
Kernel Weaver: Automatically Fusing Database Primitives for Efficient GPU Computation

Haicheng Wu

Georgia Institute of Technology

hwu36@gatech.edu

Gregory Diamos

NVIDIA Research

gdiamos@nvidia.com

Srihari Cadambi

NEC Laboratories America

cadambi@nec-labs.com

Sudhakar Yalamanchili

Georgia Institute of Technology

sudha@ece.gatech.edu

Abstract

Data warehousing applications represent an emerging application

arena that requires the processing of relational queries and com-

putations over massive amounts of data. Modern general purpose

GPUs are high bandwidth architectures that potentially offer sub-

stantial improvements in throughput for these applications. However,

there are significant challenges that arise due to the overheads of

data movement through the memory hierarchy and between the GPU

and host CPU. This paper proposes data movement optimizations to

address these challenges.

Inspired in part by loop fusion optimizations in the scientific com-

puting community, we propose kernel fusion as a basis for data

movement optimizations. Kernel fusion fuses the code bodies of

two GPU kernels to i) reduce data footprint to cut down data move-

ment throughout GPU and CPU memory hierarchy, and ii) enlarge

compiler optimization scope. We classify producer consumer de-

pendences between compute kernels into three types, i) fine-grained

thread-to-thread dependences, ii) medium-grained thread block de-

pendences, and iii) coarse-grained kernel dependences. Based on

this classification, we propose a compiler framework, Kernel Weaver,

that can automatically fuse relational algebra operators thereby

eliminating redundant data movement.

The experiments on NVIDIA Fermi platforms demonstrate that

kernel fusion achieves 2.89x speedup in GPU computation and a

2.35x speedup in PCIe transfer time on average across the micro-

benchmarks tested. We present key insights, lessons learned, mea-

surements from our compiler implementation, and opportunities for

further improvements.

1. Introduction

The arrival of big data [20] has energized the search of architectural

and systems solutions to sift through massive volumes of data. The

use of programmable GPUs has appeared as a potential vehicle for

high throughput implementations of data warehousing applications

with an order of magnitude or more performance improvement over

traditional CPU-based implementations [36, 18]. This expectation

is motivated by the fact that GPUs have demonstrated significant

performance improvements for data intensive scientific applications

such as molecular dynamics [2], physical simulations in science [32],

options pricing in finance [34], and ray tracing in graphics [33]. It is

also reflected in the emergence of accelerated cloud infrastructures

for the Enterprise such as Amazon’s EC-2 with GPU instances [40].

However, the application of GPUs to the acceleration of data ware-

housing applications that perform relational queries and computations

over massive amounts of data is a relatively recent trend [14] and

there are fundamental differences between such applications and

compute-intensive high performance computing (HPC) applications.

Relational algebra (RA) queries form substantial components of data

warehousing applications and on the surface appear to exhibit sig-

nificant data parallelism. Unfortunately, this parallelism is generally

more unstructured and irregular than other domain specific opera-

tions, such as those common to dense linear algebra, complicating

CPU (Multi Core)
2-10 Cores

Main MEM

~128 GB

GPU

~1500 Cores

GPU MEM
~6 GB

5
-2

0
G

B
/s

PCIe

4-16GB/s

8
-3

3
0

G
B

/s

Figure 1: Memory hierarchy bottlenecks for GPU accelerators.

the design of efficient parallel implementations. RA operators also

exhibit low operator density (operations per byte) making them very

sensitive to and limited by the memory hierarchy and costs of data

movement.

Overall, the nature and structure of RA queries make different

demands on i) traversals through the memory hierarchy, ii) choice

of logical and arithmetic operators, iii) control flow structure, and

iv) data layouts. Consequently, there arise two fundamental issues.

First there is a need for the efficient GPU implementations of RA

primitives. Second, an issue that is fundamental to the current archi-

tecture of GPU-based systems is the set of limitations imposed by

the CPU-GPU memory hierarchy, as shown in Figure 1. Internal to

the GPU there exists a memory hierarchy that extends from GPU

core registers, through on-chip shared memory, to off-chip global

memory. However, the amount of memory directly attached to the

GPUs (the off-chip global memory) is limited, forcing transfers from

the next level which is the host memory that is accessed in most

systems via PCIe channels. The peak bandwidth across PCIe can be

up to an order of magnitude or more lower than GPU local memory

bandwidth. Data warehousing applications must stage and move data

throughout this hierarchy. He et al. observed that although GPU

can bring 2-27x speedup compared with CPU if only considering

computation time, 15-90% of the total execution time is spent on

moving data between CPU and GPU when accelerating database

applications [18]. Consequently there is a need for techniques to

optimize the implementations of data warehousing applications con-

sidering both the GPU computation capabilities and system memory

hierarchy limitations.

This paper addresses the challenge of optimizing data movement

through the CPU-GPU memory hierarchy in the context of data ware-

housing applications (and hence their dominant primitives). Specifi-

cally, we propose and demonstrate the utility of Kernel Weaver as

a framework for optimizing data movement. Kernel Weaver applies

a cross-kernel optimization, kernel fusion, to GPU kernels. Kernel

fusion is analogous to traditional loop fusion and its principal benefits

are that it i) reduces transfers of intermediate data through the CPU-

GPU memory hierarchy, ii) reduces the overall memory data footprint

of a sequence of kernels in each level of the memory hierarchy, and

iii) increases the textual scope, and hence benefits, of many existing

compiler optimizations.

 Shared Memory

 L2 Cache

 Interconnect Network

 Memory Controller

��

o

��

o o o

��

��

��
CUDA Kernel

barrier

Cooperative Thread Arrays (CTA)

Thread

Warp 1
Warp N

DRAM

 Row Buffer

Coalesced Access

0 4 8 C 10 14 18 1C

branch

End of
branch

Address

R R R R R R R R �� R R R R R R R R

A

L
U

��

A

L
U

A

L
U

A

L
U

A

L
U

A

L
U

A

L
U

A

L
U

A

L
U

A

L
U

A

L
U

A

L
U

A

L
U

A

L
U

A

L
U

A

L
U

Streaming Multiprocessor (SM)

Figure 2: NVIDIA C2050 architecture and execution model.

This paper proposes the Kernel Weaver optimization framework

and demonstrates the impact of kernel fusion for optimizing data

movement in patterns of interacting operators found in the TPC-H

benchmark suite. The goal of this paper is to provide insight into how,

why, and when kernel fusion works with quantitative measurements

from implementations targeted to NVDIA GPUs. This paper makes

the following specific contributions:

• Introduction of the Kernel Weaver framework and algorithms for

automated kernel fusion;

• Definition of basic dependences and general criteria for kernel

fusion applicable across multiple application domains;

• Quantification of the impact of kernel fusion on different levels of

the CPU-GPU memory hierarchy for a range of RA operators;

• Proposes and demonstrates the utility of compile-time data move-

ment optimizations based on kernel fusion.

2. Background and Motivation

2.1. Programmable GPU

This paper uses NVIDIA devices and CUDA as the target platform.

Figure 2 shows an abstraction of NVIDIA’s GPU architecture and

execution model. A CUDA program is composed of a series of

multi-threaded kernels. Kernels are composed of a grid of parallel

work-units called Cooperative Thread Arrays (CTAs) [37], that are

mapped to Single Instruction Multiple Thread (SIMT) units called

stream multiprocessors (SMs) where each thread has support for

independent control flow. Different CTAs can execute in arbitrary

order and synchronization between threads only exists within a CTA.

Global memory is used to buffer data between CUDA kernels as

well as to communicate between the CPU and GPU. Each SM has a

shared scratch-pad memory with allocations for each CTA and can be

used as a software controlled cache. Registers are privately owned by

each thread to store immediately used values. CTAs execute in SIMD

chunks called warps; hardware warp and thread scheduling hide

memory and pipeline latencies. Effective utilization of the memory

subsystem is also critical to achieving good performance.

CUDA and OpenCL are the dominant programming models in

GPU computation. CUDA is dedicated to NVIDIA devices, and

OpenCL is supported by NVIDIA, AMD and Intel GPUs. Terms

used to describe GPU abstractions such as data parallel threads and

4 5 61 2 3

+
Kernel A

Kernel B

Fused Kernel

5 7 9 2 4 6

-

3 3 3

4 5 61 2 3

+/-

2 4 6

3 3 3

A1: A2:

A3:

A1: A2: A3:

(a) (b)

Figure 3: Example of kernel fusion.

shared scratch-pad memory typically vary depending on the specific

programming model being considered. CUDA typically uses the

terms thread and shared memory, and OpenCL typically uses work

item and local memory. The CUDA terminology is adopted in this

paper because Kernel Weaver is currently implemented based on it.

