
90 Copublished by the IEEE CS and the AIP 1521-9615/11/$26.00 © 2011 IEEE Computing in SCienCe & engineering

N o v E l A r C h I t E C t u r E S

Editors: Volodymyr Kindratenko, kindr@ncsa.uiuc.edu

Pedro Trancoso, pedro@cs.ucy.ac.cy

Keeneland: Bringing
Heterogeneous gPu ComPuting
to tHe ComPutational sCienCe Community

T he Keeneland project—named
for a historic thoroughbred
horse racing track in Lexington,

Kentucky—is a five-year Track 2D
grant awarded by the US National Sci-
ence Foundation (NSF) in August 2009
for the development and deployment of
an innovative high-performance com-
puting system. The Keeneland project
is led by the Georgia Institute of Tech-
nology (Georgia Tech) in collabora-
tion with the University of Tennessee
at Knoxville and Oak Ridge National
Laboratory. The initial delivery
system, an HP Linux cluster with
360 Nvidia Fermi graphics processors,
is now operational and is being used to
prepare software tools and applications
for the full-scale system, which is due
to be deployed in 2012.

Keeneland is organized into two
primary deployment phases. The first
phase provides a moderately sized, ini-
tial delivery system (KID) to develop
software tools for GPU computing
and to prepare applications to ex-
ploit GPUs effectively. During 2012,
Keeneland’s second phase will pro-
vide a full-scale system for production
use by computational scientists. The
Keeneland Full Scale (KFS) system
will be similar to the KID system in
terms of hardware and software—that
is, it will be a Linux cluster based on

commodity next-generation CPUs,
next-generation GPUs, HPC inter-
connect, programming environment,
and tools. The KFS system is expected
to have at least two times KID’s total
number of GPUs, with the expected
performance improvements of the
next-generation CPUs and GPUs.
KFS will be an Extreme Digital Sci-
ence and Engineering Discovery
Environment (XSEDE) resource
available to a broad set of users. Al-
though there’s currently a community
movement in HPC toward this type
of architecture, a critical component
of the Keeneland project is to develop
software that will let users take advan-
tage of its unique capabilities. We also
aim to reach out to teams developing
applications that might map well to
this innovative architecture.

Motivation
Heterogeneous architectures have
recently emerged in response to the
limits on improving single-node per-
formance in traditional architectures;
the primary factor influencing these
limits is energy efficiency. In the case
of GPUs,1,2 these heterogeneous ar-
chitectures were initially designed
to support a fixed pipeline of gra-
phics operations (such as rasteriza-
tion), and consequently, architects

could specialize them to be exceed-
ingly efficient at those operations.
However, it was only after a small set
of early adopters began using GPUs
for general-purpose computation more
than a decade ago3,4 that hardware
features, algorithmic techniques, and
programming systems—such as Cg,5
CUDA,6 and OpenCL7,8—started to
emerge to make GPUs available to a
wider audience.

Most recently, GPUs such as
Nvidia’s Fermi1 have added critical
features, including much-improved
performance on IEEE double-
precision arithmetic and memory
error detection and correction, that
make these architectures even more
relevant to large-scale computational
science. Compared to the alterna-
tives, these new features, when com-
bined with the original capabilities
of GPUs, provide a competitive plat-
form for numerous types of comput-
ing, such as media processing, gaming,
and scientific computing, in terms of
raw performance (665 Gflops/s per
Fermi) and energy efficiency.

Not surprisingly, these trends have
garnered the attention of researchers,
vendors, and HPC customers. Beyond
the Keeneland project, a substantial
number of very large GPU-based
systems have already been deployed.

By Jeffrey S. Vetter, Richard Glassbrook, Jack Dongarra, Karsten Schwan, Bruce Loftis, Stephen McNally,
Jeremy Meredith, James Rogers, Philip Roth, Kyle Spafford, and Sudhakar Yalamanchili

The Keeneland project’s goal is to develop and deploy an innovative, GPU-based high-performance computing
system for the NSF computational science community.

CISE-13-5-Novel.indd 90 8/3/11 5:39 PM

September/oCtober 2011 91

Examples include China’s Tianhe-1A,
Nebulae at the National Super-
computing Centre (NSCS) in
Shenzhen, Tokyo Tech’s Tsubame 2,
and several other systems in the US
including Dirac at Lawrence Berkeley
National Laboratory, Lincoln at the
National Center for Supercomput-
ing Applications (NCSA), and Edge
at the Lawrence Livermore National
Laboratory. Notably, the Chinese
Tianhe-1A system at the NSCS in
Tianjin achieves a performance of 2.57
petaflops/s on the TOP500 Linpack
benchmark (www.top500.org), which
was #1 in the world in November 2010.

