of CUDA kernel in a way
that one operator kernel may have more than one CUDA
kernel depending on its implementation.

A. Common RA Kernel Combinations

TPC-H [9] is a decision support benchmark suite that
is widely used today. It is comprised of 22 queries of
varying degrees of complexity. The queries analyze relations
between customers, orders, suppliers and products using
complex data types and multiple operators on large volumes
of randomly generated data sets.

We perform a detailed analysis of the TPC-H queries to
identify commonly occurring combinations of kernels. These
combinations are potential candidates for fusion/fission.
From the 22 queries in TPC-H, Figure 2 illustrates the

UNION x = {(3,a), (4,a), (2,b)}, y = {(0,a), (2,b)}
union x y → {(3,a), (4,a), (2,b), (0,a)}

INTERSECTION x = {(3,a), (4,a), (2,b)}, y = {(0,a), (2,b)}
intersection x y → {(2,b)}

PRODUCT x = {(3,a), (4,a)}, y = {(True,2)}
product x y → {(3,a,True,2), (4,a,True,2)}

DIFFERENCE x = {(3,a), (4,a), (2,b)}, y = {(4,a), (3,a)}
difference x y → {(2,b)}

JOIN x = {(3,a), (4,a), (2,b)}, y = {(2,f), (3,c)}
join x y → {(3,a,c), (2,b,f)}

PROJECTION x = {(3,True,a), (4,True,a), (2,False,b)}
project [0,2] x → {(3,a), (4,a), (2,b)}

SELECT x = {(3,True,a), (4,True,a), (2,False,b)}
select [field.0==2] x → (2,False,b)

Table I: Examples of RA operators (the first field is the “key”)

A1

SELECT

SELECT

SELECT

…
A1

JOIN

JOIN

JOIN

…

A2

A3

An

A1

SELECT SELECT

A1

JOIN

A2

SELECT

A1

SELECT

A2

SELECT

JOIN

A1

SELECT

AGGREGA

TION

A1

ARITH

AGGREGA

TION

PROJECT

A1

JOIN

A2

ARITH

(a) (b)

(c)

(d) (e)

(f)

(g) (h)

Figure 2: Common operator combinations to fuse.

frequently occurring patterns of operators. In the figure,
(a) is a sequence of back-to-back SELECT operators that
perform a filtering operation, for instance, of a date range,
(b) is a sequence of JOIN operations that create a large
table consisting of multiple fields, (c) represents the case
when different SELECT operators need to filter the same
input data, (d) and (e) are examples that perform SELECT or
arithmetic operators with two fields generated by a JOIN, (f)
corresponds to the JOIN of two small selected tables, (g) per-
forms AGGREGATION on selected data and (h) is a com-
mon computing pattern, for example, the total discounted
price of a set of items using

∑
(1 − discount) × price.

PROJECT in (h) discards the source of the calculation and
only retains the result. The above patterns can be further
combined to form larger patterns that can be fused. For
example, (e) can generate the input of (h). We will use
Figure 2(a) as an example to explain the benefits and
motivation of kernel fusion and kernel fission. In particular,
we observe that SELECT occurs very often in these patterns.
Therefore, we first focus our efforts in the SELECT operator.

Our work utilizes the optimized CUDA implementations
of RA kernels from Diamos et al. [10] which is based on
partitioning algorithms into stages. Figure 3 shows the four
stages of the SELECT operator. The first stage partitions the
input data into smaller chunks, each of which is handled by
one Cooperative Thread Array (CTA) [11]. In the second
stage, the threads in each CTA filter elements in parallel.
Next, the unmatched elements are discarded and the rest

CTA0

CTA1

CTA2

CTA3

CTA0

CTA1

CTA2

CTA3

GPU MEM

Unmatched
element

Matched
element

Partition Filter Buffer Gather

GPU CORE GPU MEM

1
st

 CUDA Kernel: Filter 2
nd

 CUDA Kernel: Gather

Figure 3: Selection in GPUs

CPU 2 quad-core Xeon E5520 @ 2.27GHz

Memory 48 GB

GPU 1 Tesla C2070 (6GB GDDR5 memory)

OS Ubuntu 10.04 Server

GCC 4.4.3

NVCC 4.0

Table II: Experiment Environment

are buffered into an array. Finally, in the fourth stage, the
scattered, matched results are gathered together in the GPU
main memory. A global synchronization is needed before
the gather step so that the filtered results can determine their
correct position in the final array. Thus, the first three stages
are implemented in one CUDA kernel and the final gather
stage is in a second CUDA kernel.

We first quantify the raw GPU advantage and then address
the impact of the PCIe bandwidth bottleneck. Table II
lists the experimental environment used to generate the
results reported in this paper. Figure 4(a) illustrates the
relative performance of a basic SELECT operator between
an NVIDIA C2070 GPU (PCIe transfer time excluded) and
a dual quad-core CPU, the latter using 16 CPU threads to
parallelize the operation. This is performed over random
32-bit integers. The parameters listed in the figure (10%,
50%, 90%) indicate the fraction of data selected from the
inputs. The top three lines correspond to the GPU and
the bottom three correspond to the CPU performance. On
average, the GPU implementation is 2.88x, 8.80x and 8.35x
faster respectively for 10%, 50% and 90%. The figure also
shows that the less data selected, the better performance on
both the GPU and CPU due to the fact that less result data
need to be written back. Other RA operators have the similar
speedup when executed in GPU.

