
Dynamic Compilation of Data-Parallel Kernels for Vector
Processors

Andrew Kerr1, Gregory Diamos2, S. Yalamanchili3
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA

{arkerr1, gregory.diamos2, sudha3}@gatech.edu

ABSTRACT
Modern processors enjoy augmented throughput and power efficiency
through specialized functional units leveraged via instruction set ex-
tensions. These functional units accelerate performance for specific
types of operations but must be programmed explicitly. Moreover,
applications targeting these specialized units will not take advantage
of future ISA extensions and tend not to be portable across multiple
ISAs. As architecture designers increasingly rely on heterogeneity
for performance improvements, the challenges of leveraging special-
ized functional units will only become more critical. In particular,
exploiting software parallelism without sacrificing portability across
the spectrum of commodity and multi-core SIMD processors remains
elusive.

This work applies dynamic compilation to explicitly data-parallel ker-
nels and describes a set of program transformations that efficiently
compile bulk-synchronous scalar kernels for SIMD functional units
while tolerating control-flow divergence. It is agnostic to specific fea-
tures of ISAs, and performance scalability is expected from 2-wide to
arbitrary-width vector units. This technique is evaluated with existing
workloads originally targeting GPU computing. A microbenchmark
written in CUDA achieving near peak throughput on a GPU achieves
over 90% peak throughput on an Intel Sandybridge. Speedups for
real-world applications running on on CPUs featuring SSE4 achieve
up to 3.9x over current state of the art heterogeneous compilers for
data-parallel workloads.

1. INTRODUCTION
As processor designers reach the limits of frequency and ILP scaling,
they are increasingly turning toward heterogeneity of functional units
within systems and indeed within processors as the means for per-
formance and power-efficiency scaling. Modern CPUs are equipped
with SIMD instruction sets such as Streaming SIMD Extensions (SSE)
[1] and Advanced Vector Extensions (AVX) [2] for x86, PowerPC’s
AltiVec, and Cell’s SPU. These provide higher throughput than scalar
pipelines but present several programming and engineering challenges
to using them effectively. Specifically, programmers must re-write
critical procedures using platform-specific parallel instructions, and
the resulting programs are not portable across architectures.

We have concurrently seen the emergence of massively data parallel

execution models and languages such as OpenCL [3] and NVIDIA’s
CUDA [4] that exploit thread-level parallelism in which programs are
composed of kernels, whose execution spawns hundreds or thousands
of scalar threads each executing the same kernel code. Such explic-
itly parallel models of computation targeting programmable graphics
units (GPUs) from NVIDIA and AMD have been shown to be an
effective approach for high performance computing. Recent work
[5–7] has shown that GPU execution models are productive vehicles
for targeting both GPUs and multicore CPUs, offering tremendous
gains in portability and productivity without sacrificing performance.
A dynamic compilation environment using this programming model
is therefore capable of leveraging GPU and CPU architectures si-
multaneously. Such portability presents a compelling argument for
rewriting compute-intensive software in a data-parallel manner with-
out coupling the implementation to a particular class of processor.
However, utilizing SIMD functional units remainds a challenge.

In this paper, we propose and evaluate techniques for the compilation
of explicitly data-parallel kernels to SIMD vector units such as SSE or
AVX while tolerating control-flow divergence. In particular, we pro-
pose a dynamic compilation approach for the optimized use of vector
units integrated within the datapaths of a multicore CPU. The capa-
bility extends the portability of data parallel applications written in
CUDA and OpenCL to high performance vector units. The principle
challenge in mapping data parallel kernels to vector processors is in
handling control flow. Static compilation approaches to thread serial-
ization fail when threads execute divergent paths, and some technique
is needed to tolerate this divergence. Methods relying on predication
require hardware support and suffer from low utilization in heavily di-
vergent kernel regions or regions with unstructured control flow [8].

This work focuses on a dynamic compilation approach to utilizing
SIMD functional units when serializing light-weight thread execu-
tions. Specifically, a dynamic compiler and translation cache parti-
tions data-parallel kernels into schedulable regions and dynamically
specializes these regions based on vector widths determined as the
kernel is executing. This work proposes yield on diverge in which
control-flow divergence is detected at runtime and handled as a con-
text switch storing live state to thread-local memory, exiting the vec-
torized kernel and rentering a dynamic execution manager. The exe-
cution manager forms an warp from ready threads waiting to resume
execution at the same location, and continues execution. This work
demonstrates a proposed dynamic compilation model that scales to
thousands of light-weight threads executing on modern commodity
multi-core CPUs featuring vector functional units.

This work proposes the following contributions:

• Vectorization of data parallel kernels via a program transfor-
mation for the static interleaving of a set of data-parallel scalar
threads targeting vector functional units

• Yield on diverge, a software-only technique for suspending thread
execution and reforming warps to minimize the effect of branch
divergence

• A dynamic compilation model from a low-level data parallel in-
termediate representation (IR) that makes use of the preceding
techniques that scales to thousands of light-weight threads

• An evaluation of the implementation on a modern multi-core
processor with multiple vector units and over 40 existing data-
parallel workloads

• Implementation and evaluation of optimizations to remove re-
dundant thread-invariant instructions exposed by vectorization

The rest of this paper is organized as follows. In Section 2, we de-
scribe the PTX execution model targeted by CUDA and OpenCL. In
Section 4, we describe vectorization, a novel program transformation
that interleaves static instructions and promotes them to vector types
where possible. We also describe implications for control-flow diver-
gence and present yield on diverge, a novel method for handling it.
In Section 3, we present an execution manager for coalescing logical
PTX threads for executing vectorized kernel regions. We present re-
sults of a thorough evaluation in Section 6 and conclude by describing
lessons learned in transforming data-parallel execution models target-
ing dynamic compilation frameworks.

2. DATA-PARALLEL EXECUTION MODELS
Parallel Thread eXecution, or PTX [9], is the RISC-like virtual in-
struction set targeted by NVIDIA’s CUDA and OpenCL compilers
and used as an intermediate representation for GPU kernels. PTX’s
Single-Instruction, Multiple-Thread (SIMT) execution model is de-
fined for a hierarchical collection of scalar threads executing concur-
rently. Rather than launch one thread per processor, data-parallel ker-
nels are written for thousands of light-weight threads that collectively
perform a computation, each typically producing a small number of
elements in output data sets.