All of these examples are scalable het-
erogeneous architectures that leverage
commodity components: multinode
computing systems with a high-
performance interconnection network,
where each node contains more than
one type of processing device, such as
a traditional CPU and a graphics pro-
cessor. Most experts expect this trend
to continue into the foreseeable future,
given the requirements and constraints
of HPC. Even with this tremendous
progress over the past few years,
the adoption of GPUs by the wider
computational science community
faces several hurdles. These hurdles
include programmability; portabil-
ity; consistent performance; limita-
tions of architectural interfaces; and
the fact that some application fea-
tures, such as performing I/O, simply
won’t perform well on current GPU
architectures.

Keeneland
The Keeneland project’s first phase
is underway; it includes the acquisi-
tion and operation of the initial deliv-
ery system, development of software
tools, preparation of applications for
GPU computing, and an assessment
of the fast-changing technologies.

Architecture
KID has been installed and operat-
ing since November 2010. As Table 1
shows, KID’s configuration is rooted
in the scalable node architecture of the
HP ProLiant SL390 G7. In particular,
as Figure 1 shows, each node has two
Intel Westmere CPUs, three Nvidia
M2070 Fermi GPUs with 6 Gbytes of
memory each, 24 Gbytes of host main
memory, and a Mellanox Quad Data
Rate (QDR) InfiniBand Host Channel
Adapter (HCA). Overall, the system
has 120 nodes with 240 CPUs and
360 GPUs; the installed system has
a peak performance of 201 Tflops in
seven racks (or 90 square feet, includ-
ing the service area).

More specifically, in the HP SL390,
memory is directly attached to the
CPU sockets, which are connected
to each other and the Tylersburg I/O

hubs via Intel’s Quick Path Inter-
connect (QPI). GPUs are attached
to the node’s two I/O hubs using
Peripheral Component Interconnect
Express (PCIe). The theoretical peak
for QPI’s unidirectional bandwidth
is approximately 12.8 Gbytes/s, and
for PCIe x16 it is approximately
8.0 Gbytes/s. With these two I/O
hubs, each node can simultaneously
supply three full x16 PCIe links to the
GPUs and an x8 link to the integrated
Infiniband QDR HCA.

This design avoids contention and
offers advantages in aggregate node
bandwidth when the three GPUs
and the HCA are used concurrently,
as they often are in a scientific sys-
tem. In contrast, other architectures
frequently use a PCIe-switch-based
approach, and the switch can quickly
become a performance bottleneck.

Figure 1. the hP Sl390 G7 Node Architecture provides two host CPus, up to three
GPus, and an integrated Infiniband QDr hCA.

In�niband

Integrated
PCle ×8

QPI

QPIQPI

QPI

DDR3

CPU 0 I/O
Hub

I/O
HubCPU 1

RAM

RAM

RAM

RAM

RAM

RAM

DDR3

PCle ×16

PCle ×16

PCle ×16

GPU 0

GPU 1

GPU 2

Table 1. The KID Configuration.

Node architecture hP Proliant Sl390 G7

CPu Intel Xeon X5660 (Westmere)

CPu frequency 2.80 Ghz

CPu cores per node 12

host memory per node 24 Gbytes

GPu architecture Nvidia tesla M2070 (Fermi)

GPus per node 3

GPu memory per node 18 Gbytes (6 Gbytes per GPu)

CPu/GPu ratio 2:3

Interconnect InfiniBand QDr (single rail)

total number of nodes 120

total CPu cores 1,440

total GPu cores 161,280

CISE-13-5-Novel.indd 91 8/3/11 5:39 PM

N o v E l A r C h I t E C t u r E S

92 Computing in SCienCe & engineering

Nevertheless, with this PCIe-switch-
based approach, vendors are currently
offering systems with the highest
number of GPUs per node.

The node architecture exemplifies
the heterogeneity trends and has one
of the highest number of GPU counts
per node in the November TOP500
list. The HP SL390 design has sig-
nificant benefits over the previous gen-
eration architecture, but also exhibits
multiple levels of non-uniformity.9
In addition to traditional non-uniform
memory access (NUMA) effects
across the two Westmere’s integrated
memory controllers (see Figure 1),
the dual I/O hub design introduces
non-uniform charac teristics for data
transfers between host memory and
GPU memory. These transfers will
perform better if the data traverses
only one QPI link (such as a transfer
between data in the me mory attached
to CPU socket 0 and GPU 0) than if
it traverses two QPI links (such as a
transfer between data in the memory
attached to CPU socket 0 and GPU 1
or GPU 2).