The PCIe bandwidth, as measured by using the scaled
bandwidthTest of NVIDIA CUDA SDK 4.0 is shown in
Figure 4(b) and is much smaller than its theoretical value
(8GB/s) due to various hardware and software overheads.
Pinned memory (memory that cannot be swapped to disk)
exhibits higher bandwidth but when the data size becomes
large, its advantage reduces because of the lower OS perfor-
mance caused by large amount of pinned memory.

0

1

2

3

4

5

6

7

0 100 200 300 400

B
an

d
w

id
th

 (G
B

/s
)

Number of Elements (million)

CPU WR GPU (PINNED)
CPU WR GPU (PAGED)
CPU RD GPU (PINNED)
CPU RD GPU (PAGED)

0

5

10

15

20

25

0 100 200 300 400

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Number of Elements (million)

GPU 10% GPU 50%

GPU 90% CPU 10%

CPU 50% CPU 90%

(a) (b)

Figure 4: (a) The Performance of SELECT (GPU vs. CPU); (b)
PCIe 2.0 bandwidth Measurement

4 5 61 2 3

+
Kernel A

Kernel B

Fused Kernel

5 7 9 2 4 6

-

3 3 3

4 5 61 2 3

+/-

2 4 6

3 3 3

A1: A2:

A3:

A1: A2: A3:

(a) (b)

Figure 5: Example of kernel fusion

CTA0

CTA1

CTA2

CTA3

CTA0

CTA1

CTA2

CTA3

GPU MEM GPU MEM

CTA0

CTA1

CTA2

CTA3

Unmatched
element

Completely
Matched
element

Partially
matched
element

Partition Filter1 Buffer GatherFilter2

GPU CORE

1
st

 CUDA Kernel: Filter 2
nd

 CUDA Kernel: Gather

Figure 6: Fused Back-to-back Selection
From this simple experiment we observe that the GPU

computational throughput rates are much higher than what
the PCIe bandwidth will support. While the GPU compute
capacity can maintain a high data rate of up to 20 GB/s for
SELECT (Figure 4(a)), the PCIe bandwidth (Figure 4(b))
can effectively only supply data at a 2X-4X slower rate.
Thus GPU capacity cannot be fully utilized. Gregg et al.
provide a detailed analysis of this phenomena [12].

III. KERNEL FUSION

Kernel fusion is designed to reduce the impact of the
limited PCIe bandwidth. Figure 5 is an example of kernel
fusion. Figure 5(a) shows two dependent kernels - one for
addition and one for subtraction. After fusion, one single
functionally equivalent new kernel (Figure 5(b)) is created.
The new kernel directly reads in three inputs and produces
the same result. Figure 6 illustrates the fusion of two back-
to-back SELECT operations on the GPU. Compared to
Figure 3, a second filter stage is inserted after the first filter
stage in the original kernel to compute the second SELECT
operation. The remaining stages remain the same.

A. Benefits of Kernel Fusion

Kernel Fusion has six benefits as listed below (Figure 7).
The first four stem from creating a smaller data footprint

input1

result1
input2

result2

CPU

MEM

GPU

MEM

A1 A2

Temp A3

A1

A2

A3

G
P

U
 M

E
M

Kernel A

A1 A2

A3

Kernel B

Result

A1 A2 A3

Fused Kernel
A , B

Result

Temp

G
P

U
 M

E
M

(a)

(b)

Kernel A Kernel B

Fused Kernel

A&B

(d)

GPU

temp

GPU

temp Result

GPU

Result

temp

A1 A2 A3

A1 A2 A3

(c)

(e)

s1 s2 s3 s1 s2 s4

Kernel A Kernel B

s1 s2 s3

Fused Kernel

A&B

s4

Fused
Kernel
A, B

Kernel A Kernel B

O
p

tim
iz

a
tio

n
s

(f)

(d)

A1 A1

A1

Figure 7: Benefits of kernel fusion: (a) reduce data transfer; (b)
store more input data; (c) less GPU Memory access; (d) improve
temporal locality; (e) eliminate common stages; (f) larger compiler
optimization scope

through fusion, while the other two relate to increasing the
compiler’s optimization scope.

Smaller Data Footprint results in benefits:
Reduction in PCIe Traffic: Since kernel fusion produces

a single fused kernel, there is no intermediate data (Fig-
ure 7(a)). In the absence of fusion, if the intermediate data
is larger than the relatively small GPU memory, or if its size
precludes storing other required data, the intermediate data
will have to be transferred back to the CPU for temporary
storage incurring significant data transfer performance over-
heads. For example, if kernels generating A3 in Figure 5(a)
need most of the GPU memory, the result of the addition
has to be transfered to the CPU memory, and subsequently
transfered back to the GPU before the subtraction can be
executed. Fusion avoids this extra round trip data movement.