Collections of scalar threads or work items are partitioned into coop-
erative thread arrays (CTAs), analogous to work groups from OpenCL,
that are allowed to synchronize via barriers and exchange data. Sets
of CTAs are nondeterministically dispatched to available processor
cores which execute them to completion. Global barriers across all
cores and CTAs are only permissible at kernel boundaries enabling
the platform to implement a weakly consistent global memory model
as well as avoid overheads of synchronization and cache coherence.
Consequently, the programming model enables scalability across large
ranges of concurrency in the underlying processor(s). The relation-
ship between kernel grids and CTAs is illustrated in Figure 1. This
work targets the PTX execution model in particular but applies to any
bulk synchronous execution model in which multiple logical threads
are executed in lock step on a SIMD processor.

The PTX instruction set consists of standard arithmetic instructions
for integer and floating-point arithmetic, load and store instructions
to explicitly denoted address spaces, texture sampling and graphics
related instructions, and branch instructions. Additionally, special in-
structions for interacting with other threads within the CTA are pro-
vided such as CTA-wide barrier instructions, warp-wide vote instruc-
tions, and reduction operations, to name several. PTX is decoupled
from actual hardware instantiations and relies on a just-in-time com-
pilation toolchain to target native instruction set architectures.

In the context of the PTX execution model, this work is concerned
with mapping a collection of scalar threads from one or more coop-
erative thread arrays onto one or more vector functional units. A

Kernel launch

Grid of Cooperative
Thread Arrays Cooperative

Thread Array

n-way
SIMD

Multiprocessor
register file

.shared
memory

.param

.const

.global
memory

Figure 1: PTX [9] execution model. Kernels are scalar func-
tions launched over a hierarchical collection of threads exhibiting
coarse-grain and fine-grain synchronization semantics. The pro-
cessor model consists of a replicated and unsynchronzied set of
multiprocessors, each with a wide SIMD functional unit, multiple
on-chip address spaces, and access to off-chip weakly consistent
global memory.

vector register file serves as the source and destination of vector op-
erations. Vector load and store instructions operate between mem-
ory and this register file. Vector functional units are organized into
multiple lanes where each lane implements a single arithmetic or log-
ical operation. A single vector instruction controls all lanes. The
width of vector unit will be referred to as the warp size for compat-
iblity with GPU computing terminology. Unlike SIMD processors
from NVIDIA and AMD, vector units/lanes cannot implement arbi-
trary control flow which both simplifies the implementation and limits
their applicability. In particular vector units are distinguished by the
following.

• vector loads and stores fetch continguous sequences (vectors)
of scalar data

• vector operators are applied within a lane; lanes may not be
arbitrarily masked

• conditional select operators may choose between two values in
each lane

This machine model is implemented in numerous commodity proces-
sors presently available including Advanced Vector Extensions (AVX),
Streaming SIMD Extensions (SSE), AltiVec, and ARM Neon. More-
over, the current trend is increasing vector widths from 4 in the case
of SSE to 8 in the case of the recently available AVX. Proposed pro-
cessor architectures such as Intel’s Knights Ferry [10] suggest this
trend will continue with increasing vector widths.

3. DYNAMIC COMPILATION MODEL
The proposed compilation model is wrapped by an API front-end for
heterogeneous computing. This implementation supports the CUDA
Runtime API. PTX modules are explicitly registered with the run-
time which immediately parses and analyzes kernels within the mod-
ules. These are added to a global translation cache which lazily trans-
lates PTX kernels to LLVM and then vectorizes these translations for
several warp sizes presented by the target machine model. Kernel
launches, illustrated in Figure 2, spawn a set of hardware threads,
each running a dynamic execution manager. The kernel’s grid of
CTAs is statically partitioned across the set of execution managers
which concurrently serialize the execution of light-weight threads
within the CTAs while respecting the semantics of the execution model.
Execution managers form warps, or collections of PTX threads, wait-
ing to execute the same block within the thread. The number of

Kernel partitioning at
barriers and divergent
branches

PTX Kernel Partitioning

Kernel Execution

Worker Thread Pool

Dynamic Executive

Warp
Formation

Translation
Cache

Subkernel
Execution

ISA
 translation

Vectorization

Code
 generation

- Issue warp

- Save live state
- Return to dynamic
 execution manager

CTA 0

CTA 1

Select threads
 with same entry ID

Figure 2: Dynamic compiler and execution manager framework
for data-parallel kernels supporting vectorization.

Thread 0

Thread 1

r1 = load ptr1

r2 = load ptr2

r3 = fmul r1, r2

store r3, ptr3

r1.t0 = load ptr1.t0
r1.t1 = load ptr1.t1
r2.t0 = load ptr2.t0
r2.t1 = load ptr2.t1

r1.vec = insertelement r1.t0, 0
r1.vec = insertelement r1.t1, 1
r2.vec = insertelement r2.t0, 0
r2.vec = insertelement r2.t1, 1

r3 = fmul <2 x float> r1.vec, r2.vec

r3.t0 = extractelement r3, 0
r3.t1 = extractelement r3, 1
store r3.t0, ptr3.t0
store r3.t1, ptr3.t1

Vectorized

Warp
(T0, T1)

Serialized Scalar

Figure 3: Serializing scalar threads executing the same basic
block by interleaving static instructions and promoting arith-
metic instructions to vector operators.

threads within the warp is used to query the global translation cache
and obtain a native ISA binary. When threads reach a CTA-wide bar-
rier or diverge, they yield via statically defined kernel exit points and
control returns to the execution manager. This process iterates until
all threads have terminated, and all worker threads reach a kernel-
wide barrier at which point the kernel is finished.

4. VECTORIZING SCALAR KERNELS
This work proposes vectorization, a program transformation mapping
a kernel of data-parallel scalar threads onto a vector processor. This
transformation produces a specialized form of a kernel by replicat-
ing scalar instructions and, where supported by the target ISA, pro-
moting replicated instruction sets to vector operators. Execution of
a single vectorized kernel is computationally equivalent to the serial
execution of a scalar version of the kernel over a collection of threads
where each thread is mapped to a lane within the vector functional
unit, and the width of each vector operator is equivalent to the num-
ber of threads covered by this kernel’s execution. Figure 3 illustrates
the transformation of a scalar instruction sequence into a vectorized
form. Scalar load and store instructions are replicated, and the bi-
nary operator (floating-point multiply, in this case) is promoted to an
element-wise vector operation. In the scalar kernel, two iterations
would be required to execute this kernel over two threads. The vec-
torized kernel requires a single iteration for an equivalent execution
and exhibits higher instruction-level parallelism.