However, the same concept and technology can also be applied to

OpenCL and its supported devices.

2.2. Relational Algebra Operators

Relational algebra (RA) operators can express the high level seman-

tics of an application in terms of a series of bulk operations on rela-

tions [1]. They are the building blocks of modern relational database

systems. A relation is a set of tuples, each of which comprises of a

list of n attributes. Some attributes are keys that are considered by

the RA operator.

Table 1 lists the common RA operators and a few simple examples.

In general, these operators perform simple tasks on a large amount

of data. A typical data warehousing query consists of dozens of RA

operators over massive data sets.

In addition to these operators, data warehousing applications per-

form arithmetic computations ranging from simple operators such as

aggregation to more complex functions such as statistical operators

used for example in forecasting or retail analytics. Further, operators

such as SORT and UNIQUE are required to maintain certain order

amongst data elements and thereby can introduce certain ordering

constraints amongst relations.

2.3. Motivation

The idea of GPU kernel fusion comes from classic loop fusion op-

timization. Basically, kernel fusion reduces data flow between two

kernels (via the memory system) by merging them into one larger ker-

nel. Therefore, its benefits goes far beyond reduction in PCIe traffic.

Figure 3 depicts an example of kernel fusion. Figure 3(a) shows two

dependent kernels - one for addition and one for subtraction. After

fusion, a single functionally equivalent new kernel (Figure 3(b)) is

created. The new kernel directly reads in three inputs and produces

the same result without generating any intermediate data.

Kernel Fusion has six benefits as listed below. The first four

stem from creating a smaller data footprint through fusion since it is

unnecessary to store temporary intermediate data in global memory

after each kernel execution, while the other two relate to increasing

the compiler’s optimization scope.

Smaller Data Footprint results in the following benefits:

• Reduction in Memory Accesses: Fusing data dependent (producer-

consumer) kernels enables storage of intermediate data in registers

or GPU shared memory (or cache) instead of global memory.

• Temporal Data Locality: As in traditional loop fusion, access to

common data structures across kernels expose and increase tem-

poral data locality. For example, fusion can reduce array traversal

overhead when the array is accessed in both kernels.

2

RA Operator Description Example

SET A binary operator that consumed two relations to produce a new x = {(2,b),(3,a),(4,a)}, y = {(0,a),(2,b)}
UNION relation consisting of tuples with keys that are present in at UNION x y→ {(0,a),(2,b),(3,a),(4,a)}

least one of the input relations.

SET A binary operator that consumes two relations to produce a new x = {(2,b),(3,a),(4,a)}, y = {(0,a),(2,b)}
INTERSECTION relation consisting of tuples with keys that are present in both INTERSECT x y→ {(2,b)}

of the input relations.

SET A binary operator that consumes two relations to produce a new x = {(2,b),(3,a),(4,a)}, y = {(3,a),(4,a)}
DIFFERENCE relation of tuples with keys that exist in one input relation DIFFERENCE x y→ {(2,b)}

and do not exist in the other input relation.

CROSS A binary operator that combines the attribute spaces of two x = {(3,a),(4,a)}, y = {(True)}
PRODUCT relations to produce a new relation with tuples forming the PRODUCT x y→ {(3,a,True),(4,a,True)}

set of all possible ordered sequences of attribute values from
the input relations

JOIN A binary operator that intersects on the key attribute and cross x = {(2,b),(3,a),(4,a)}, y = {(2,f),(3,c),(3,d)}
product of value attributes. JOIN x y→ {(2,b,f),(3,a,c),(3,a,d)}

PROJECT A unary operator that consumes one input relation to produce a x = {(2,False,b),(3,True,a),(4,True,a)}
new output relation. The output relation is formed from tuples of PROJECT [0,2] x→ {(2,b),(3,a),(4,a)}
the input relation after removing a specific set of attributes.

SELECT A unary operator that consumes one input relation to produce a x = {(2,False,b),(3,True,a),(4,True,a)}
new output relation that consists of the set of tuples that SELECT (key==2) x→ {(2,False,b)}
satisfy a predicate equation. This equation is specified as a
series of comparison operations on tuple attributes.

Table 1: The set of relational algebra operations. In the example, the 1st attribute is the "key".
(Syntax: (x,y) – tuple of attributes; {(x1,y1),(x2,y2)} – relation; [0,2] – attribute index)

• Reduction in PCIe Traffic: Kernel fusion can cut down transfers

of inter-kernel data across the PCIe interconnect.

• Larger Input Data: Since kernel fusion reduces intermediate data

thereby freeing GPU memory, larger data sets can be processed on

the GPU increasing throughput.

Larger Optimization Scope brings two benefits:

• Common Computation Elimination: When two kernels are fused,

the common stages of computations are redundant and can be

avoided.

• Improved Compiler Optimization Benefits: When two kernels

are fused, the textual scope of many compiler optimizations are

increased bringing greater benefits than when applied to each

kernel individually.

These benefits are especially useful for data warehousing applica-

tions since RA operators are fine grained and exhibit low operation

density, ops per byte transferred from memory. Fusion naturally im-

proves operator density and hence performance. Figure 4 is a simple

example comparing the GPU computation throughput of back-to-

back SELECTs with and without kernel fusion. Inputs are randomly

generated 32-bit integers, the x-axis is the problem size which fits

GPU memory, and kernels were manually fused in this example.

On average, fusing two SELECTs achieves 1.80x larger throughput

while fusing three kernels achieves 2.35x. Fusing three SELECTs

is better since more redundant data movement is avoided and larger

code bodies are created for optimization.

Recently, Intel introduced the Sandy (and Ivy) Bridge architectures

and AMD brought Fusion APUs to the market. Both designs put

the CPU and GPU on the same die and remove the PCIe bus. In

these systems, four out of the six benefits listed above still apply

(excluding Reduction in PCIe Traffic and Larger Input Data). Thus,

kernel fusion is still valuable.

While a programmer could perform a fusion transformation manu-

ally, database queries are typically supplied in a high level language

like Datalog or SQL, from which lower-level operations are synthe-

sized using a query planner and compiler. Automating this process

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50 100 150 200 250 300 350 400 450

T
h

ro
u

g
h

p
u

t
(M

il
li

o
n

 E
le

m
e

n
ts

/s
)

Number of Elements (million)

Fusion 3 SELECTs
No fusion 3 SELECTs
Fusion 2 SELECTs
No Fusion 2 SELECTs

Figure 4: Performance Comparison between fused and independent
SELECTs.

as a compilation transformation is necessary to make GPUs acces-

sible and useful to the broader community of business analysts and

database experts. Moreover, running kernel fusion dynamically in a

just-in-time compiler (JIT) creates opportunities to leverage runtime

information for more effective optimizations.

3. System Overview

Kernel Weaver is implemented as part of a domain-specific com-

pilation and run-time system illustrated in Figure 5. The language

front-end is based on the Datalog language [21]. Datalog is a declar-

ative language used to express database queries and operations - in

this case over large data sets. The output of the language front-end is

a query plan that contains nodes corresponding to arithmetic, logical,

and relational operators and their dependences. These are translated

into an internal kernel intermediate representation which drives the

Kernel Weaver transformation engine. Kernel Weaver operates on

CUDA source implementations of RA operators stored in a primitive

library to produce fused CUDA implementations from which nvcc is

used to generate kernel code in NVIDIA’s parallel thread execution

(PTX) instruction set. The lightweight host runtime layer [10] picks

up the fused PTX kernels and drives the Ocelot dynamic compilation

and runtime infrastructure [11] which is responsible for the execution

on the NVIDIA GPUs. Note that each RA operator may be imple-

mented as several CUDA kernels so that fusing operators requires

coordinated fusion of several CUDA kernels. While we tested all of

3

Datalog

Queries

Datalog
Front-end

RA CUDA

PTX

RA to CUDA Compiler

Kernel
Weaver

RA Primitive CUDA
 Library

Runtime
Manager

Language
Front-End

Translation
Layer

GPU

Accelerator

CPU

Host

Figure 5: System diagram of Kernel Weaver

0 3 1 2 2 4 3 6
0 2 6 8 10 14 16 18 22 24 26 30 32

2-bit
key

4-bit
value

2-bit
padding zero

Figure 6: An example of a relation with four tuples, each compressed
into 8-bits and packed into a single 32-bit word.

the examples in this paper, the language front-end needs further work

before the full Datalog language can be executed on GPUs.