Larger Input Data: Consider very large data sets, e.g.,
10X the size of GPU memory. Several transfers will have to
be made between the CPU and GPU memories to process
all of the data. If intermediate data does not have to reside
on the GPU (as a result of kernel fusion), more memory is
available to store input data on the GPU which can lead to
a smaller number of overall transfers between the GPU and
CPU (Figure 7(b)). This benefit grows as the applications
working set size grows.

Reduction in GPU Global Memory Accesses: Kernel fu-

Statement Inst # Inst #
(O0) (O3)

not fused if (d<THRESHOLD1) 5×2 3×2
if (d<THRESHOLD2)

fused if (d<THREASHOLD1 10 3
&& d<THREADSHOLD2)

Table III: The impact of kernel fusion on compiler optimization

sion also reduces data movement between the GPU device
and its offchip main memory (Figure 7(c)). Fused kernels
store the intermediate data in GPU registers (shared memory
or cache), which can be accessed much faster than the
offchip memory. Kernels which are not fused have a larger
cache footprint necessitating more off-chip memory access.

Temporal Data Locality: Kernel fusion can also reduce
array traversal overhead and brings data locality benefits.
The fused kernel often needs to access every array element
once while kernels not fused need to perform accesses in
each kernel, i.e., multiple times (Figure 7(d)). Moreover,
fused kernels make better use of the cache, but kernels that
are not fused may have to access off-chip GPU memory if
the data revisited across kernels is flushed.

Larger Optimization Scope creates a larger body of code
that the compiler could optimize and brings two benefits:

Common Computation Elimination: If two kernels are
fused, the common stages of computations are sometimes
redundant and can be avoided. For example, the original two
kernels in Figure 7(e) both have stages S1 and S2 which need
to be executed only once after fusion. As for the SELECT
operator, the fused kernel only needs one partition, buffer
and gather stage (Figure 6).

Improved Compiler Optimization Benefits: When two
kernels are fused, there are larger bodies of code which
is advantageous for almost all classic compiler optimiza-
tions such as instruction scheduling, register allocation, and
constant propagation. These optimizations can speedup the
overall performance (Figure 7(f)). Table III compares the
speedup of using O3 flag to optimize before and after fusion
for a very simple, illustrative example. Without fusion, the
two filter operations are performed separately in their own
kernels (row 1, column 2). After fusion the two statements
occur in the same kernel and are subject to optimization
(row 2, column 2). The third and fourth columns show the
number of corresponding PTX instructions produced by the
compiler when using different optimization flags. Before
optimization, the fused kernel has 5 more instructions than
without fusion (10 vs. 5). Using compiler optimizations
without fusion can reduce 40% instruction count (from 5 to
3), while optimizing a fused kernel achieves a higher 70%
instruction reduction (10 down to 3). This simple example
indicates that significant reduction in instruction counts are
possible when applied to larger code segments.

In data warehousing applications, there are opportunities
to apply kernel fusion across queries since RA operators
from different queries can be fused. Further, fusion can

be extended across multiple kernels, for example a chain
of SELECT operators. In this case only one gather stage
is needed. Thus the benefits increase with the number of
kernels fused. However, the extent to which kernels can be
fused is not clear since kernel fusion does increase register
pressure. This analysis is the subject of ongoing work.

B. Measurements With Kernel Fusion

This section uses back-to-back SELECT operators as
an example to demonstrate the benefits of kernel fusion
described in the previous section. Three methods of run-
ning the SELECTs are evaluated: with round trip, without
round trip, and fused. With round trip runs two SELECTs
separately transferring the input data from the CPU to the
GPU and the result data back to the CPU for each SELECT
operation. Thus, this method needs to transfer data via PCIe
four times for two SELECTs. Without round trip is similar
except that it retains the intermediate result generated by
the first SELECT in the GPU main memory. The third
method, fused, copies the input to the GPU, launches a
single fused kernel for SELECT, and copies the result back
to the CPU. In practice, With round trip is very inefficient,
but it has to be used when there is insufficient space on
the GPU for storing the intermediate results of the executed
kernels. Unless mentioned explicitly, all the SELECTs from
this section onwards filter 50% of the input elements. Thus
two back-to-back SELECTs keep 25% of the original data.
Performance is measured in terms of the data throughput that
can be achieved. The input data to all three methods are still
randomly generated 32-bit integers representing compressed
row data.

Figure 8(a) compares the performance of these three meth-
ods. On average, the throughput of fused is 49.9% larger
than with round trip and 6.2% larger than without round trip.
Its main advantage over with round trip is that large PCIe
transfer times are avoided. It is better than without round trip
because traversals to GPU memory are avoided. When only
considering the GPU computation, fused is 79.9% better
than without round trip on average (Figure 8(b)).

Figure 9 breaks down the execution time of the three
methods into three parts: input/output time (the time to
transfer the initial input and final result between CPU and
GPU), round trip time (the time to transfer the intermediate
temporary result) and the computation time taken by GPU
device. The figure shows that the PCIe time dominates
the total execution time no matter which method is used.
Comparing three methods, the input/output time is the same
for all three methods since they transfer the same amount
of data. The round trip time, which causes the difference
between without round trip and with round trip, is 54.0%
of total time of with round trip and can be eliminated by
kernel fusion. The difference between without round trip and
fused represents the reduction in computation due to fusion.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 100 200 300 400

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Number of Elements (million)

fusion

w/o round trip

w/ round trip

0

2

4

6

8

10

12

14

16

18

0 100 200 300 400

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Number of Elements (million)

fused

w/o round trip

(a)

(b)

Figure 8: (a) Performance comparison between with round trip,
without round trip, and fused; (b) Computation part comparison
between without round trip and fused.