Vectorization may be implemented with Algorithm 1 whose input is a
scalar kernel. Thread-local and CTA-local data members are accessed
via a context object identifying the executing thread. This context ob-
ject includes grid dimensions, block dimensions, block ID, thread ID,
and base pointers to the following address spaces: parameter, shared,
and thread-local. The output is a vectorized kernel in which a single

Input: Instruction i
Input: warp size ws
Output: Vectorized instruction
replicate i for each of ws threads
foreach replicated instruction do

update thread ID operands
if i is vectorizable then

replace ws instructions with single vector-typed instruction
memoize resulting instruction or bundle
Algorithm 1: Vectorize(i, w) replaces a scalar instruction a repli-
cates set of instructions, one for each thread in the warp. This set may
be promoted to a single vector instruction.

execution of each basic block is equivalent to executing that block
by all of the threads in a warp. The input to the resultant vectorized
kernel is an array of context objects, each describing a unique thread.
This basic transformation does not consider divergence which is ad-
dressed by a subsequent transformation described in Section 4.1.

The vectorization pass is implemented as a transformation that repli-
cates instructions while maintaining a mapping from scalar source
instructions to the replicated set. Thread-local values such as pointers
to local memory and thread indices are loaded from a thread context
object. Vectorized kernels receive an array of context objects consti-
tuting the warp, and accesses to context objects in vectorized kernels
are modified to index the correct thread’s context. Following replica-
tion, vectorizable instruction bundles are replaced by a single vector
instruction with vectorized operands. Either the replicated instruction
bundle or the vectorized instruction are memoized into the mapping.
To vectorize the operands, they are either selected from the mapping,
or they are recursively vectorized. The order in which instructions
are vectorized affects recursion depth as well as performance of the
compilation pass due to locality of the instruction objects and tabel
lookups. The method adopted here is a breadth-first traversal of basic
blocks composed with a linear scan of instructions within each basic
block. This work vectorizes binary floating-point and integer opera-
tors as well as calls to transcendental functions for which both LLVM
and the compilation target, the x86-64 ISA with AVX, have built-in
support

Non-vectorizable Instructions. CPU instruction set architectures
do not typically support vector forms of all instructions. Loads and
stores, for instance, do not support scatter and gather with vectors of
pointers. Rather, many ISAs such as SSE and AVX enforce loading
of contiguous data from a single base address. Significant perfor-
mance may be lost if this value is not aligned to super-word bound-
aries. This approach groups loads and stores in a class of instruc-
tions which may be not vectorized and are instead replicated for each
thread. The values produced are explicitly packed into vectors when
a non-vectorizable instruction produces a value used by a vectorized
instruction, and explicitly unpacked when a non-vectorizable instruc-
tion uses a vectorized operand. A subsequent dead-code elimination
pass removes unused instructions. Conservative handling of load and
store instructions as non-vectorizable enables this technique to ac-
commodate mis-aligned accesses and accesses to random locations,
two cases that would not perform well or are not supported by SSE.

Explicitly repacking scalar values into vectors presents some over-
head, though the extent of additional data movement instructions emit-
ted depends on the actual kernel being compiled and on the quality of
the backend code generator. In the particular case of memory instruc-
tions, we envision divergence analysis [11] and affine analysis [12]
to identify opportunities in which multiple threads are guaranteed to
access contiguous data. In these instances, arbitrary loads may be
replaced with vector loads. An evaluation with this optimization re-

mains for future work.

Sequences of interleaved replicated instructions exhibit instruction
level parallelism that is at least as high as warp size. This comes
at the cost of increasing the live ranges of values which places pres-
sure on register usage. Moreover, transformations within LLVM’s
code generator attempt to subvert explicit instruction interleavings in
order to reduce live ranges while discarding ILP. This required mod-
ifying LLVM to select an existing code generator that maintains the
instruction schedules of source LLVM modules.

Implicit Synchronization. Guo, et al. [13] identiy idioms related to
implicit synchronization among the threads in a warp when execut-
ing on SIMD processors. As an optimization, programmers rely on
the hardware executing the threads of a warp in lock-step and omit
barriers when threads in the same warp exchange data through shared
memory. Omitting barrier instructions saves several cycles by not is-
suing the instruction, however such programs are not portable across
processors with different warp sizes (from AMD to NVIDIA GPUs,
for example). Moreover, it is not always possible for a compiler to
address implicit synchronization, as not all threads in the warp may
reach the implicitly synchronized code. The compiler cannot not in-
sert a warp-wide barrier without risking incorrect behavior in the case
when some but not all threads reach the implied barrier. To the best
of our knowledge the technique proposed in [13] is not capable of
handling such a case. The work described in this paper assumes the
programmer does not require warp synchronous execution and yields
undefined behavior for such kernels.

4.1 Divergent Control Flow
The set of threads mapped to a vectorized kernel must necessarily take
the same control paths. An execution of a kernel is convergent if all
threads follow the same path; execution is divergent if threads eval-
uate conditional control-flow instructions differently. Some kernels
may be statically proven to be entirely convergent, and presumably
some kernels contain potentially divergent paths that are never taken
by common datasets. Characterization studies [14] indicate most real-
world CUDA programs experience some form of divergence which
must be efficiently tolerated. Figure 4 (a) shows a sample control
flow graph with two threads executing B0 and B1 then diverging at
the the branch terminating B1. Thread 0 branches to B3 while thread
1 falls through to B2. A single execution of a vectorized basic block is
equivalent to both threads executing the scalar form, therefore some
mechanism must be present to avoid executing B2 for thread 0.

This work proposes yield on diverge, a software-only approach which
checks branch conditions at runtime. Figure 4 (b) illustrates the ex-
ecution of a kernel with divergence control flow. An execution man-
ager collects a set of ready threads waiting to execute the same basic
block. The execution manager then selects a vectorized kernel whose
warp size is equal to the size of the collection of threads, and control
enters the vectorized kernel. A scheduler block performs an indirect
branch based on the identity of the actual entry point, and control
resumes execution within vectorized basic blocks.