3.1. Kernel Representation

Kernel fusion is based on the multi-stage formulation of algorithms

for the RA operators. Multi-stage algorithms are common to sort-

ing [31], pattern matching [39], algebraic multi-grid solvers [5], or

compression [17]. This formulation is popular for GPU algorithms in

particular since it enables one to separate the structured components

of the algorithm from the irregular or unstructured components. This

can lead to good scaling and performance. Kernel fusion can now be

explained as a process of weaving (mixing, fusing, and reorganizing)

stages from different operators to generate new optimized operator

implementations.

The high level description of the order and functionality of the

stages will be referred as an algorithm skeleton. In this paper we use

the algorithm skeletons developed by Diamos et al. [12] which have

been evaluated to be 1.69-3.54x faster than those developed by He

et al. [18]. Diamos et al. store relations as a densely packed array of

tuples with strict weak-ordering. Figure 6 is an example of a 32-bit

relation containing 4 tuples sorted according to the key attributes. The

sorted form allows for efficient array partitioning and tuple lookup

operations. In our compilation environment, skeletons for all of the

RA operators are stored in the RA primitives library (see Figure 5)

with CUDA implementations of each stage. The remainder of this

section describes the basic structure, relevant details, and adaptations

we have made of their implementation.

All RA operator skeletons are comprised of three major stages,

partition, compute and gather. In the following we briefly describe

the functionality of each stage using the implementation of a simple

operator - SELECT (Figure 7) - as an example.

Partition: The input relations are partitioned into independent

sections that are processed in parallel by different CTAs. For unary

operators such as SELECT in Figure 7 the input relations can be

evenly partitioned to balance the workload across CTAs. Binary

operators such as JOIN and SET INTERSECTION are more complex

in this stage since they need to partition both inputs and partitioning

is based on a key value consequently producing unbalanced sizes of

inputs to CTAs and resulting in unbalanced compute loads.

Compute: A function for each RA operator is applied to its par-

tition of the inputs to generate independent results. Different RA

operators are specialized to effectively utilize fine-grained data paral-

lelism and the multi-level memory hierarchy of the GPU to maximize

CTA0

CTA1

CTA2

CTA3

CTA0

CTA1

CTA2

CTA3

GPU MEM

Unmatched
element

Matched
element

Partition Compute Gather

GPU CORE GPU MEM

1st CUDA Kernel: Filter 2nd CUDA Kernel: Gather

GPU MEM

Filter Compact

Figure 7: Example algorithm of SELECT

performance. For example, the SELECT in Figure 7 first filters ev-

ery element in parallel and then leverages the shared memory to

compact [6] the filtered result in preparation to create a contiguous

output.

Gather: The results computed in individual partitions are gathered

into a global dense sorted array of tuples by using a coalesced memory

to memory copy, a common CUDA programming pattern [30].

Multi-stage RA operators are implemented as multiple CUDA

kernels - typically one per stage. Kernel weaver fuses operators by

interleaving stages and then fusing interleaved stages (their respective

CUDA implementations) to produce a multi-stage implementation of

the fused operator. Thus, fusion of CUDA kernels is necessary to re-

alize operator fusion. A variety of alternative implementations can be

used for the implementation of each stage and can be accommodated

by the operator fusion process. Diamos et. al. [12], report perfor-

mance results that are significantly better than any reported results in

the literature. Consequently we use their multi-stage algorithms for

RA operators in the demonstration of kernel weaver.

4. Automating Fusion

This section introduces the process of kernel fusion employed in

Kernel Weaver. For simplicity, the initial description is based on

each operator being implemented as a single data parallel kernel.

Subsequently, we will describe higher performance multi-stage im-

plementations of the RA operators. This section describes three main

steps to fuse operators: (i) using compiler analysis to find all groups

of operators that can be fused, (ii) selecting candidates to fuse, and

(iii) performing fusion and generating code for the fused operators.

4.1. Criteria for Kernel Fusion

The simple idea is to take two kernels say with 4096 threads each,

and produce a single kernel with 4096 threads, where each thread

is the result of fusing two corresponding threads in the individual

kernels. Clearly, the data flow between the two fused threads must be

correctly preserved. The classification below can be understood from

the perspective of preserving this simple model of kernel fusion. The

first consideration is finding feasible combinations of data parallel

kernels to fuse via compiler analysis, followed by the selection of the

best options. Two types of criteria for fusion of candidate kernels are

that they possess i) same kernel configuration (CTA dimensions and

thread dimensions), and ii) producer-consumer dependence.

The first criteria is similar to loop fusion [23] that requires compat-

ible loop headers (same iteration number, may need loop peeling to

pre-transform the loop, etc.). Kernel fusion also requires compatibil-

ity between kernel parameters. The fused kernel will have the same

kernel configuration as the candidates. The data parallel nature of

RA operators make their implementation independent (with respect

to correctness) of the kernel configuration. Thus, while too many

4

0
T

1
T

2
F

PROJECT

Attribute 1

T T F

SELECT

Attribute0 == T

T T

t t t

t t t

2
F

t

0
T

1
T

2
F

CTA barrier

3
T

4
T

5
F

0
a

1
b

2
c

3
d

4
e

5
f

CTA0 CTA1

data0

data1

JOIN

(data0,data1)

0

T
a

1

T
b

2

F
c

3

T
d

4

T
e

5

F
f

temp

JOIN

(temp,data2)

0
A

1
B

2
C

3
D

4
E

5
F

data2

0
T
a

A

1
T
b
B

2
F
c
C

3
T

d
D

4
T

e
E

5
F

f
F

3
T

4
T

5
F

3
d

4
e

5
f

CTA1

3
T

d
D

4
T

e
E

5
F

f
F

JOIN

JOIN

CTA barrier

3
D

4
E

5
F

5 3 2

2 3 5

(a)

(b)

2 3

SORT

SELECT
 < 4

(c)

data0

data1

data2

Figure 8: Example of three kinds of dependence: (a) thread depen-
dence; (b) CTA dependence; (c) kernel dependence.

or too few CTAs or threads may lead to inefficient use of resources,

fusion can be performed correctly if the kernel configurations are

the same. This work tests a set of micro-benchmarks (see Section 5)

with a wide range of combination of CTA dimensions and thread

dimensions and picks one pair that works best in most cases.

The second criteria is due to the fact that the benefits listed in

Section 2.3 are derived primarily from exploiting producer-consumer

dependences. Data dependence analysis is necessary to find candidate

kernels. Producer-consumer dependence between two data parallel

kernels can be classified into three categories as shown in Figure 8:

thread, CTA and kernel dependence.

In the first category, each thread of the consumer kernel only con-

sumes data generated by a single thread from the producer kernel.

Figure 8(a) illustrates such an example with tuples containing two

attributes, e.g., (1,T). Dependences between producer and consumer

kernels corresponding to unary RA operators such as SELECT and

PROJECT, belong to this category because the operation on one input

tuple is independent of the operation performed on any neighboring

tuple. In this case, corresponding producer and consumer threads

from each kernel can be fused without having to insert synchroniza-

tion operations. This type of producer-consumer dependence between

kernels is referred to as thread dependence.

The second category is wherein every CTA of the consumer kernel

depends on the completion of a CTA of the producer kernel. Such

dependences are referred to as CTA dependences. For example,

this occurs between binary RA operators such as JOIN and SET

INTERSECT that have a producer-consumer dependence. Consider,

Figure 8(b) that illustrates a producer-consumer dependence between

two JOIN operators. The first operator performs a JOIN operation

across tuples from two input data sets, data0, and data1. Each CTA

is provided a partition of input tuples, corresponding to some range

of the key value used in the JOIN (in this example each tuple has a

Input: a list of operators op

Output: a list of fusion candidate groups c

i = 0;

length = size of list op;

Topologically sort op;

while i 6= length do
class = classify dependence between op[i] and

its predecessors and successors;

if class == Kernel Dependence then
delete op[i];

end

i = i + 1;
end

c = all connected subgraphs of op;

Algorithm 1: Searching for fusing candidates.

unique key value which is an integer). Thus, a thread in a CTA must

compare the key values of tuples it is processing with the key values

of tuples being processed by every other thread in the CTA, and only

within the CTA. While such a partitioning of input tuples across CTAs

produces unbalanced loads between CTAs, data dependences between

threads are confined to remain within a CTA. The producer CTA

writes its tuples to shared memory where a CTA from the consumer

kernel can now pick it up. A barrier synchronization is necessary after

the first JOIN operation before the second JOIN operation can start.

The actual implementation is more involved, but for the purposes of

this paper, corresponding threads from producer-consumer CTAs can

be fused with appropriately placed barriers.