In addition, KID’s GPUs in-
clude other features that can greatly
affect performance and contribute to
non-uniformity. For instance, each
GPU contains error-correcting code
(ECC) memory. ECC memory is de-
sirable in a system designed for scal-
able scientific computing. Enabling
ECC gives some assurance against
these transient errors, but results in a

performance penalty and adds yet an-
other complexity to the GPU memory
hierarchy.

Software Tools
As mentioned earlier, one of the
risks in using these new heteroge-
neous platforms involves decreased
programmer productivity. On the
Keeneland project, we’ve started col-
laborating with many vendors and
initiated research activities to address
this challenge. In particular, software
tools currently developed under the
Keeneland project include scientific
libraries, performance and correct-
ness tools, and virtualization system
software.

For scientific libraries, the Uni-
versity of Tennessee at Knoxville’s
Matrix Algebra on GPU and Multi-
core Architectures (Magma) project10
is developing adaptive, dense linear
algebra libraries that exploit GPUs
and CPUs simultaneously. Magma is
similar to Lapack, but includes sup-
port for heterogeneous architectures.

For performance and correctness
tools, Georgia Tech’s Ocelot project11
offers a modular, dynamic compila-
tion framework for heterogeneous
systems, providing various backend
targets for CUDA programs and
analysis modules for the PTX virtual
instruction set. Ocelot currently all-
ows CUDA programs to be executed
on Nvida GPUs, AMD GPUs, and
x86-CPUs without recompilation.

Furthermore, Ocelot supports the
construction of a range of correct-
ness and performance tools, such
as a memory checker that detects
unaligned and out of bounds memory
accesses.

For system software and virtualiza-
tion, Georgia Tech is developing a
framework for integrating GPUs into
existing infrastructures for virtual-
ization.12 This infrastructure will be
useful for checkpointing and migra-
tion in virtualized systems, as well as
for load balancing and debugging.

Technical Assessment
Because the architectures and soft-
ware for heterogeneous comput-
ing are changing rapidly, we have an
ongoing effort to evaluate different
architectures and software stacks. For
our assessment, we’ve developed the
Scalable Heterogeneous Computing
(SHOC) Benchmark Suite.13 SHOC
is a collection of programs designed
to test the ability of GPUs and other
OpenCL devices for scalable scientific
computing. SHOC has benchmarks at
three levels of complexity, which mea-
sure device “feeds and speeds,” impor-
tant scientific kernels, and portions of
full applications. SHOC also includes
a stability test to validate and stress
new heterogeneous architectures dur-
ing procurement and installation.

Application Readiness
An important aspect of Keeneland is
our applications outreach and readiness
activities. In particular, we’re working
with early adopters to ensure that
their applicat ions work well on
Keeneland. Moreover, we’re aggres-
sively pursuing those applications
that might make efficient use of
GPUs, but whose developers haven’t
yet made the jump to rewriting their
applications. Our team is surveying,

Figure 2. the KID system as installed in Keeneland’s data center. the compact
201 teraflops/s system requires only seven racks and 90 square feet of floor
space.

CISE-13-5-Novel.indd 92 8/3/11 5:39 PM

September/oCtober 2011 93

contacting, modeling, and, in some
cases, assisting the applications teams
with porting their code to this new
architecture.

Science and Applications
During our acceptance testing of the
KID system in November 2010, we
evaluated the system’s performance
with various applications and kernels
for functionality, performance, and
stability. The KID acceptance test in-
cluded tests for all system components
including the CPU, GPU, intercon-
nect, and storage. However, for the
sake of brevity, we include only the
relevant GPU results here. Unless
otherwise noted, the benchmarks and
applications were built using the Intel
11.1.073 compilers, Intel’s Math Ker-
nel Library (MKL), OpenMPI 1.4.3,
and CUDA 3.2RC.

High-performance Linpack (HPL)
for TOP500 has become the domi-
nant benchmark for high-performance
computing due to its ubiquity, por-
tability, and legacy. It has several
characteristics that make it perform
well on a GPU-based cluster, includ-
ing reliance on dense linear algebra
operations--exactly the type of regu-
lar, throughput-oriented problems that
GPUs excel at solving.