Conditional branches are modified with additional instructions to de-
tect divergent branches. On divergence, threads yield to an execution
manager which insert threads into a ready queue and reform a new
warp. Execution of a vectorized block is logically equivalent to each
thread within the warp executing that block, and consequently warps
may only be formed of threads waiting to enter the same block. Yields
to the execution manager are analogous to a context switch. Barrier
synchronizations are handled like divergent branches except threads
are inserted into a waiting queue within the execution manager.

Algorithm 2 describes how vectorized kernels are transformed to ac-

Input: Warp size ws
Input: Scalar kernel to be vectorized
Output: Vectorized function supporting control-flow
begin

entrySet := {} exitSet := {}
foreach basic block b in kernel do

foreach non-control instruction i in b do
Vectorize(i, ws)

if b ends in conditional branch then
insert empty basic block exitb to function
insert instruction: sum(predicates)
replace the conditional branch with:
switch sum(predicates) do

case 0
jump to fall-through successor

case ws
jump to branch successor

otherwise
jump to exitb

add exitb to {exitSet}
add successors(b) to {entrySet}

CreateScheduler({entrySet})
CreateExits({exitSet})

end
Algorithm 2: Inserts detection and handling code into kernel.

commodate control-flow divergence. This applies the Vectorize(i,
ws) function described in Algorithm 1 to vectorized instructions. Con-
ditional branches terminating basic blocks are transformed by sum-
ming the branch predicates from each thread. If the sum is zero, all
threads jump to the fall-through target (the branch was uniformly not
taken). If the sum is equal to warp size, all threads jump to the branch
target (uniformly taken). Otherwise, control enters an exit handler
which performs the divergent yield. Successors to divergent branches
are inserted into a list of possible entry points which are then used to
construct a scheduler block at the beginning of the kernel.

Transitions from the execution manager to the kernel are accomplished
via a compiler-inserted scheduler block which acts like a trampoline.
A basic block inserted into the kernel contains a large switch state-
ment conditioned on the warp’s entry ID. These integer-valued IDs
select basic blocks that are the successors to divergent branches (or
barrier synchronizations) identified in Algorithm 2. For each entry
point, an entry handler block is inserted to restore the warp’s live
state from local memory. Its terminator instruction jumps to the vec-
torized entry block. Algorithm 3 describes how a scheduler block is
constructed.

Input: {entrySet}
create empty basic block scheduler
insert switch statement into scheduler with default target of
entry block to function
foreach b in entrySet do

create empty basic block entryb

insert load instructions into entryb for all live-in values at
block b
insert jump to block b
add to switch statement in scheduler:
case (b)

jump to entryb

Algorithm 3: CreateScheduler({entrySet}) creates a sched-
uler block and inserts code to restore live state.

uniform execution in
vectorized region

divergent branch; store
state and return to
execution manager

restore state and
execute scalar block

exit scalar block; store
state and return to
execution managerresume uniform execution

 in vectorized region

Scheduler
indirect branch based on

entry ID

uniform

divergence

reconvergence

uniform

 B0

 B1

 B2

 B3

 Thread 0 Thread 1

scalar

(a) (b)

Figure 4: (a) Control-flow graph executed by two threads diverge at B1 and reconverge at B3. (b) Executing a kernel with divergent
control flow through a vectorized and a scalar specialization of the kernel.

Input: {exitSet}
create local variable resumeEntryId
create local variable resumeStatus
foreach exitb in exitSet do

insert store instructions into exitb for all live-out values at
block b
insert resumeEntryId← select(predicate, { branchTarget,
fallThrough })
insert resumeStatus← { Thread_branch,
Thread_barrier, Thread_exit }
insert return

Algorithm 4: CreateExits({exitSet}) stores live-out state at di-
vergence sites, inserts a conditional select operator to specify the tar-
get entry point, specifies a status indicating why the warp has returned
to the execution manager, and exits.

Exit handling code inserted by Algorithm 4 into exit blocks performs
yields to the execution manager. At yield points such as divergent
branches and barriers, control passes from a vectorized block to an
exit block. The exit block first spills all live values to thread-local
memory for each thread. Then, a conditional select operator stores
a constant-valued integer identifying the branch target block for each
thread which is then written to that thread’s resume point field. Diver-
gent threads will evaluate this select instruction differently and write
different entry IDs to their resume point fields. Finally, a value indi-
cating the disposition of the kernel exit is written to the warp’s resume
status field. The execution manager, described in Section 5.2, updates
its pool of ready thread contexts according to the resume status type
and chooses a new warp by collecting threads with the same resume
point.

This work considers three classes of kernel yields: divergent branches,
CTA-wide barriers, and thread termination. When yielding on barri-
ers, the execution manager places context objects in a wait queue to
avoid rescheduling them until all threads in the CTA have reached the
barrier. On termination, the context object is discarded. This work
does not implement function calls, mainly due to their relatively new
introduction to programming model on which this work was evalu-
ated. These may be potential sources of divergence also, either dur-
ing conditional call instructions or indirect calls when the target is
non-uniform. The approach described here may be extended to func-

tion calls via the introduction of a thread-local call stack, replacing
call targets with kernel entry IDs, and by always yielding on function
calls. This remains for future work.

Figure 5 illustrates entry and exit handlers in greater detail. Block B1
has been vectorized for warp of size 2 and exists within the shaded
region shown in the figure. Block B1_entry has been added to the
kernel and provides a control path from an external scheduler into the
vectorized region that loads live values from thread-local memory.
A conditional branch instruction terminating B2 has been replaced
with a switch statement whose conditional is the sum of all branch
conditions within the warp. Its default successor is the exit handler,
and two other successors are vectorized blocks within the kernel.

This technique requires a scalar specialization and a specialization
for some maximum vector width. Additionally, implementations may
produce specializations for narrower vector widths. The implementa-
tion for this work assumes each kernel has been specialized for warp
sizes of 1 thread, 2 threads, and 4 threads corresponding to available
vector processing hardware in the target processor. Entry and exit
points have been added to divergence and reconvergence sites to re-
store live variables from thread local memory and enter the kernel. A
scheduler block performs an indirect jump to the entry point selected
by the warp’s entry ID.

5. IMPLEMENTATION
The vectorization transformation described in the previous section
was implemented as a device backend to GPU Ocelot [15], a dynamic
compilation framework for GPU computing. GPU Ocelot translates
PTX code to LLVM’s IR and utilizes its extensive analysis, opti-
mization and code generation facilities [16]. Our implementation de-
scribed in this section extends GPU Ocelot’s multicore CPU backend
with the addition of a dynamic execution manager, dynamic transla-
tion cache, and the vectorization program transformation.