The third category is wherein the consumer kernel has to wait until

the completion of all threads in the kernel, i.e., kernel fusion is not

feasible. A typical example is where the producer kernel is a SORT

operator (Figure 8(c)) because it behaves like a global barrier. The

reasons are i) it cannot be launched until all inputs arrive; ii) SORT

shuffles all data and the following consumer operators need to wait

for its completion before being able to start streaming data. Such

dependence is referred to as kernel dependence.

Note the three categories of dependences are from the perspec-

tive of being able to fuse kernels by fusing corresponding threads

within producer-consumer kernels. Accordingly, the dependences

are implicitly associated with the level of the memory hierarchy used

to pass data. Fused threads across thread dependent kernels use the

register file which is allocated by the thread. Fused threads across

CTA dependent kernels use shared memory which is allocated by the

CTA. Finally, according to the above classification, the kernels in an

dependence graph that are candidates for kernel fusion only exhibit

thread or CTA dependences with other kernels, and are bounded

by operators with kernel dependences. Algorithm 1 formalizes the

steps to find kernel fusion candidates. Its main idea is first removing

operators causing kernel dependence from the graph and then finding

the rest connected operators.

The output of the language front-end consists of RA operators and

their associated variables. This information is used to construct an RA

dependence graph like the one shown in Figure 9(b). The nodes in the

graph represent RA operators and the directional edges identify nodes

with the producer-consumer dependences. The large circle bounded

by SORT operators contains operators satisfying the dependence

requirement and are candidates for fusion. Instances supporting

recursive queries (e.g. ancestor(a,c)←parent(a,b),ancestor(b,c)) may

generate a dependence graph with enclosed loops. This work only

5

SELECT SELECT

JOIN

(a)

SORT

SORT(data0)

SORT(data1)
SORT(data2)

data3 <- SELECT(data0)
data4 <- SELECT(data1)

data5 <- JOIN(data3,data4)
data6<-JOIN(data5,data2)

SORT(data6)

(b)

data0 data1

data3 data4

data5

SORT SORT

data2

SORT

JOIN

data6

Figure 9: Example of constructing dependence graph: (a) database
program; (b) dependence graph.

Input: a list of candidate operators op

Input: resource budget b

Output: a list of fusion groups f

i = 0;

j = 0;

length = size of list op;

Topologically sort op;

while i 6= length do
add op[i] to f [j];

cost = resource usage estimation of f [j];

if cost > b then
delete op[i] from f [j];

j = j+1;

else
i = i + 1;

end

end

Algorithm 2: Choosing operators to fuse.

considers acyclic graphs although often loop unrolling and related

known optimizations can create acyclic dependence graphs.

4.2. Choosing Operators to Fuse

Fusing all the kernels meeting above criteria may not be practical.

The main constraint on fusion is resource constraints - pressure on

limited registers and limited amount of shared memory available

within each stream multiprocessor. Fusion choices must also be

ordered based on dependences and performance impact. Accordingly

we adopt the following heuristic and use Algorithm 2 to choose

operators to fuse.

Figure 10 is an example that shows how the greedy heuristic of Al-

gorithm 2 works. It starts from the candidates circled in Figure 9(b).

Figure 10(a) first performs a topological sorting on the dependence

graph to produce a list of operators. If operators execute in this order,

all dependences will be honored. Starting from the top of the list,

Figure 10(b) searches for the longest contiguous sequence of oper-

ators that can be fused, within resource constraints, i.e., fits within

the shared memory and registers budgeted for each CTA (data3 and

data4 become internal to the fused operator). In the example in

Figure 10(c) the second JOIN cannot be added since the estimated

shared memory resource usage is larger than the budget. The al-

gorithm repeats the above process for the next not fused operator,

the second JOIN, until no more operators can be fused. Resource

(a)

SELECT

SELECT

JOIN

JOIN

SELECT

SELECT

JOIN

JOIN

data1

data0

data5

Inputs

Outputs

128/0

128/0

16k/1

(b)

SELECT

SELECT

JOIN

JOIN

data1

data0

data6

Inputs

Outputs

128/0

128/0

16K/1

data3

Temp

128/1

data4 128/1

data2 128/0

data4

data3

Temp

128/1

128/1

data5 16K/1

SHARED MEM(Byte) / Reg

(c)

0/12 0/12

Budget: 16K / 20

Kernels to fuse

Figure 10: Example of choosing operators to fuse: (a) topologically
sorted operators; (b) choose the first three operators to
fuse; (c) refuse to fuse the fourth operator.

usage estimation is discussed in Section 4.3.3 after introducing code

generation.

The intuition underlying the above method is that it is more impor-

tant to fuse operators executed earlier than those executed later. The

reason is that data warehousing applications normally process large

amounts of data. After several filtering and reduction operators, the

data set is reduced significantly. Resource permitting, fusing the first

few operators in the dependency graph provides the most benefit.

4.3. Kernel Weaving and Fusion

Given the dependence graph and candidate operators to fuse, the

final step is performing the fusion. Recall that each operator is

implemented as a multi-stage algorithm with three stages - partition,

compute, and gather - each of which is implemented as a CUDA

data parallel kernel. The fused operator still has these three stages.

At a high level, fusion is achieved by two main steps: (i) grouping

the partition, compute, and gather stages of the operators together

(which we also refer to as interleaving); (ii) fusing the individual

stages. In other words, the partition stages of the candidate operators

are fused together into a single data parallel kernel, which could be

viewed as the partition stage for the newly fused operator. Similarly,

the compute and gather stages are fused into a single fused compute

and gather stage respectively. For example, when two operators are

fused, the fused operator will have the multi-stage structure shown

in Figure 11 where the two compute stages are fused into one data

parallel kernel (the fused partition and fused gather stages similarly

represent fusion of individual partition and gather stages). The fused

computation stage performs the computation stage of the original

operators in the order of their dependences. All intermediate data and

data sizes are stored in the shared memory or registers. The fused

operator may have multiple inputs and outputs.

The above fusion process includes code generation for the fused

operators. Code generation takes as input a description of a topologi-

cally sorted set of operators to be fused and their associated variables,

and produces CUDA code for the data parallel kernels that implement

the fused operator. The CUDA code is generated by concatenating

the instantiated algorithm skeleton code of each stage, and connect-

ing the outputs of one stage to the inputs of the next stage. How to

connect stages is discussed in the following sub sections. A variable

table, which records and tracks the use of variables between stages, is

needed to instantiate the skeleton. Figure 11 shows how the variable

table tracks the variables that hold result data and result size of each

computation stage.

6

Fused

Partition

Compute1

Compute2

Fused

Gather

F
u

s
e

d
 C

o
m

p
u

te

V
a

ria
b

le
 T

a
b

le

data0_pointer

data0_size

data1_pointer

data1_size

data2_pointer

data2_size

data0

data1

data2

Partition1

Compute1

Gather1

Partition2

Compute2

Gather2

Operator 1

Operator 2

Figure 11: The structure of generated code (fusing two operators).

CTA0

CTA1

CTA2

CTA3

CTA0

CTA1

CTA2

CTA3

GPU MEM GPU MEM

CTA0

CTA1

CTA2

CTA3

Unmatched
element

Completely
Matched
element

Partially
matched
element

Partition

Filter1 Buffer

Gather

Filter2

GPU CORE

1st CUDA Kernel: Filter 2nd CUDA Kernel: Gather

GPU MEM

Compute

Figure 12: Example of fusing two SELECTs.

Fusing operators depends on whether thread dependence or CTA

dependence exists between operators. We now describe in more detail

how to fuse operators with thread and CTA dependences.

4.3.1. Fusing Thread Dependent Only Operators Unary operators

SELECT and PROJECT exhibit thread dependence. The kernel con-

figuration (threads/CTA and CTA grid dimensions) of both operators

are equal. Therefore each thread in the producer operator is fused

with a corresponding thread in the consumer operator.

The partition stage of the fused operator remains the same as that

of the producer operator. The compute stage of the fused operator is

a data parallel kernel with the same kernel configuration, where each

thread is created as follows. Every thread first loads a tuple from

its input partition into registers. The computation of corresponding

producer and consumer threads are performed using these registers,

i.e., SELECT or PROJECT in the correct order. These operators

either discard data (SELECT) or discard attributes (PROJECT). The

output of this sequence of operations is compacted into an output

array. The gather stage accumulates all of the data from different

threads in the fused compute stage into contiguous memory.

As shown in Figure 7, the computation stage of SELECT has

two parts, filter and stream compaction. After kernel fusion, stream

compaction is needed only when the SELECT result should be copied

to GPU memory. Figure 12 is an example of fusing two back-to-

back SELECTs together. Compared with Figure 7, only one filter

operation is added. Moreover, the fused kernel only needs to read

and write memory once rather than twice.