0

0.2

0.4

0.6

0.8

1

1.2

w
/
ro

u
n

d
 t

ri
p

w
/o

 r
o

u
n

d
 t

ri
p

fu
s

e
d

w
/
ro

u
n

d
 t

ri
p

w
/o

 r
o

u
n

d
 t

ri
p

fu
s
e
d

w
/
ro

u
n

d
 t

ri
p

w
/o

 r
o

u
n

d
 t

ri
p

fu
s

e
d

w
/
ro

u
n

d
 t

ri
p

w
/o

 r
o

u
n

d
 t

ri
p

fu
s

e
d

4,194,304 205,520,896 415,236,096 AVE

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Number of Elements

temp data round trip computation input/output

Figure 9: the breaking down execution time with different number
of elements (normalized to with round trip)

0

0.2

0.4

0.6

0.8

1

U
N

F
U

S
E

D

F
U

S
E

D

U
N

F
U

S
E

D

F
U

S
E

D

U
N

F
U

S
E

D

F
U

S
E

D

U
N

F
U

S
E

D

F
U

S
E

D

 4,194,304 205,520,896 415,236,096 AVE

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

Numer of Elements

gather 1 gather 2 filter 1
filter 2 fused gather fused filter

Figure 10: Breakdown of the compute part (normalized to the
unfused execution time.)

Figure 10 further breaks down the computation time into
the time taken by each CUDA Kernel: filter (including
partition, filter and buffer of Figure 6) and gather. On
average, the fused filter is 1.57x faster than using separate
filters and fused gather is 3.03x faster than separate gathers.
Benefits 3–6 of the previous section is responsible for the
improvement with kernel fusion.

0

5

10

15

20

0 100 200 300 400

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Number of Elements (million)

fusion 3 SELECTs
no fusion 3 SELECTs
fusion 2 SELECTs
no fusion 2 SELECTs

0

5

10

15

20

0 100 200 300 400

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Number of Elements (million)

fusion (10%) no fusion (10%)
fusion (90%) no fusion (90%)

(a) (b)

Figure 11: (a) Sensitivity to the number of kernels to fuse; (b)
Sensitivity to the data selection rate

Figure 11(a) checks the sensitivity of kernel fusion to the
number of fused kernels by comparing the GPU performance
of fusing three versus two SELECTs. On average, fusing
three SELECTs achieves a 2.35x larger throughput while
fusing two kernels achieves 1.80x.

Last, Figure 11(b) records the sensitivity of the perfor-
mance improvement to the percentage of the elements that
are selected. The figure shows that the benefits of kernel
fusion increase with the fraction of data selected. The reason
is that data movement optimization has a more drastic effect
when there is more data.

C. Automating Fusion

This section addresses some of the algorithmic require-
ments of fusion. The described automation process is a
domain specific approach that is based on the knowledge
of the detail behavior of each operators. Specifically, we
address two key issues: how to judiciously select kernels to
fuse, and how to automate the process of kernel fusion.

The first key problem is to discover feasible combinations
of kernels to fuse via compiler analysis followed by the
selection of the best options. Data dependence analysis
is necessary to discovers candidate kernels to fuse. Two
kinds of dependence may exist between two kernels: i)
each element in the result array of the consumer kernel
only depends on one element of its input array which is
generated by the producer kernel (e.g. Figure 2(a)), or ii) the
consumer kernel has to wait until the completion of the entire
producer kernel. (e.g. Figure 2(b)). These two cases must be
treated differently: i) is easier since the dependence between
two arrays can decomposed into dependence between two
scalars. As to ii), domain specific knowledge has to be
used. For example, JOIN-JOIN can be fused, but SORT-
JOIN cannot. In the latter case, the SORT must be completed
before the JOIN can be performed. In particular, SORT and
UNIQUE cannot be fused with any other operators.

The choice between alternative fusion opportunities is
guided by a cost function that evaluates the potential benefits
of fusion. As illustrated in Section III-B, fusing more kernels
usually enhances performance. However, fusing too many
kernels may cause problems. The main reason is that kernel
fusion will created increased register (and shared memory)
pressure since each thread has to store more intermediate
data within the GPU. This can increase spill code or have

adverse cache effects.
Automating kernel fusion is relatively straightforward if

the GPU implementations of the kernels use multi-stage
algorithms such as the four stages used by the SELECT. A
new fused kernel is generated by interleaving the stages of
different kernels following certain rules. All RA algorithms
uses partition as the first stage and gather as the last stage.
Thus, the first stage of a fused kernel is to partition all
the input data, and the last stage is gathering the result
from different CTAs. The middle stage of a fused kernel
corresponds to computation stages such as the two filters
in the SELECT example. Automatic code generation for
this stage requires the dependence graph of RA operators.
A topological sort of the graph determines the execution
sequence of these RA operators. The computation stage of
each RA operator produces results in temporary registers (or
shared memory) and the next operator can use these results
as input. The combination of two filters in Figure 6 is a
good example.