5.1 Dynamic Translation Cache
The translation cache is the module responsible for producing native
ISA binaries of each kernel by translating from PTX to LLVM, apply-
ing program transformations, and JIT compiling to the native ISA of
the target CPU. Exhibiting the external semantics of a code cache, it
may be queried by execution managers running in the worker threads
by specifying an entry point ID and warp size. Before translation to
LLVM, a PTX to PTX transformation replaces non-branch predicated

$B1_vec_exit:

 store(%r0.t0, 0);
 store(%r5.t0, 40);

 selp.s32 %r18.t0, 3, 2, %p7.t0

 set_resume_point(%r18.t0);
 set_resume_status(Thread_branch);
 exit

$B1_vec:
 ...

 %sum_p7 = add p7.t0 , p7.t1;

 switch (%sum_p7) $B1_vec_exit [
 case 0: $B2_vec,
 case warp-size: $B3_vec
]

store live state and
exit to Execution Manager

$B1_vec_entry:

 %r0.t0 = restore(0);
 %r4.t0 = restore(32);

 bra $B1_vec

enter from Execution Manager
and restore needed state

Vectorized
Kernel

Figure 5: Divergent branch entry and exit handlers for a vec-
torized kernel. The conditional branch in the vectorized block
B1_vec has been replaced by explicit checks. On divergence,
threads yield by exiting via B1_vec_exit.

instructions with select and splits basic blocks at barriers. Entry and
exit handlers are inserted with procedures to store and restore live
values as well as update thread status and next entry points on kernel
exits. The process of translating PTX to LLVM has been described
in detail in [16]. This work leverages many of these techniques to
translate scalar PTX kernels into LLVM representations but applies
the unique approach to execution model transformations described in
Section 4.

When kernels are launched, execution managers query the transla-
tion cache for particular warp sizes. These initiate translation from
PTX to a scalar LLVM representation and subsequent vectorizing for
the requested warp size. Potentially, the translation cache could be
modified to support querying for additional specialization parameters
beyond warp size such as optimization level or particular kernel ar-
gument values. This remains for future work. Following translation
and vectorization, the translation cache applies existing LLVM trans-
formation passes including traditional compiler optimizations such as
basic block fusion and common subexpression elimination. Finally,
LLVM’s code generator performs JIT compilation to yield a native
ISA form of the vectorized kernel which is inserted into the cache to
future requests from execution managers.

5.2 Dynamic Execution Manager
Each worker thread instantiates an execution manager which orches-
trates the execution of all PTX threads from this set of CTAs while
respecting CTA-wide barrier semantics (Figure 2). The execution
manager contains a data structure of thread context objects, manages
per-CTA memory structures such as shared memory and a block of

contiguous memory partitioned into per-thread local memory. It im-
plements warp formation and a thread scheduler. Prior to each kernel
entry, the execution manager may select any thread not waiting at a
barrier for execution. The current algorithm selects a ready thread via
a round-robbin scheduler then attempts to construct the largest warp
possible from other ready threads with the same entry point. The ex-
ecution manager then calls the kernel and passes the warp of thread
contexts. When threads yield to the execution manager, the warp’s
resume status indicates whether thread context objects should be ter-
minated, returned to the ready pool, or added to their parent CTA’s
barrier pool.

Execution managers block while contending for lock on the dynamic
translation cache. Compilation which is performed in the parent worker
thread of the querying execution manager, so multiple worker threads
querying for the same unavailable translation would be stalled. A
possible optimization to the execution manager might give scheduling
priority to warps for which translations exist to avoid stalling while
the dynamic translation cache is actively compiling a previously re-
quested translation. At this time, we only perform translations on
kernel granularities so the benefits of concurrent execution and trans-
lation are less apparent. This is the subject of ongoing work but is
orthogonal to vectorization.

6. EXPERIMENTAL RESULTS
This section presents the results from an evaluation of the described
extensions to Ocelot-2.0.1464 compiled with LLVM 3.0. Evaluations
were conducted on a desktop workstation running Ubuntu 11.04 x86-
64 and using over 40 benchmark applications chosen from the CUDA
Software Development Kit and the Parboil Benchmark Suite [17].
The evaluation system contains an Intel Sandybridge (i7-2600) CPU.
Sandybridge supports SSE 4.2 and AVX. The proposed techniques for
targeting vector functional units are expected to utilize AVX, but cur-
rent lack of support for AVX in LLVM’s code generator made such an
evaluation infeasible as of this time. Moreover, this work is expected
to apply to future architectures such as Intel’s Knight’s Ferry [10]
equipped with 16-lane vector units. However, lack of simulation tools
and a backend code generator for this ISA prevent an evaluation on
this platform at this time.

The first set of experiments investigates speedups for idealized cases
showcasing the benefits of vectorization and thread fusion. The sec-
ond set of experiments measure performance improvements for real-
world applications and provide statistics about application behaviors
recorded by the execution manager. These statistical behaviors justify
some design decisions and provide insights into sources of speedup
and future optimizations. The third set of experiments evaluates the
effectiveness of several proposed optimziations enabled by this dy-
namic compilation framework. This set of evaluations is intended to
capture the performance gains possible using a portable data-parallel
kernel representation that runs on GPUs and CPUs and is not neces-
sarily intended to be competative with hand-tuned kernel implemen-
tations.

Throughput. This microbenchmark attempts to achieve peak theo-
retical throughput of floating-point units by replicating a sequence of
interleaved, independent instructions. As described by Volkov [18],
pipeline latency may be hidden given a sufficiently large number of
threads. Increasing threads results in increased pressure on the regis-
ter file, but the benchmark’s relatively small number of live values and
non-overlapping ranges is easily to accommodated. Multicore CPUs
are more heavily pipelined with issue latency of four cycles in the
case of SandyBridge’s SSE floating-point simple arithmetic unit [1].