For PROJECT, its result tuple should be stored into a new register

with a different data type since it contains less attributes. Thus, the

operations after PROJECT have to use this new register instead.

4.3.2. Fusing CTA and Thread Dependent Operators Binary re-

lational operators are CTA dependent . This change increases the

SELECT

value == T

(c)

CTA0 CTA1

CTA0

Temp

(b)(a)

CTA0 CTA1

Global Mem

Shared Mem

CTA barrier

0
T

data0
1
T

2
F

3
T

4
T

5
F

0
a

data1
1
b

2
c

2
d

3
e

4
f

0
T

1
T

2
F

0
a

1
b

2
c

0
T

1
T

2
F

0

a

1

b

2

c

data0 data1

0
T

1
T

SELECT

value !=c

0
a

1
b

2
d

JOIN

0
T

a

1
T

b

0
T
a

1
T
b

Temp

0
T
a

1
T
b

...

3
T
e

4
T
f

0
T
a

1
T
b

3
T
e

4
T
f

data5

2
d

2
d

...

Figure 13: Example of Generated Code of Figure 10(b): (a) Partition
two inputs; (b) Computation of one CTA; (c) Gather one
output.

number of inputs of the fused operators and necessitates the following

main distinction in code generation: (i) Use binary search to partition

inputs; (ii) Use shared memory to support CTA dependence; (iii)

Synchronize two operators having CTA dependence. Thus, code gen-

eration has to be extended to support the three differences. Figure 13

shows the generated code for the operators in Figure 9(b) and is used

as example to explain the extensions.

Our approach is to maintain the independent operation of each

CTA to be able to fuse corresponding CTAs from the producer and

consumer operators. This is achieved in the partition stage by par-

titioning the input set by key values. Each CTA then receives a set

of tuples corresponding to a specific range of key value pairs. This

is achieved using binary search [3] and both inputs of each binary

operator are partitioned across CTAs. For example, in Figure 13(a),

data0 is first evenly partitioned into two parts bounded by pivot tu-

ples. Then, a binary search is used to lookup the tuples in data1

corresponding to the key attributes of data0 pivot tuples. The parti-

tioned data sizes of the two inputs provided to each CTA thus may

differ (e.g. data1). However, when fusing two binary operators (e.g.,

two JOIN operators), three inputs need to be partitioned and each

operator may use different keys. For instance, one JOIN may use the

first 2 attributes as a key and the other JOIN may only use the first

attribute as key. In this case, the fused input stage will only use the

first attribute as key. This preserves the independence of operation

across CTAs.

Figure 13(b) is an example of the computation stage of one CTA.

The other CTA works in exactly the same way but upon different

data. In the beginning, each CTA first allocates a software controlled

cache in shared memory for each input and then loads data into

the cache (e.g. CTA0 loads in a portion of corresponding data0

and data1 divided as in Figure 13(a)) . Afterwards, a CTA-wise

fused computation performs fused operations upon those cached

data. Within a CTA, the generated code can perform all supported

operations such as SELECT and JOIN. If two connected operators

have CTA dependence (e.g. between SELECT and JOIN), the result

data of the producer operator should be stored in a cache allocated

in the shared memory, and the result size is stored in a register. To

guarantee all threads within a CTA finish updating the cache, a CTA

7

barrier synchronization is needed after the producer operation. If

two dependent operators only exhibit thread dependence, they only

need to use register(s) to pass value(s) and no synchronization is

necessary. For example, the first operator in Figure 13 to execute is

SELECT and it has CTA dependence relationship with its consumer

JOIN. Thus, SELECT has to store its result in shared memory rather

than the register. The second SELECT is handled in the same way.

Thus, the inputs of JOIN all reside in the shared memory before its

execution. After JOIN, the result is dumped to GPU memory.

The gather stage (Figure 13(c)) is the same as in the thread de-

pendent only cases which packs the useful results generated by two

CTAs into an output array.

4.3.3. Resource Usage Code generation decides how many resource

will be occupied. As shown in Figure 10(c), some resources are used

to store input, output, and intermediate temporary data. Others are

used inside the computation.

Fusing thread dependent operators stores intermediate data in the

registers. The number of needed registers depends on the data type

of the tuple which is provided by the database front-end. Fusing CTA

dependent operators stores temporary data in the shared memory and

temporary data size value in one register. Allocated shared memory

size is a function of data type, input data size and operator type. For

example, SET INTERSECT needs to allocate min(input1, input2)
tuples for its output. The data variable and data size variable stored

in registers are live until they are no longer needed.

Registers are also needed to perform partition, computation, and

gather. The partition result, the beginning and the end position of all

inputs, uses variables to pass to the computation stage. The liveness

of the variables used inside each stage is the same as the scope of the

stage. Thus, different variables of different stages can reuse the same

registers. So, the register usage of a fused operator is not larger than

the maximum of the register usage in each stage plus the registers

used to pass values between stages. The registers used by each stage

can be determined as long as the data types of all tuples are known.

4.4. Extensions

The preceding three sections discussed how code is generated for RA

operators having producer-consumer dependence. This method can

be extended to support other dependence or other operators.

The first extension is to support input dependence, i.e. operators

shares the same inputs. The benefits of fusing these operators is

that the input data shared by different operators only need to be

loaded once, which is not as important as the case of producer-

consumer dependence. Fusing operators having input dependence

also increases the resource pressure. The modification to the above

automation process is to detect input dependence when constructing

the dependence graph. The code generation part can remain the same.

The second extension is to support simple arithmetic operations

such as addition, subtraction, multiplication and division. These

arithmetic operators are much simpler than RA operators. They

have two inputs, but use even partitions to divide both inputs. The

dependence between them belongs to thread dependence and can use

registers to store computation results.

5. Experimental Evaluation

Table 2 shows our experimental infrastructure. We use TPC-H [9],

a widely-used decision support benchmark suite, to quantify the

speedups of kernel fusion in a practical situation. TPC-H comprises

22 queries with varying degrees of complexity. The queries analyze

CPU 2 quad-core Xeon E5520 @ 2.27GHz

Memory 48 GB

GPU 1 Tesla C2070 (6GB GDDR5 memory)

OS Ubuntu 10.04 Server

GCC 4.4.3

NVCC 4.0

Table 2: Experimental Environment.

A1

SELECT

SELECT

SELECT

A1

JOIN

JOIN

A2

A3

A1

SELECT SELECT

A1

SELECT

A2

SELECT

JOIN

(a) (b) (c) (d) (e)

PROJECT

PROJECT PROJECT

A3

SELECT

PROJECT

JOIN

PROJECT

1

+

X

A2

A3

1

-

A2

X

Figure 14: Common operator combinations to fuse.

relations between customers, orders, suppliers and products using

complex data types and multiple operators on large volumes of ran-

domly generated data sets. Before showing results for actual TPC-H

queries, we examine micro-benchmarks derived from the TPC-H

queries.

5.1. Micro-benchmarks

We analyze TPC-H queries and identify commonly occurring combi-

nations of operators that are potential candidates for fusion. From the

22 queries in TPC-H, Figure 14 illustrates some frequently occurring

patterns of operators corresponding to different cases discussed in

Section 4. In the figure, (a) is a sequence of back-to-back SELECT

operators that perform filtering, for instance, of a date range. It only

has thread dependence. (b) is a sequence of JOIN operations that

creates a large table with multiple attributes, and exhibits CTA depen-

dence. (c) corresponds to the JOIN of three small selected tables and

has both thread and CTA dependence. (d) represents the case when

different SELECT operators need to filter the same input data and

has input dependence. (e) performs arithmetic computations such as

price× (1−discount)× (1+ tax) which appears in several TPC-H

queries. The PROJECTs in the figure discard their sources and only

retain part of the result. The above patterns can be further combined

to form larger patterns that can be fused. For example, (a) and (b)

can be combined to form (c).

In the following experiments, the tuple used in patterns (a)–(d) are

16 bytes. (e) uses single precision floating point values.

5.1.1. Examples of Generated Code Figure 15 shows the generated

fused computation stage code of Figure 14(a) (only two SELECTs

shown for brevity). It performs two SELECTs and a PROJECT.

The first two filters operate on the value in data_reg, and store the

filter result in match, which is later used to determine if follow-up

operations are needed. The result of PROJECT is written to a new

register project_reg since its data type is smaller than data_reg. The

last step, stream compaction, dumps the value stored in this new

register to the GPU’s global memory. The generated code may be

less compact than manually written code, but compilers such as nvcc

can optimize it to produce high quality binary code.