Finally, besides the multi-stage structure, there are two
other requirements for fusion -i) providing a unified data
structure to access different types of data, and ii) using the
same kernel configuration (CTA number and thread number)
for the operators.

All of the preceding operations required of Kernel fusion
can be performed in the source code level with the help
of tool such as ROSE [13] or in the AST level by using
Ocelot [14]. Moreover, kernel fusion is a general cross-
kernel optimization that can also be applied to CPU pro-
grams. Thus, if using an execution model translator such as
Ocelot [14], it is possible to execute fused kernels on both
the CPU and GPU to fully utilize the available computation
power. This is the subject of ongoing research.

IV. KERNEL FISSION

Distinct from kernel fusion, kernel fission partitions a
kernel into segments whose execution can be scheduled to
hide PCIe transfer time. While such optimizations are well
known, here we apply this transformation to CUDA kernels.
The implementation described here uses CUDA Streams, a
feature provided by NVIDIA CUDA [15]. A CUDA stream
represents a queue interface to the GPU device. Multiple
streams can be established to a device and CUDA commands
(PCIe transfer, CUDA kernel) in the same CUDA Stream
are executed in order, while those in different streams can
run concurrently relative to each other. We built a software
runtime manager on top of CUDA Streams referred to as
the Stream Pool to aid kernel fission.

A. The Stream Pool

Currently programmers bear the burden of CUDA stream
management, including creating and destroying the stream,
arranging synchronization points between streams by calling
the low level CUDA APIs (since the GPU does not have

API Comment
getAvailabeStream() get an available stream
setStreamCommand() assign a command to a specific stream
startStreams() start the execution
waitAll() wait for the end of the execution
selectWait() assign point-to-point synchronization

between two specific streams
terminate() end the execution immediately

Table IV: APIs provided by Stream Pool

an OS yet), and so on. Besides improving performance by
reducing PCIe overhead, our Stream Pool is designed to
abstract away such details of CUDA stream management
and enhance programmer productivity.

The Stream Pool is implemented as a library and provides
some straightforward high level APIs listed in Table IV. To
use it, the programmer links the library during compilation
and uses the API to assign commands to streams and set syn-
chronization points without any knowledge of which CUDA
Stream is actually used. The Stream Pool is implemented as
a wrapper around the CUDA Stream APIs and associated
data structures. The latter stores information about several
CUDA streams each of which is tagged with attributes such
as availability, lists of commands waiting to execute, and so
on. Then the provided APIs will check or set these attributes
to communicate with the CUDA Stream that is actually used.
All examples in this section use this library.

However, concurrent execution on GPU is not always
beneficial. For example, when executing two kernels concur-
rently on a device, each kernel nominally has access to only
half the resources (CTAs and threads). Figure 12 uses the
SELECT operator to illustrate this point. The line no stream
(old) is the previous implementation of SELECT that passes
50% of the elements as shown in Figure 4(a). The line no
stream (new) is the same implementation as no stream (old)
but uses half the number of threads and CTAs. The perfor-
mance of (new) is worse than (old). The line stream uses
Stream Pool to concurrently run two independent SELECTs
each using the same design as (new) (the element number in
the Figure is the total element number of both SELECTs).
The performance of (stream) is better than (new) since two
SELECTs can run concurrently. However, stream is worse
than (old) when number of elements exceeds 8 million. It
shows that concurrency is beneficial only when number of
elements is small because less data parallelism exists. For
large numbers of elements, concurrent stream execution is
not advantageous. In cases like this , using more threads in a
single kernel is better than using a smaller number of threads
in concurrent kernels. Thus, the application of kernel fission
must distinguish between such cases.

B. Pipelined Execution

With regards to fission, we can partition the set of CTAs
in a kernel into segments and overlap the data transfer
of one segment of CTAs with the execution of another

0

2

4

6

8

10

12

14

16

0 100 200 300 400

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Number of Elements (million)

stream

no stream (new)

no stream (old)

0

2

4

6

8

10

12

14

16

4 9 14 19 24 29 34

T
h

ro
u

g
h

p
u

t(
G

B
/s

)

Number of Elements (million)

stream

no stream (new)

no stream (old)

Figure 12: Performance of concurrently executing two selections

CTA0

CTA1

CTA2

GPU MEM

CPU->GPU

GPU

Computation

GPU->CPU CPU->GPU

GPU

Computation

GPU->CPU

Cycle 0 Cycle 1

Figure 13: Example of kernel fission

segment of CTAs. Thus, the PCIe transfer is hidden by
overlapping communication and computation. This is the
simplest application of kernel fission, and is especially useful
when the element number is large.

The GPU device used in this paper, the NVIDIA Tesla
C2070, can overlap two PCIe transfers with a computation
kernel which means the following three events can happen at
the same time: one stream is downloading data to GPU, the
other stream is computing and the third stream is uploading
result to the CPU. For such a device, at least three streams
are needed to fully utilize its concurrency capacity.