Table 1 illustrates sustained floating-point throughput for increasing
vector widths for a compute-bound kernel running on the test plat-

Table 1: Peak floating-point throughput.
Warp size 1 2 4 8
GFLOPs/s 25.0 47.9 97.1 37.0

form. Floating-point throughput is expressed in single-precision GFLOP/sec-
ond on a machine whose peak floating-point throughput is estimated
to be 108 GFLOP/s. The benchmark itself consists of back-to-back
floating point multiply and adds within a heavily unrolled loop launched
over 576 threads. Warps of 4 threads achieve 97.1 GFLOPs/s on the
target machine, or 90% of peak. Scalar threads saturate the scalar
FPU issue ports and achieve 25.0 GFLOPs/s. Exceeding the vector
width of the target processor requires the code generator to emit mul-
tiple vector operators in series which increases register pressure and
extends the live ranges of values. Consequently, executing the above
benchmark with a warp size of 8 threads while targeting SSE results
in degraded performance.

6.1 Performance Gains
Speedup. The principle benefit of vectorization is the efficient uti-
lization of vector functional units for applications that exhibit diver-
gent control flow. This set of evaluations captures runtimes of CUDA
kernels from the CUDA 2.2 SDK and Parboil application suites for a
maximum warp size equal to the machine vector width of 4 threads.
Speedups relative to a baseline of scalar execution are presented in
Figure 6. The baseline translator and thread scheduler is identical to
what was presented in [16].

Average speedup is 1.45x. Speedup varies from approximately 1.0x
in the case of applications such as BoxFilter, ScalarProd, and SobolQRNG.
These applications have memory-bound kernels but perform frequent
synchronizations such that threads maintain high locality even with-
out vectorization. Other applications that are more compute bound
with fewer synchronizations achieve higher speedups. BinomialOp-
tions achieves 2.25x speedup over the baseline, and the Parboil appli-
cation cp achieves 3.9x speedup. Both applications have very uniform
control flow properties and unrolled loops. Other applications such as
MersenneTwister, mri-fhd, and mri-q run slower with dynamic warp
formation. We believe this is due to control-flow irregularity. Threads
with uncorrelated control-flow properties may diverge at every branch
unless maximum warp size is limited. This observation motivates fu-
ture work to detect cases when diverging branches are so frequent that
scalar execution is optimal.

Average Warp Size. Figure 7 illustrates the average warp size of each
kernel for the applications executed in Figure 6. This metric expresses
the fraction of kernels of warp sizes 1, 2, and 4, where 4 is the maxi-
mum warp size. The results indicate that most kernel entries from the
execution manager have warp size of 4 for every application except
SimpleVoteIntrinsics which is only ever to form warps of 2 theads at
most. These results also show that many applications are not entirely
convergent which justfies the design decision to tolerate divergence
and use dynamic warp formation to maximize available warp size. Fi-
nally, convergence does not entirely capture performance properties.
BinomialOptions, for instance, achieves among the highest speedups..
This indicates that a dynamic warp formation strategy is very effec-
tive in improving utilization, but an implementation may be penalized
by frequent kernel exits to the execution manager.

Liveness at Entry Points. This metric counts the average number
of values restored per thread at entry points from the execution man-
ager taken during the execution of each program. Runtime overhead
at transitions between the execution manager and the kernel is pro-
portional to the number of values restored. On average, 4.54 values
are live per thread at each entry. Figure 8 illustrates this for each

of the benchmark applications. Most applications with barriers have
live state at yield points and require some context to be reloaded. On
average, fewer values than architectural registers registers need to be
restored indicating compiler-inserted context save and restore points
may be at least as efficient as other types of cooperative threading
libraries.

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

liv
e
 v

a
ri

a
b
le

s

Figure 8: Average number of values loaded per thread on entry
from the execution manager.

Yield Overheads. Figure 9 illustrates the fraction of CPU clock cy-
cles spent in different phases of the execution of kernels in an appli-
cation. For many applications, time spent in the Execution Manager
(EM) is extensive. This includes testing barriers, inserting thread
contexts into warps, and updating thread status after the execution
of a kernel. Yield points that store and restore live state on transi-
tions to the execution manager present a small overhead relative to
cycles spent actually executing the subkernel. Applications such as
MersenneTwister, Nbody, and CP achieve both high speedup, and
nearly all execution time is spent within the vectorized subkernel.
Synchronization-intensive applications such as BinomialOptions and
MatrixMul spend more time within the execution manager and have
limited speedup, even with little divergence. As vectorization reduces
the execution time of the kernel, the relative percentage of time spent
in the execution manager increases. These results suggest improving
efficiency of the execution manager is key to further increases in per-
formance even for applications with highly efficient compute-bound
kernels.

6.2 Thread Invariant Expression Elimination
Scalar threads following the same paths through a kernel may com-
pute identical results in some expressions. These expressions have
data-dependencies to CTA-wide invariants such as kernel arguments,
block and grid dimensions, and shared constants. For example, many
CUDA kernels compute the expression blockDim.x * gridIdx.x such
as when determining a thread’s global index in a kernel grid. Thread-
invariant expressions are redundant across a warp, and their elimina-
tion is expected to improve performance when threads are serialized.
The approach to vectorization described in this paper enables classi-
cal compiler optimizations - common subexpression elimination - to
identify thread-invariant expressions and eliminate them.

This experiment constrains warps to consist of consecutively indexed
threads, a mapping defined a priori and termed static warp forma-
tion. Following vectorization, thread ID values are replaced with
constant expressions relative to the warp’s base thread. For exam-
ple, thread 0 loads its thread ID from a context object, but thread 2
computes it from thread 0’s ID. Expressions in each thread, which
are not true dependencies of thread ID, are subsequently marked as
thread-invariant. Standard common subexpression elimination opti-
mizations downstream of vectorization eliminates redundant thread-
invariant expressions via a conservative analysis.

Collange et al. [12] show an average of 15 % of result PTX operands
are reported as thread-invariant averaged over CUDA SDK applica-

2.7x 3.9x

Figure 6: Speedup of benchmark applications.

tions. This work’s approach to vectorization with static warp forma-
tion was able to reduce LLVM instruction counts by 9.5 % on average
for a warp size of 2 threads. LLVM’s optimization pass also reduces
vector instructions to scalar instructions when lanes other than the
base lane are redundant. For a warp size of 4 threads, 11.5% of in-
structions were eliminated. Larger warps imply a large fraction of
thread-invariant instructions.