5.1.2. Small Inputs The micro-benchmarks listed in Figure 14 are

first tested with small inputs that fit in GPU memory. The purpose of

this is to isolate the benefits of kernel fusion from the effects of PCIe

transfer. Figure 16 shows the speedup in the pure GPU execution time

(no PCIe transfer) with kernel fusion. The input data are randomly

8

 if(begin_input + id < end_input)

 {

 data_reg = begin_input[id];

 {

 unsigned char key = extract(data_reg);

 if(comp(key, 64))

 match = true;

 }

 {

 if(match)

 {

 unsigned char key =extract(data_reg);

 if(comp(key, 64))

 match = true;

 }

 }

 {

 if(match)

 {

 project_reg = project(data_reg, 0);

 }

 }

 }

 {

 unsigned int max = 0;

 unsigned int output_id = exclusiveScan(match, max, 0);

 if(match)

 buffer0[output_id] = project_reg;

 __syncthreads();

 if(threadIdx.x < max)

 begin_output0[outputIndex0 + threadIdx.x] = buffer0[threadIdx.x];

 outputIndex0 += max;

 }

Load Data To Reg

Filter0

Filter1

PROJECT

Stream

Compaction

Figure 15: Example of generated computation stage source code of
Figure 14(a).

generated and then fed into the automatically generated fused code

using the compilation flow of Figure 5. The baseline implementation

for comparison directly uses the implementation from the primitive

library without fusing. Similar to Figure 4, the performance data are

averaged over a wide set of problem size (from 64 MB to 1 GB).

On average, kernel fusion achieves a 2.89x speedup. Cases (a) and

(e) containing only thread dependence show the largest speedup,

because they do not insert new synchronizations, and threads execute

independently. Furthermore, (a) gets rid of three stream compaction

stages and three gather stages after fusion. The speedup of case (d)

is less than the rest because it has input dependences and can only

benefit from loading fewer inputs. (b) and (c) have CTA dependences

and need extra synchronizations which makes kernel fusion less

beneficial than the thread dependence only cases. The speedup in

case (c) is larger than (b) because (c) fuses some thread dependence

operators. Considering the reported CPU and GPU computation

performance difference [18, 12], the baseline GPU implementation

should be 4x–40x faster than CPU and kernel fusion can further

increase the GPU advantage.

����

���� ����
����

����

	

�

�

�

�

�

�

�

�

�	

�
 � � �

�
�
�
�
�
�
�

Figure 16: Speedup in execution
time (Small Inputs).

����
����

����
����

����

����

����

����

����

���	

�

�

�

�

�

�

� �
 � �

�
��
�
��
�
�
	

��������� �����

Figure 17: GPU global memory
allocation reduction.

The next set of experiments examine the benefits claimed in Sec-

tion 2.3, specifically the improvement in GPU global memory usage,

total memory access cycles and compiler efficacy.

Figure 17 shows the GPU global memory allocated and used with

and without kernel fusion. The additional memory without fusion is

attributed to large intermediate results. In pattern (d) however, the

fused operator uses a little more memory because the fused compute

stage has to store two outputs in memory for future gather rather than

one. Similarly, Figure 18 shows the data for GPU memory access cy-

cles (collected using the clock() intrinsic). On average, fusion reduces

the GPU global memory access time by 59%. Finally, Figure 19 quan-

tifies the impact of the compiler. All micro-benchmarks are compiled

with -O3 and -O0 flags, both with and without kernel fusion. The

figure shows the speedups achieved by -O3 compared to -O0. Clearly,

kernel fusion enables the the compiler to perform better optimization.

������

������

���	��

	
��
�

������

��

	��

���

��

���

���

���

���

���

���

 � � � �

�
�
�
�
��
��
		
�

��
�
�

	�
��
�

Figure 18: Reduced memory cy-
cles with kernel fu-
sion.

����

����
����

����

����

��	�

����
��
�

���	

���

�

���

�

���

�

���

�

���

� �
 � �

�
�
�
�
�
�
�

���������

�����

Figure 19: Comparison of com-
piler optimization im-
pact.

When fusing two or three SELECTs together (e.g., pattern (a)), the

second or third SELECT might have some idle threads because some

data are not matched in the earlier SELECT. This might impact the

overall performance. Figure 20 examines the performance sensitivity

of kernel fusion to the selection ratio (percentage of data matching

selection condition) with randomly generated 32-bit integers. The

results shows fusing two 10% SELECTs produces (more idle threads)

1.28x speedup while fusing two 90% SELECTs (less idle threads)

produces 2.01x speedup. Thus, it is fair to say that idle threads

may impact the performance but do not negate the benefits of data

movement reduction.

5.1.3. Large Inputs In this experiment, the program inputs are en-

larged so that every operator has to move its result data back to host to

make room for the next operator when kernel fusion is not used. But

the problem size still fits the GPU memory when running fused ker-

nels. This set of tests examines the effect of kernel fusion on reducing

PCIe data traffic. The input data is generated on the CPU and the final

results are sent back to the CPU. Figure 21 compares the execution

time with and without kernel fusion over a wide range of problem

sizes. In this figure, the execution time comprises two parts: GPU

computation time and PCIe transfer time. On average, kernel fusion

achieves 2.91x speedup in the GPU computation time, 2.08x speedup

in PCIe data transfer, and 1.98x speedup overall. Computation time

speedup is similar to the small input case because performance scales

with data size. The speedup of PCIe transfer dominates the overall

speedup because it is the bottleneck for RA operators. The case (d)

0

5

10

15

20

0 100 200 300 400

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Number of Elements (million)

fusion (10%) no fusion (10%)
fusion (90%) no fusion (90%)

Figure 20: Sensitivity to selection ratio.

9

�

���

�

���

�

���

�

���

�

���

�
�
�
��
�
�
�
	

�
�
�
	

�
�
�
��
�
�
�
	

�
�
�
	

�
�
�
��
�
�
�
	

�
�
�
	

�
�
�
��
�
�
�
	

�
�
�
	

�
�
�
��
�
�
�
	

�
�
�
	

� 	
 � �

�
�
�
�
�
��
�
	

��
��

	
�� �������

Figure 21: GPU execution time with and without kernel fusion (Large
Inputs).

with input independence does not enjoy any benefit from reducing

PCIe transfer because the fused version has the same data footprint

as the baseline. Considering only the four producer-consumer cases,

kernel fusion has 2.35x speedup in PCIe and a 2.22x speedup overall.

If compared with CPU only systems, due to the large amount of time

spent in PCIe shown in Figure 21, the computation performance gap

between CPU and GPU would be reduced or GPU could even lag

behind of CPU for these simple micro-benchmarks even with the help

of kernel fusion. Other techniques discussed in the Related Work

section are needed for a complete GPU-assisted database system.

5.1.4. Resource Usage Table 3 lists the GPU resource usage and

occupancy (active warps / maximum active warps) of the individual

operators and the fused patterns. Since resources are finite, uti-

lizing too many resources per thread may decrease the occupancy.

We obtain resource information from ptxas and occupancy from

CUDA_Occupancy_calculator. The left four columns list the re-

sources used by individual operators (e.g. 1 PROJECT needs 11 PTX

registers and 0 byte shared memory), and the right four columns

show the usage of each pattern after kernel fusion (e.g. fused pattern

(a) uses 22 PTX registers and around 2.3K shared memory). The

statistics indicate that kernel fusion in most cases increases the re-

source usage which is the same as the impact of loop fusion, and

consequently may lower occupancy (pattern (b) – pattern(e)). Taking

pattern (b) as an example, it requires 55 PTX registers and about 23K

shared memory with fusion. However, if running two JOINs back-to-

back sequentially, each JOIN only needs 47 PTX registers and 13K

shared memory. Pattern (a) will use less shared memory after kernel

fusion than a single SELECT because i) thread dependence does not

use shared memory to store temporary results and ii) the data type of

fused results array buffered in shared memory uses smaller data type

since PROJECT removes some attributes.

5.2. Real Queries

In this section, we evaluate kernel fusion with two real queries from

TPC-H benchmark suites, Q1 and Q21. Q1 represents arithmetic

centric queries and Q21 represents relational centric queries. TPC-H

queries are very complex (e.g. the 15 operators of Q1 maps to 107

kernels to execute). While the microbenchmarks were compiled and

executed with the Datalog front-end, the query plans for the two

TPC-H queries presented here were created manually. The additional

language support required in the front-end to also automatically

compile all Datalog TPC-H queries is being completed for open

source distribution of the compiler.