Figure 3 shows KID’s HPL scaling
results compared to the theoretical
hardware peak performance and the
aggregate measured double-precision,
general matrix-matrix multiplica-
tion (DGEMM) performance across
GPUs. For these results, we used
Nvidia’s implementation of HPL,
version 9. In this version, each MPI
task dynamically splits work between
the GPU and CPU (using multi-
threaded MKL). The best perfor-
mance on the KID node architecture
requires three MPI tasks per node,
where each task controls one GPU

and uses four cores via MKL. We ex-
perienced highly variable single-node
performance, presumably due to the
dynamic load balancing. However,
the primary bottleneck for HPL
performance on KID was the rela-
tively small size of our host memory.
HPL performance is highly depen-
dent on problem size, and nodes with
a larger memory configuration are
known to realize a higher percentage
of peak performance. However, our
configuration is sufficient for most of
our real-world scientific applications.

In addition, we captured the power
usage of our HPL experiments using
real-time monitoring of the entire
cluster. With this information, we
were able to calculate the energy effi-
ciency of KID to be 677 megaflops per
watt, which placed it at the #9 ranking
on the November Green500 list (www.
green500.org/lists/2010/11/top/list.
php). Interestingly, eight of the current
top-10 systems on this list use GPUs.

Next, we ran many real-world ap-
plications on the system, including
both CPU-only applications and ap-
plications that had been ported to use
GPUs. Among these applications,

we found that the Groningen Ma-
chine for Chemical Simulation (Gro-
macs)14 and the Nanoscale Molecular
Dynamics (NAMD)15 biomo lecular
modeling applications immediately
performed well on the system without
additional performance tuning. Both
applications are used for biomolecular
modeling. Table 2 shows performance
results for these applications on KID
nodes. For Gromacs, we used the
dhfr-impl-2nm benchmark on a single
node. We found that a single M2070
GPU outperforms a single CPU
thread by 52 times, and out performs
a fully populated socket by 10.9 times.
For NAMD, we used the apoa1 prob-
lem running in parallel on four nodes
and realized a 6.6 times speedup when
utilizing the GPUs.

Finally, during this early acceptance
phase, we also ported and successfully
ran the main kernel (Fast Multipole
Method) for a blood flow simulation
application on KID; the results were
presented at the 2010 International
Conference on High Performance
Computing, Networking, Storage,
and Analysis, where this paper was
awarded the SC10 Gordon Bell prize.16

Figure 3. high-performance linpack (hPl) performance on KID.

150

200

250

0
0 20 40 60

Number of nodes

80 100 120

50

100

T�
op

s
53.73

107.46

191.41

117.99

63.92

36.04

66.24

33.12

20.06

Theoretical peak
GPU DGEMM
Observed

CISE-13-5-Novel.indd 93 8/3/11 5:39 PM

N o v E l A r C h I t E C t u r E S

94 Computing in SCienCe & engineering

C urrently, many applications per-
form well on Keeneland, due to

previous work by researchers to mod-
ify their codes to exploit GPUs.17–19
The user community has responded
positively to the availability of KID.
In the first six months of operation,
more than 70 projects and 200 users
have requested and received access
to KID. In the coming months, we’ll
be preparing for delivery of the final
system, deploying GPU-enabled soft-
ware, and engaging more applications
teams so that they can use this inno-
vative architecture to accelerate their
scientific discovery, as NAMD, Gro-
macs, and others have.

Acknowledgments
Keeneland is funded by the US National
Science Foundation’s Office of Cyberin-
frastructure under award 0910735. The
Keeneland team includes members from
the Georgia Institute of Technology,
Oak Ridge National Laboratory, and the
University of Tennessee at Knoxville.

References
1. J. Nickolls and W.J. Dally, “the GPu

Computing Era,” IEEE Micro, vol. 30,

no. 2, 2010, pp. 56–69.

2. l. Seiler et al., “larrabee: A Many-Core

x86 Architecture for visual Comput-

ing,” ACM Trans. Graphics, vol. 27,

no. 3, 2008, pp. 1–15.

3. J.D. owens et al., “A Survey of General-

Purpose Computation on Graphics

hardware,” Computer Graphics Forum,

vol. 26, no. 1, 2007, pp. 80–113.

4. M. Pharr and r. Fernando, GPU Gems

2: Programming Techniques for High-

Performance Graphics and General-

Purpose Computation (GPU Gems),

Addison-Wesley Professional, 2005.

5. W.r. Mark et al., “Cg: A System for

Programming Graphics hardware in a

C-like language,” ACM Trans. Graph-

ics, vol. 22, no. 3, 2003, pp. 896–907.

6. J. Nickolls and I. Buck, “Nvidia

CuDA Software and GPu Parallel

Computing Architecture,” Proc.

Microprocessor Forum, 2007.

7. Khronos Group, OpenCL—The Open

Standard for Parallel Programming

of Heterogeneous Systems, 2008,

www.khronos.org/opencl.