Speedup with Thread-Invariant Elimination. This experiment con-
strains warps to consist of consecutively indexed threads from the
same CTA and applies thread-invariant elimination. Performance nor-
malized to vectorization with dynamic warp formation is plotted in
Figure 10. Average speedup is 11.3%, yet some applications achieve
considerably higher performance with static warp formation than with
dynamic warp formation. MersenneTwister experienced a 4.9x slow-
down with dynamic warp formation, but static warp formation and
thread invariance achieved a 1.30x speedup over completely scalar
execution. The boost in performance is likely due to constrained warp
formation in the presence of irregular control flow behavior.

7. RELATED WORK
Karrenberg [19] and Shin [20] present approaches to vectorization
that focus on conditional select operators. These works replace condi-
tional control-flow with conditional data-flow and rely on predication
in combination with control-flow graph restructuring transformations
to accommodate divergence. Predication is a light-weight technique
for disabling divergent or terminated threads along some control paths
but reduces SIMD utilization. Instructions predicated off which can-
not be vectorized incur additional penalties, as they occupy pipeline
stages yet their results are discarded. Their evaluation includes sev-
eral optimizations that were not implemented for this work such as
coalescing of affine vector loads and stores.

Stratton et al. [5] propose several approaches to translate the PTX
execution model for efficient execution on multicore CPUs. Strat-
ton describes a source-to-source translator that inserts nested thread
loops into the control structures of a CUDA kernel’s abstract syntax
tree. Live values spanning multiple thread loops are expanded into ar-
rays indexed by thread ID. Scalar threads are entirely serialized, and
memory accesses are dramatically reordered across threads. Diamos

et al. [16] describe the translator from PTX to LLVM on which this
work was based. The multicore CPU backend to GPU Ocelot serial-
izes scalar threads similarly to [5]. This work revealed the memory
reordering problem and opportunities to exploit control-flow unifor-
mity.

In [21], Steffen et al. present a hardware mechanism for terminating
kernels that have executed divergent branches and spawning continu-
ations that execute after a grouping phase chooses threads waiting to
execute the same branch target. This technique incurrs overheads for
all branches regardless of uniformity and does not immediately sup-
port CTA-wide synchronization barriers. Launching continuations on
control-flow divergence through specialized hardware support is sim-
ilar to what the dynamic execution manager of this work performs
using software.

G-Streamline [22] controls the incidence of thread divergence by re-
mapping tasks to threads. While such a re-mapping is trivial in imple-
mentations of the proposed technique, this work does not investigate
scheduling nor task distribution heuristics to maximize control-flow
utilization. Rather, it assumes that in any mapping, divergence is pos-
sible and requires a context switch betweeen specializations for dif-
ferent warp sizes.

Other approaches to portable vectorization such as Liquid SIMD [23]
proposed by Clark et al. encode vectorizable operations as sequences
of annotated scalar operators that are promoted to vector types by a
dynamic compilation environment at runtime. This provides portabil-
ity in terms of vector widths without incurring significant translation
overhead. However, Liquid SIMD is applicable to program represen-
tations that have already been vectorized, perhaps with a technique
such as proposed in this work. It does not approach the problem of
vectorizing collections of scalar threads with correlated control flow.
Barik [24] et al. present an algorithm for efficiently and automatically
vectorizing scalar code by forming short vectors from independent in-
structions, using horizontal vector operators, and by algebraic simpli-
fication. Like other classical approaches to vectorization, the initial
representation is not a collection of data-parallel threads but instead
focuses on vectorizing scalar threads. The set of optimizations pro-
posed is complimentary to dynamic vectorization presented here and

Figure 7: Average warp size of executed kernels with maximum warp size of 4 threads.

A
lig
n
e
d
Ty
p
e
s

A
sy
n
cA
P
I

B
ic
u
b
ic
Te
x
tu
re

B
in
o
m
ia
lO
p
ti
o
n
s

B
it
o
n
ic

B
la
ck
S
ch
o
le
s

B
ox
Fi
lt
e
r

C
lo
ck

C
o
n
v
o
lu
ti
o
n
S
e
p
a
ra
b
le

C
o
n
v
o
lu
ti
o
n
Te
x
tu
re

C
p
p
In
te
g
ra
ti
o
n

D
w
tH
a
a
r1
D

E
ig
e
n
v
a
lu
e
s

Fa
st
W
a
ls
h
Tr
a
n
sf
o
rm

H
is
to
g
ra
m
2
5
6

H
is
to
g
ra
m
6
4

Im
a
g
e
D
e
n
o
is
in
g

M
a
tr
ix
M
u
l

M
e
rs
e
n
n
e
Tw
is
te
r

M
o
n
te
C
a
rl
o

N
b
o
d
y

Po
st
P
ro
ce
ss
G
L

Q
u
a
si
ra
n
d
o
m
G
e
n
e
ra
to
r

R
e
cu
rs
iv
e
G
a
u
ss
ia
n

R
e
d
u
ct
io
n

S
ca
la
rP
ro
d

S
ca
n

S
ca
n
La
rg
e
A
rr
a
y

S
im
p
le
A
to
m
ic
In
tr
in
si
cs

S
im
p
le
G
L

S
im
p
le
M
u
lt
ie
G
P
U

S
im
p
le
S
tr
e
a
m
s

S
im
p
le
Te
m
p
la
te
s

S
im
p
le
Te
x
tu
re

S
im
p
le
Te
x
tu
re
3
D

S
im
p
le
V
o
te
In
tr
in
si
cs

S
im
p
le
Z
e
ro
C
o
p
y

S
o
b
e
lF
ilt
e
r

S
o
b
e
lQ
R
N
G

Te
m
p
la
te

T
h
re
a
d
Fe
n
ce
R
e
d
u
ct
io
n

Tr
a
n
sp
o
se

Tr
a
n
sp
o
se
N
e
w

V
o
lu
m
e
R
e
n
d
e
r

cp

m
ri
-q

re
p
s

rp
a
cf

Kernel

Figure 9: Fraction of cycles in execution manager (EM), yields to and from the EM, and executing subkernel.

might be used after vectorization to improve the quality of generated
code.

8. CONCLUSIONS
This research shows explicitly data-parallel kernels can be compiled
for efficient execution on modern multicore CPUs leveraging vector
and SIMD functional units while tolerating control-flow divergence.
We present a program transformation for specializing a kernel repre-
sentation for various vector widths and propose a method for accom-
modating divergent control flow instructions via a light-weight virtual
context switch implemented by compiler-inserted handling blocks. A
dynamic execution manager orchestrates the execution of collections
of threads by forming warps from a pool of ready threads with identi-
cal entry locations. An implementation of this technique is evaluated
within GPU Ocelot, a research compilation framework for hetero-
geneous platforms. We apply dynamic vectorization to real-world
workloads from existing GPU compute applications.