Status Date1 Date2

Supplier

Nation

+

Date

Price

Tax

Discount

Quantity

Flag

Status

Select Join

Sort

Aggregate

+ Arithmetic

Unique

(a) (b)

-

x

Fusion

x

Figure 22: (a) Query plan for Q1; (b) Query plan for Q21.

Q1 calculates several price statistics for selected entries. Fig-

ure 22(a) is the query plan generated for Q1. There are (i) several

JOINs and one SELECT to generate a large table from seven columns,

ii) SORT by a different key, and iii) arithmetic calculations over sev-

eral fields of the table. The first part of the query including one

SELECT and six JOINs can be fused into one operator. All of the

arithmetic computations performed as the final part of the query can

be fused as well. The SORT operator causes kernel dependence

and cannot be fused because it has to wait for the completion of the

JOINs and arithmetic operations have to wait for the completion of

the SORT.

From the TPC-H database, query Q21 identifies suppliers who

were not able to ship required parts in a timely manner. Compared

with Q1, Q21 has less arithmetic computation but many more rela-

tional operations. Figure 22(b) is its simplified query plan (simple

operators such as PROJECTs are omitted for clarity). Just as with Q1,

SORTs form a boundary for the application of kernel fusion since

they can not be fused with their producers nor their consumers.

We tested two queries with 200 MB to 1 GB data and averaged

the performance. For Q1, the most time consuming part is the SORT

operator which takes around 71% of the total execution time, but

cannot be optimized. However, fusion dramatically speeds up the

other operators and contributes an overall 1.25x speedup. Further

study shows that when SORT is excluded, the remaining operators

can be fused and fusion achieves a 3.18x speedup due to the fusing

of 6 JOINS and 1 SELECTs into a single kernel. For Q21, kernel

fusion realizes a 1.22x overall speedup, which is significant given the

complexity of the operators.

The fused patterns for Q1 and Q21 are built based on JOIN oper-

ators (e.g. joining several columns together into a larger table and

then performing different cross-field computations). These patterns

appear very frequently in all 22 queries of TPC-H so that they can all

get similar speedup from kernel fusion.

6. Discussion

The proposed framework, Kernel Weaver, opens a door to a class of

new optimizations that can be applied in different situations. The

following discusses three possible opportunities.

Different Domain: Instead of database applications, kernel fusion

can also be used in other domains such as dense linear algebra. The

requirement is that the application should use multi-stage algorithms

and the stages are independent of each other so that they can be

weaved into a new format. The classification of dependences used in

this paper is still useful as a guide to fusion candidate selections.

Different Representation: In this paper, the optimization occurs

at the CUDA source code level. However, the same technology can

10

PTX Reg # Shared Mem (Byte) Occupancy (%) PTX Reg # Shared Mem (Byte) Occupancy (%)

PROJECT 11 0 100 (a) 22 2308 88

SELECT 22 3848 88 (b) 55 23560 33

JOIN 47 13580 38 (c) 62 23048 17

+/- 10 0 100 (d) 30 4612 67

Multiply 13 0 100 (e) 27 0 75

Table 3: Resource usage and occupancy of individual (left) and fused (right) operators.

be applied to different representations, such as OpenCL [24], CUDA

PTX or LLVM [25], as long as each stage of the operator can be

represented. Thus, kernel fusion can be implemented as a module of

a static compiler or a JIT compiler that optimizes the representations

online.

Different Platform: Furthermore, kernel fusion can be considered

as a general cross-kernel optimization that is not only restricted to

GPU devices. The benefits of smaller data footprints and larger

optimization scope still applies if the CPU program is optimized

using kernel fusion. Thus, if using an execution model translator

such as Ocelot [11], and a runtime manager such as Harmony [10]

it is possible to execute fused kernels on both the CPU and GPU to

fully utilize the available computation power.

Moreover, a more complicated fusion framework can use invariant

analysis to reschedule operators and to fuse those which are not

originally executed back-to-back. For example, if switching the order

of SORT and SELECT of Figure 9(c) does not alter the final result,

the switch brings more opportunity to optimize since SELECT can

thus fuse with the operators before SORT.

7. Related Work

For decades, academia and industry have invested a great deal of

effort in query optimization for traditional CPU-based relational

database management systems (RDMS) [22, 29]. These query opti-

mizations originated from different perspectives, considered different

factors, and made different tradeoffs. Take the CPU cache as an

example - the database system can choose among techniques such as

cache prefetching, cache partitioning, cache compression, and so on

to minimize cache misses and miss penalties [19]. This paper mainly

uses shared memory to apply kernel fusion. Compared with the CPU

cache, GPU shared memory is i) completely programmable which

provides more flexibility, ii) accessed by a large number of threads

which forces us to keep concurrency in mind. Thus, the optimization

here differs quite a bit.

The idea of kernel fusion arises from loop fusion [23], a well

studied loop optimization technique, which can reduce loop traversal

overhead and improve certain types of data locality. It is also used in

loop parallelization since it can aggregate a large loop body.

The most similar to our work is that of Sato et al. [35], who

built a system to run general primitives, map, reduce and zipwith

on GPUs with kernel fusion enabled. They fused the CPU code of

the primitives and then inserted CUDA runtime library calls and

other CUDA required language features to turn a C program into

a CUDA program. Thus, they did not exploit the advantageous

characteristics of GPUs, such as the multi-level memory hierarchy,

that can improve performance. There are also some domain specific

kernel fusion techniques targeting GPUs. Copperhead, developed by

Catanzaro et al. [7], attempted to fuse a subset of Python primitives

to reduce global synchronizations when accelerating them using

GPUs. They classified dependence into local and global which are

similar to the thread and kernel dependence of this paper, and fuse

primitives having local dependence. Thus, they can only fuse a few

simple primitives. Chakravarty et al. [8] noticed the benefits of kernel

fusion in accelerating Haskell array operations with GPUs and listed

it as their future work. On the CPU side, Lee et al. [27] propose

a runtime framework, Thread Tailor, which uses fusion techniques

albeit at a different level of granularity. Their framework partitions an

application into a large number of threads and use a greedy heuristic

to combine these small threads later based on their dependences.

There are also several ongoing projects using GPUs to acceler-

ate database applications. In particular, He et al. [18] implement a

complete GPU database system, GDB, which is also based on the

GPU implementation of relational algebra operators. Further, other

groups focus on designing algorithms to accelerate individual RA

primitives [36, 26, 38, 28, 15, 16]. Similarly, Bakkum et al. [4] mod-

ified the virtual machine infrastructure of SQLite to use GPUs to

execute SQLite opcodes (not RA primitives). All of these previous

works achieve several factors of speedup in comparison with their

CPU counterparts. However, none of them use any optimizations to

further improve the overall performance of the database system on

GPUs. Moreover, He et al. also point out that the PCIe transfer time

may outweigh the speedup enabled by the GPUs and suggest the use

of data compression techniques to reduce the amount of transfered

data [13]. Our work differs in that we are seeking to discover and

develop mainstream compiler passes that can automatically provide

inter-kernel optimizations.

To further boost the performance of a GPU assisted database sys-

tem, other techniques including but not limited to PCIe data compres-

sion [13], double buffer [41], and GPU aware query optimizer, are

also important to reduce the PCIe hazard. These techniques are or-

thogonal to kernel fusion because they are independent of the contents

transfered over PCIe and can be applied together with kernel fusion.

As to larger systems having multiple GPUs or even spanning over

multiple nodes, the runtime should have an intelligent scheduling

module that can balance the work load of each device (CPU and GPU)

and minimize the data movement over the interconnections [10].

8. Conclusion

This paper proposes a cross-kernel optimization framework, Kernel

Weaver, that can apply kernel fusion optimization to improve the

performance of relational algebra primitives used in data warehousing

applications on GPUs. Kernel fusion aggregates larger body of code

that can reuse as much data as possible. It can reduce the data traffic

through the memory hierarchy caused by the I/O bound nature of

database applications, and also enlarge the optimization scope.

To automate the process of kernel fusion, this paper first classi-

fies the producer-consumer dependence between RA operators into

three categories: thread, CTA and kernel dependence. Then, Kernel

Weaver leverages the multi-stage algorithm design to weave stages

from operators having thread and CTA dependence. The experiments

shows that kernel fusion optimization brings 2.89x speedup in GPU

computation, 2.35x speedup in PCI transfer on average across the

micro-benchmarks tested. The same technique can be applied to dif-

ferent domain, different representation format and different devices.

11

Acknowledgements

This research was supported in part by the National Science Foun-

dation under grants IIP-1032032 & CCF 0905459, by LogicBlox

Corporation, and by equipment grants from NVIDIA Corporation.

We also acknowledge the detailed and constructive comments of the

reviewers.