Figure 13 illustrates kernel fission with application to the
SELECT operator. Consider the CTAs in the implementation
of SELECT. In Cycle 0, CTA0 is transferring its result to
the CPU, CTA1 is performing the computation, and CTA2
is loading input from the CPU. All three CTAs are running
concurrently. After they finish their current tasks and next
cycle begins when CTA0 loads new inputs, CTA1 transfers
its new result to the CPU, and CTA2 starts computing on
its newly received data. In this way, the PCIe transfer time
is overlapped by the computation.

Figure 14 compares the performance of kernel fission
with serial execution by using one SELECT operator. The
data set used here is very large exceeding the size of GPU
memory since these are the cases of interest. Note that our
GPU’s 6GB memory can hold less than 1.5 billion 32-
bit integers. On average, the throughput achievable with

0

0.5

1

1.5

2

2.5

3

500 1000 1500 2000 2500 3000 3500 4000

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Number of Elements (million)

fission no fission

Figure 14: Performance of kernel fission

kernel fission is 36.9% better than the baseline version
which demonstrates that pipelining can provide significantly
improved performance over simply concurrently executing
the kernels (stream of Figure 12).

In principle, the execution time of kernel fission is the
maximum of CPU→GPU transfer time, GPU compute time,
and GPU→ CPU transfer time. Taking SELECT as an
example, the maximum is typically the input transfer time
because the result of SELECT is smaller than the input,
and the operator itself is computationally simple. Thus, the
performance of running one SELECT with kernel fission is
relatively insensitive to the fraction of the operator taken by
the filter operation. The drawback of kernel fission is that
for performance reasons, one has to use pinned memory
to transfer data which may hurt the CPU performance by
reducing the available memory of CPU to perform other
critical system tasks.

C. Combining Kernel Fusion and Fission

Kernel fusion and fission are orthogonal optimizations and
can be used together when more than one RA operator is
involved. Fission can be applied to a fused kernel or fusion
can be applied to the kernels that result from fission. For
example, consider the case of two back-to-back SELECT
operators (Figure 15). When employing fusion followed
by fission, CTAs performing computation (corresponding
to fused kernels) are executing in parallel with CTAs per-
forming data input and output. Compared with using fusion
only, overlapped host transfers can further reduce the overall
execution time. Finally we note that, since data is transferred
to the CPU at different times, the CPU has to implement a
gather stage the data at the end of the computation.

Figure 16 compares the performance of using four meth-
ods running two back-to-back SELECTs on a large volume
of data. As expected, using both fusion and fission is on
average 41.4% better than serial, 31.3% than fusion only,
and 10.1% than fission only.

V. EXPERIMENTAL EVALUATION

In this section, we will evaluate kernel fusion and kernel
fission with two real queries from TPC-H benchmark suites,
Q1 and Q21. We first implement a baseline GPU version
which does not use any optimization. Then, we manually
apply kernel fusion and kernel fission to the baseline and

GPU

MEM

Partition
GPU

Gather

GPU

MEM

CPU

MEM
CPU

MEM

CTA2

CTA3

CTA2

CTA3

CTA2

CTA3

Filter1 BufferFilter2

GPU

CORE

Unmatched
element

Completely
matched
element

Partially
matched
element

CTA0

CTA4

CPU->GPU

GPU->CPU

CPU

Gather

CTA1

CTA5

Figure 15: Example of applying kernel fusion and kernel fission
together

0

0.5

1

1.5

2

2.5

500 1000 1500 2000 2500 3000 3500 4000

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Number of Elements (million)

fusion+fission
fission
fusion
serial

Figure 16: Performance Comparison of serial execution, kernel
fusion, fission, fusion+fission

measure the speedup. The way we apply the fusion opti-
mization follows the process discussed in the Section III-C.
Thus the performance may be not as good as can be achieved
if manually optimized more aggressively. However, we try
to reflect what could be performed automatically by the
compiler. This approach was also how all of the results in
this paper were derived when evaluating fusion and fission
transformations .

Q1, which calculates several price statistics of some
selected entries, is one of the simplest queries in TPC-H.
Figure 17(a) is the query plan generated for Q1. There are
i) several JOINs and one SELECT to generate a large table
from seven columns, ii) SORT by a different key, and iii)
the arithmetic calculation over several fields of the table.
The first part of the query including one SELECT and six
JOINs can be fused into one kernel. All of the arithmetic
computations performed as the final part of the query can be
fused as well. Kernel fission can also be applied to the fused
JOINS to hide CPU-GPU transfers. However, the fused
arithmetic computations cannot use kernel fission because its
input generated by the SORT operator is already located in
the GPU memory. The SORT operator can neither be fused
by kernel Fusion, nor be subject to kernel fission because it
has to wait for the completion of the JOINs and arithmetic
operations have to wait for the completion of the SORT.