Microbenchmarks demonstrate near-peak computational throughput
on GPUs and, with dynamic vectorization, peak throughput on an In-
tel Sandybridge CPU with vector ISA extensions. This technique is

expected to scale across multiple vector widths and is not coupled
to features of particular instruction set extensions. Consequently, it
is applicable to other processor architectures with vector accelerator
units such as PowerPC and ARM. Moreover, this technique does not
require hardware support for divergence and provides dynamic com-
pilation support for deploying data-parallel kernels on systems com-
posed of both GPUs and multicore CPUs. Future work focuses more
on the interaction within the complex memory hierachies of future
systems to further improve the quality of vectorization.

9. ACKNOWLEDGEMENTS
The authors would like to thank Vinod Grover, Nathan Clark, and
Scott Mahlke for discussions relating to dynamic compilation for vec-
tor architectures and to the anonymous reviewers for their recommen-
dations and feedback. This research was supported in part by NSF
under grants IIP-1032032, CCF-0905459, by LogicBlox Corporation,
and equipment grants from NVIDIA Corporation.

10. REFERENCES
[1] Intel Corporation. Intel 64 and IA-32 Architectures

Optimization Reference Manual. Number 248966-018 in Intel

6.4x 1.9x 2.3x

Figure 10: Speedup of static warp formation with thread-invariant elimination over dynamic warp formation.

64 and IA-32 Optimization Manaul. Intel Corporation, March
2009.

[2] Intel Corp. Intel AVX: New Frontiers in Performance
Improvements and Energy Efficiency, March 2008.

[3] KHRONOS OpenCL Working Group. The OpenCL
Specification, December 2008.

[4] NVIDIA. NVIDIA CUDA Compute Unified Device
Architecture. NVIDIA Corporation, Santa Clara, California,
2.1 edition, October 2008.

[5] John Stratton and Vinod Grover et al. Efficient compilation of
fine-grained spmd-threaded programs for multicore cpus. In
CGO 2010, Toronto, Canada, April 2010.

[6] Jayanth Gummaraju and Laurent Morichetti et al. Twin peaks:
a software platform for heterogeneous computing on
general-purpose and graphics processors. PACT ’10, pages
205–216, New York, NY, USA, 2010. ACM.

[7] Jaejin Lee and Jungwon Kim et al. An opencl framework for
heterogeneous multicores with local memory. PACT ’10, pages
193–204, New York, NY, USA, 2010. ACM.

[8] Haicheng Wu, G. Diamos, Si Li, and S. Yalamanchili.
Characterization and transformation of unstructured control
flow in gpu applications. In First International Workshop on
Characterizing Applications for Heterogeneous Exascale
Systems, June 2011.

[9] NVIDIA. NVIDIA Compute PTX: Parallel Thread Execution.
NVIDIA Corporation, Santa Clara, California, 1.3 edition,
October 2008.

[10] Larry Seiler and Doug Carmean et al. Larrabee: a many-core
x86 architecture for visual computing. In ACM SIGGRAPH
2008 papers, SIGGRAPH ’08, pages 18:1–18:15, New York,
NY, USA, 2008. ACM.

[11] Bruno Coutinho, Diogo Sampaio, Fernando Magno Quintao
Pereira, and Wagner Meira Jr. Divergence analysis and
optimizations. In Parallel Architectures and Compilation
Techniques (PACT), 2011 International Conference on, pages
320 –329, oct. 2011.

[12] Sylvain Collange and David Defour et al. Dynamic detection of
uniform and affine vectors in gpgpu computations. Technical
report, Universite de Perpignan, University of California Davis,
June 2009.

[13] Ziyu Guo, Eddy Zheng Zhang, and Xipeng Shen. Correctly
treating synchronizations in compiling fine-grained

spmd-threaded programs for cpu. In Parallel Architectures and
Compilation Techniques (PACT), 2011 International
Conference on, pages 310 –319, oct. 2011.

[14] Andrew Kerr, Gregory Diamos, and Sudhakar Yalamanchili. A
characterization and analysis of ptx kernels. In IISWC’09,
Austin, TX, USA, October 2009.

[15] Gregory Diamos, Andrew Kerr, and Sudhakar Yalamanchili.
Gpuocelot: A binary translation framework for ptx., June 2009.
http://code.google.com/p/gpuocelot/.

[16] Gregory Diamos, Andrew Kerr, Sudhakar Yalamanchili, and
Nathan Clark. Ocelot: a dynamic optimization framework for
bulk-synchronous applications in heterogeneous systems.
PACT ’10, pages 353–364, New York, NY, USA, 2010. ACM.

[17] IMPACT. The parboil benchmark suite, 2007.
[18] Volkov Vasily and Demmel James W. Benchmarking gpus to

tune dense linear algebra. In Supercomputing’08, Piscataway,
NJ, USA, 2008.

[19] Ralf Karrenberg and Sebastian Hack. Whole-function
vectorization. CGO, 2011.

[20] Jaewook Shin. Introducing control flow into vectorized code. In
Proceedings of the 16th International Conference on Parallel
Architecture and Compilation Techniques, PACT ’07, pages
280–291, Washington, DC, USA, 2007. IEEE Computer
Society.

[21] Michael Steffen and Joseph Zambreno. Improving simt
efficiency of global rendering algorithms with architectural
support for dynamic micro-kernels. MICRO ’43, Washington,
DC, USA, 2010.

[22] Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian, and Xipeng
Shen. On-the-fly elimination of dynamic irregularities for gpu
computing. In Proceedings of the sixteenth international
conference on Architectural support for programming
languages and operating systems, ASPLOS ’11, pages
369–380, New York, NY, USA, 2011. ACM.

[23] Nathan Clark and Amir Hormati et al. Liquid simd:
Abstracting simd hardware using lightweight dynamic
mapping. In HPCA ’07, pages 216–227, Washington, DC,
USA, 2007. IEEE Computer Society.

[24] Rajkishore Barik, J. Zhao, and V. Sarkar. Efficient selection of
vector instructions using dynamic programming. MICRO ’43,
pages 201–212, Washington, DC, USA, 2010. IEEE Computer
Society.