References

[1] S. Abiteboul, R. Hull, and V. Vianu, Foundations of databases.
Addison-Wesley, 1995, vol. 8.

[2] J. Anderson, C. Lorenz, and A. Travesset, “General purpose molecular
dynamics simulations fully implemented on graphics processing units,”
Journal of Computational Physics, vol. 227, no. 10, pp. 5342–5359,
2008.

[3] R. Baeza-Yates, “A fast set intersection algorithm for sorted sequences,”
Lecture Notes in Computer Science, vol. 3109, pp. 400–408, 2004.
Available: http://www.springerlink.com/content/yth9h90y94n10l7e

[4] P. Bakkum and K. Skadron, “Accelerating SQL database operations on
a GPU with CUDA,” in Proceedings of the 3rd Workshop on General-

Purpose Computation on Graphics Processing Units. ACM, 2010, pp.
94–103.

[5] N. Bell, S. Dalton, and L. Olson, “Exposing fine-grained parallelism in
algebraic multigrid methods,” NVIDIA Corporation, NVIDIA Technical
Report NVR-2011-002, Jun. 2011.

[6] M. Billeter, O. Olsson, and U. Assarsson, “Efficient stream
compaction on wide simd many-core architectures,” in Proceedings

of the Conference on High Performance Graphics 2009, ser. HPG
’09. New York, NY, USA: ACM, 2009, pp. 159–166. Available:
http://doi.acm.org/10.1145/1572769.1572795

[7] B. Catanzaro, M. Garland, and K. Keutzer, “Copperhead: compiling an
embedded data parallel language,” in Proceedings of the 16th ACM

symposium on Principles and practice of parallel programming, ser.
PPoPP ’11. New York, NY, USA: ACM, 2011, pp. 47–56. Available:
http://doi.acm.org/10.1145/1941553.1941562

[8] M. Chakravarty et al., “Accelerating haskell array codes with multicore
gpus,” in Proceedings of the Sixth Workshop on Declarative Aspects of

Multicore Programming. ACM, 2011, pp. 3–14.
[9] T. Council, “Tpc benchmark h, standard specification revision 1.3. 0,”

1999.
[10] G. Diamos and S. Yalamanchili, “Harmony: an execution model and run-

time for heterogeneous many core systems,” in Proceedings of the 17th

international symposium on High performance distributed computing.
ACM, 2008, pp. 197–200.

[11] G. Diamos et al., “Ocelot: A dynamic compiler for bulk-synchronous
applications in heterogeneous systems,” in Proceedings of PACT ’10.
ACM, 2010, pp. 353–364.

[12] G. Diamos et al., “Efficient relational algebra algorithms and data struc-
tures for gpu,” CERCS, Georgia Institute of Technology, Tech. Rep.
GIT-CERCS-12-01, Feb. 2012.

[13] W. Fang, B. He, and Q. Luo, “Database compression on graphics pro-
cessors,” Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp.
670–680, 2010.

[14] W. Fang et al., “Frequent itemset mining on graphics processors,” in
Proceedings of the Fifth International Workshop on Data Management

on New Hardware. ACM, 2009, pp. 34–42.
[15] N. Govindaraju et al., “Gputerasort: high performance graphics co-

processor sorting for large database management,” in Proceedings of

the 2006 ACM SIGMOD international conference on Management of

data. ACM, 2006, pp. 325–336.
[16] N. Govindaraju et al., “Fast computation of database operations us-

ing graphics processors,” in Proceedings of the 2004 ACM SIGMOD

international conference on Management of data. ACM, 2004, pp.
215–226.

[17] I. Grebnov, “libbsc: A high performance data compression library,”
http://libbsc.com/default.aspx, November 2011.

[18] B. He et al., “Relational query coprocessing on graphics processors,”
ACM Transactions on Database Systems (TODS), vol. 34, no. 4, p. 21,
2009.

[19] B. He and Q. Luo, “Cache-oblivious databases: Limitations and op-
portunities,” ACM Transactions on Database Systems (TODS), vol. 33,
no. 2, p. 8, 2008.

[20] T. Hetherington et al., “Characterizing and evaluating a key-value store
application on heterogeneous cpu-gpu systems,” in Proceedings of the

2012 IEEE International Symposium on Performance Analysis of Sys-

tems and Software, April 2012.
[21] S. Huang, T. Green, and B. Loo, “Datalog and emerging applications:

an interactive tutorial,” in Proceedings of the 2011 ACM SIGMOD

International Conference on Management of Data, 2011, pp. 1213–
1216.

[22] M. Jarke and J. Koch, “Query optimization in database systems,” ACM

Computing surveys (CsUR), vol. 16, no. 2, pp. 111–152, 1984.
[23] K. Kennedy and K. McKinley, “Maximizing loop parallelism and im-

proving data locality via loop fusion and distribution,” Languages and

Compilers for Parallel Computing, pp. 301–320, 1994.
[24] Khronos OpenCL Working Group, The OpenCL Specification, version

1.0.29, 8 December 2008.
[25] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong

Program Analysis and Transformation,” in Proc. of the 2004 Interna-

tional Symposium on Code Generation and Optimization, 2004, pp.
75–86.

[26] T. Lauer et al., “Exploring graphics processing units as parallel co-
processors for online aggregation,” in Proceedings of the ACM 13th

international workshop on Data warehousing and OLAP. ACM, 2010,
pp. 77–84.

[27] J. Lee et al., “Thread Tailor : Dynamically Weaving Threads Together
for Efficient , Adaptive Parallel Applications,” in Proc. of the 37th

Annual International Symposium on Computer Architecture, 2010.
[28] M. Lieberman, J. Sankaranarayanan, and H. Samet, “A fast similarity

join algorithm using graphics processing units,” in Data Engineering,

2008. ICDE 2008. IEEE 24th International Conference on. IEEE,
2008, pp. 1111–1120.

[29] M. Mannino, P. Chu, and T. Sager, “Statistical profile estimation in
database systems,” ACM Computing Surveys (CSUR), vol. 20, no. 3, pp.
191–221, 1988.

[30] W. mei W. Hwu and D. Kirk, “Proven al-
gorithmic techniques for many-core processors,”
http://impact.crhc.illinois.edu/gpucourses/courses/sslecture/lecture2-
gather-scatter-2010.pdf, 2011.

[31] D. Merrill and A. Grimshaw, “Revisiting sorting for gpgpu stream
architectures,” University of Virginia, Department of Computer Science,
Charlottesville, VA, USA, Tech. Rep. CS2010-03, 2010.

[32] J. Mosegaard and T. Sørensen, “Real-time deformation of detailed ge-
ometry based on mappings to a less detailed physical simulation on the
gpu,” in Proceedings of Eurographics Workshop on Virtual Environ-

ments, vol. 11, 2005, pp. 105–111.
[33] S. G. Parker et al., “Optix: a general purpose ray tracing engine,” ACM

Transactions on Graphics, vol. 29, pp. 66:1–66:13, July 2010.
[34] V. Podlozhnyuk, “Black-scholes option pricing,” Part of CUDA SDK

documentation, 2007.
[35] S. Sato and H. Iwasaki, “A skeletal parallel framework with fusion opti-

mizer for gpgpu programming,” Programming Languages and Systems,
pp. 79–94, 2009.

[36] P. Trancoso, D. Othonos, and A. Artemiou, “Data parallel acceleration
of decision support queries using cell/be and gpus,” in Proceedings of

the 6th ACM conference on Computing frontiers. ACM, 2009, pp.
117–126.

[37] L. G. Valiant, “A bridging model for parallel computation,” Commun.

ACM, vol. 33, no. 8, pp. 103–111, 1990.
[38] P. Volk, D. Habich, and W. Lehner, “GPU-based speculative query pro-

cessing for database operations,” in Proceedings of the 1st International

Workshop on Accelerating Data Management Systems Using Modern

Processor and Storage Architectures, 2010.
[39] P. D. Vouzis and N. V. Sahinidis, “Gpu-blast: using graphics

processors to accelerate protein sequence alignment,” Bioin-

formatics, vol. 27, no. 2, pp. 182–8, 2010. Available:
http://www.ncbi.nlm.nih.gov/pubmed/21088027

[40] E. Walker, “Benchmarking amazon ec2 for high-performance scientific
computing,” Usenix Login, vol. 33, no. 5, pp. 18–23, 2008.

[41] H. Wu et al., “Optimizing data warehousing applications for gpus using
kernel fusion/fission,” in Parallel and Distributed Processing Sympo-

sium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th Interna-

tional. IEEE, 2012, pp. 2433–2442.

12