Figure 18(a) compares the performance of applying kernel
fusion only as well as applying both fusion and fission,
against the baseline implementation. In the baseline, the
most time consuming part is the SORT operator which
takes around 71% of the total execution time, but cannot

Status Date1 Date2

Supplier

Nation

+

Date

Price

Tax

Discount

Quantity

Flag

Status

Select Join

Sort

Aggregate

+ Arithmetic

Fusion + Fission

Fusion Only

Unique

(a) (b)

Figure 17: (a) Query plan for Q1; (b) Query plan for Q21

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Not
Optimized

Fusion Fusion
+

Fission

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

0.9

0.95

1

1.05

1.1

1.15

Not
Optimized

Fusion Fusion
+

Fission

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

(a) (b)

Figure 18: (a) Performance of Q1; (b) Performance of Q21 (both
normalized to not optimized)

be optimized. However, the fusion dramatically speeds up
the rest of the operators and contributes a 1.25x speedup.
In this case, kernel fission can bring another 1.01x speedup
because it hides the input transfer that occupies about 1%
of the execution time of fusion. Thus, two optimizations
combine bring 26.5% performance improvement. Further
study shows that SORT and PCIe data transfer are excluded,
the remaining kernels that can be fused and kernel fusion
can bring 3.18x speedup from combining 6 JOINS and 1
SELECTs into a single kernel.

Query Q21 identifies certain suppliers who were not able
to ship required parts in a timely manner. Compared with
Q1, Q21 contains less arithmetic computation but has much
more relational operations. Figure 17(b) is its simplified
query plan (simple operators such as PROJECTs are omitted
due to figure size limit). SORTs form a boundary for the
application of kernel fusion since it can not be fused with
any other operators. Figure 18(b) shows the performance
result for Q21. Overall, kernel fusion and kernel fission
together realize 13.2% performance improvement which is
not as much a performance improvement as achieved with
Q1 mainly because of the number of kernels that are not
fused. Only considering kernel fusion and operators that
can be fused, this optimization can realize a 1.22x speedup
across that block of code (operators).

VI. RELATED WORK

To our best knowledge, there is no generic or database
specific GPU kernel fusion technique. However, kernel fu-

sion is used as a domain specific optimization in some other
areas. Copperhead, developed by Catanzaro et al. [16] fuses
Python primitives to reduce global synchronizations when
accelerating them by GPUs. Chakravarty et al. [17] proposes
to use kernel fusion to accelerate Haskell array operations
with GPUs. Coutts et al. [18] also fuse Haskell operators.
Although their techniques only apply to their own domains,
the experience and lessons learned from their projects such
as the classification of kernel dependencies represent general
principles valuable to our optimizations of RA operators.

On the CPU side, Lee et al. [19] proposes a runtime
framework, Thread Tailor, which uses fusion and fission
techniques albeit at a different level of granularity. Their
framework partitions an application into a large number of
threads and use greedy heuristic to combine these small
threads later based on their dependences.

There are also several ongoing projects using GPUs to
accelerate database applications. In particular, He et al. [2]
implement a complete GPU database system, GDB, which
is also based on the GPU implementation of relational
algebra operators. Further, other groups focus on design-
ing algorithms to accelerate individual operators [1], [20],
[21], [22], [23], [24]. All of the preceding projects achieve
several factors of speedup in comparison with their CPU
counterparts. However, none of them use any optimizations
to further improve the overall performance of the database
system on GPUs. Moreover, He et al. also point out that the
PCIe transfer time may outweigh the speedup brought by the
GPUs and suggest the use of data compression techniques to
reduce the amount of transfered data [25]. Our work differs
in that we are seeking to discover and develop mainstream
compiler passes that can automatically provide inter-kernel
optimizations.

VII. SUMMARY AND FUTURE WORK

This paper proposes two inter-kernel optimization tech-
niques for improving the performance of relational algebra
primitives used in data warehousing applications on GPUs.
We empirically evaluate the benefits of fusion on a combina-
tion of the SELECT operators as an example to demonstrate
the potential benefits for relational operators in general.
Through the implementation of the Stream Pool library we
also study the impact of fission on SELECT operators.
Finally, we evaluate the impact of concurrently applying
fusion and fission on queries Q1 and Q21 from the TPC-H
benchmark suite. All measurements are based on CUDA im-
plementations and fusion and fission are performed manually
reflecting potential compiler implementation (i.e., the fused
kernels are not manually further optimized). We believe the
presented data with the SELECT operator is encouraging and
reflects the gains possible when applied to all operators. We
point out that the result with applying fusion and fission to
the two TPC-H queries supports this optimism. Our current

efforts are focused on automation of these optimizations in
the compiler.

ACKNOWLEDGEMENT

This research was supported by the National Science
Foundation under grants IIP-1032032 & CCF 0905459,
by LogicBlox Corporation, and by equipment grants from
NVIDIA Corporation.

REFERENCES

[1] P. Trancoso, D. Othonos, and A. Artemiou, “Data parallel ac-
celeration of decision support queries using cell/be and gpus,”
in Proceedings of the 6th ACM conference on Computing
frontiers. ACM, 2009, pp. 117–126.

[2] B. He, M. Lu, K. Yang, R. Fang, N. Govindaraju, Q. Luo,
and P. Sander, “Relational query coprocessing on graphics
processors,” ACM Transactions on Database Systems (TODS),
vol. 34, no. 4, p. 21, 2009.

[3] J. Anderson, C. Lorenz, and A. Travesset, “General purpose
molecular dynamics simulations fully implemented on graph-
ics processing units,” Journal of Computational Physics, vol.
227, no. 10, pp. 5342–5359, 2008.

[4] J. Mosegaard and T. Sørensen, “Real-time deformation of
detailed geometry based on mappings to a less detailed phys-
ical simulation on the gpu,” in Proceedings of Eurographics
Workshop on Virtual Environments, vol. 11, 2005, pp. 105–
111.

[5] V. Podlozhnyuk, “Black-scholes option pricing,” Part of
CUDA SDK documentation, 2007.

[6] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock,
D. Luebke, D. McAllister, M. McGuire, K. Morley, A. Ro-
bison, and M. Stich, “Optix: a general purpose ray tracing
engine,” ACM Transactions on Graphics, vol. 29, pp. 66:1–
66:13, July 2010.

[7] E. Walker, “Benchmarking amazon ec2 for high-performance
scientific computing,” Usenix Login, vol. 33, no. 5, pp. 18–23,
2008.

[8] W. Fang, M. Lu, X. Xiao, B. He, and Q. Luo, “Frequent
itemset mining on graphics processors,” in Proceedings of the
Fifth International Workshop on Data Management on New
Hardware. ACM, 2009, pp. 34–42.

[9] T. Council, “Tpc benchmark h, standard specification revision
1.3. 0,” 1999.

[10] G. Diamos, H. Wu, A. Lele, J. Wang, and S. Yalamanchili,
“Efficient relational algebra algorithms and data structures for
gpu,” CERCS, Georgia Institute of Technology, Tech. Rep.
GIT-CERCS-12-01, Feb. 2012.

[11] L. G. Valiant, “A bridging model for parallel computation,”
Commun. ACM, vol. 33, no. 8, pp. 103–111, 1990.

[12] C. Gregg and K. Hazelwood, “Where is the data? why you
cannot debate cpu vs. gpu performance without the answer,”
in Performance Analysis of Systems and Software (ISPASS),
2011 IEEE International Symposium on. IEEE, 2011, pp.
134–144.

[13] D. Quinlan, “Rose: Compiler support for object-oriented
frameworks,” Parallel Processing Letters, vol. 10, no. 2/3,
pp. 215–226, 2000.

[14] G. Diamos, A. Kerr, S. Yalamanchili, and N. Clark, “Ocelot:
A dynamic compiler for bulk-synchronous applications in
heterogeneous systems,” in Proceedings of PACT ’10. ACM,
2010, pp. 353–364.

[15] CUDA C Programming Guide, Nvidia, May 2011,
http://developer.nvidia.com/nvidia-gpu-computing-
documentation.

[16] B. Catanzaro, M. Garland, and K. Keutzer, “Copperhead:
compiling an embedded data parallel language,” in
Proceedings of the 16th ACM symposium on Principles and
practice of parallel programming, ser. PPoPP ’11. New
York, NY, USA: ACM, 2011, pp. 47–56. [Online]. Available:
http://doi.acm.org/10.1145/1941553.1941562

[17] M. Chakravarty, G. Keller, S. Lee, T. McDonell, and
V. Grover, “Accelerating haskell array codes with multicore
gpus,” in Proceedings of the Sixth Workshop on Declarative
Aspects of Multicore Programming. ACM, 2011, pp. 3–14.

[18] D. Coutts, R. Leshchinskiy, and D. Stewart, “Stream fusion:
From lists to streams to nothing at all,” in Proceedings of the
12th ACM SIGPLAN international conference on Functional
programming. ACM, 2007, pp. 315–326.

[19] J. Lee, H. Wu, M. Ravichandran, and N. Clark, “Thread
Tailor : Dynamically Weaving Threads Together for Efficient
, Adaptive Parallel Applications,” in Proc. of the 37th Annual
International Symposium on Computer Architecture, 2010.

[20] T. Lauer, A. Datta, Z. Khadikov, and C. Anselm, “Exploring
graphics processing units as parallel coprocessors for online
aggregation,” in Proceedings of the ACM 13th international
workshop on Data warehousing and OLAP. ACM, 2010,
pp. 77–84.

[21] P. Volk, D. Habich, and W. Lehner, “GPU-based speculative
query processing for database operations,” in Proceedings
of the 1st International Workshop on Accelerating Data
Management Systems Using Modern Processor and Storage
Architectures, 2010.

[22] M. Lieberman, J. Sankaranarayanan, and H. Samet, “A fast
similarity join algorithm using graphics processing units,” in
Data Engineering, 2008. ICDE 2008. IEEE 24th International
Conference on. IEEE, 2008, pp. 1111–1120.

[23] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha, “Gput-
erasort: high performance graphics co-processor sorting for
large database management,” in Proceedings of the 2006 ACM
SIGMOD international conference on Management of data.
ACM, 2006, pp. 325–336.

[24] N. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha,
“Fast computation of database operations using graphics
processors,” in Proceedings of the 2004 ACM SIGMOD
international conference on Management of data. ACM,
2004, pp. 215–226.

[25] W. Fang, B. He, and Q. Luo, “Database compression on
graphics processors,” Proceedings of the VLDB Endowment,
vol. 3, no. 1-2, pp. 670–680, 2010.