8. J.E. Stone, D. Gohara, and G. Shi,

“openCl: A Parallel Programming

Standard for heterogeneous Comput-

ing Systems,” Computing in Science and

Eng., vol. 12, no. 3, 2010, pp. 66–73.

9. K. Spafford, J. Meredith, and J. vetter,

“Quantifying NuMA and Contention

Effects in Multi-GPu Systems,” Proc.

ACM 4th Workshop General Purpose

Computation on Graphics Processors,

ACM Press, 2011; doi:10.1145/1964179.

1964194.

10. h. ltaief et al., “A Scalable high Per-

formant Cholesky Factorization for

Multicore with GPu Accelerators,” High

Performance Computing for Computa-

tional Science–VECPAR, Springer-verlag,

2010, pp. 93–101.

11. A. Kerr, G. Diamos, and S. Yalamanchili,

“A Characterization and Analysis of PtX

Kernels,” Proc. IEEE Int’l Symp. Workload

Characterization, IEEE CS Press, 2009,

pp. 3–12.

12. A.M. Merritt et al., “Shadowfax: Scal-

ing in heterogeneous Cluster Systems

via GPGPu Assemblies,” Proc. 5th Int’l

Workshop Virtualization Technologies

in Distributed Computing, ACM Press,

2011, pp. 3–10.

13. A. Danalis et al., “the Scalable

heterogeneous Computing (ShoC)

Benchmark Suite,” ACM Workshop

General-Purpose Computation on Graph-

ics Processing Units (GPGPU), ACM Press,

2010, pp. 63–74.

14. E. lindahl, B. hess, and D. van der

Spoel, “Gromacs 3.0: A Package for

Molecular Simulation and trajectory

Analysis,” J. Molecular Modeling, vol. 7,

no. 8, 2001, pp. 306–17.

15. J.C. Phillips et al., “Scalable Molecular

Dynamics with NAMD,” J. Computing

in Chemistry, vol. 26, no. 16, 2005,

pp. 1781–1802.

16. A. rahimian et al., “Petascale Direct

Numerical Simulation of Blood Flow

on 200K Cores and heterogeneous

Architectures (Gordon Bell Award

Winner),” Proc. Int’l Conf. High Perfor-

mance Computing, Networking, Storage,

and Analysis, IEEE CS Press, 2010,

pp. 1–11.

17. A. Alexandru et al., “Multi-Mass Solvers

for lattice QCD on GPus,” Actaphysics,

29 Mar. 2011; arXiv:1103.5103v1.

18. K. Esler et al., “Fully Accelerating Quan-

tum Monte Carlo Simulations of real

Materials on GPu Clusters,” Computing

in Science and Eng., vol. 13, no. 5, 2011.

19. G. Khanna and J. McKennon, “Nu-

merical Modeling of Gravitational

Wave Sources Accelerated by openCl,”

Computer Physics Comm., vol. 181,

no. 9, 2010, pp. 1605–1611.

Jeffrey S. Vetter is the project director of

Keeneland, as well as joint professor in the

College of Computing at Georgia Institute

of technology and founding group leader of

oak ridge National laboratory’s Future tech-

nologies Group. vetter has a PhD in computer

science from the Georgia Institute of technol-

ogy. Contact him at vetter@computer.org.

Richard Glassbrook is the deputy project

director for Keeneland. his research interests

include process improvement. Glassbrook has

an MS in atmospheric science from the State

university of New York at Albany. Contact

him at glassbrook@computer.org.

Table 2. Performance of a single simulation step for Gromacs
and NAMD benchmarks on KID nodes.

Benchmark Configuration Performance (ms)

Gromacs 1 CPu thread 39.3

6 CPu threads 8.23

1 GPu 0.75

NAMD 4 nodes, 12 CPu tasks 104

4 nodes, 12 GPu tasks 15.8

CISE-13-5-Novel.indd 94 8/3/11 5:39 PM

September/oCtober 2011 95

Jack Dongarra is a university Distinguished

Professor of Computer Science in the univer-

sity of tennessee’s Electrical Engineering and

Computer Science Department and a mem-

ber of the Distinguished research Staff at

oak ridge National laboratory’s Computer

Science and Mathematics Division. he’s also a

turing Fellow in the university of Manchester’s

Computer Science and Mathematics Schools,

and an adjunct professor in rice university’s

Computer Science Department. his research

interests include numerical algorithms in

linear algebra, parallel computing, advanced-

computer architectures, programming meth-

odology, and tools for parallel computers, as

well as the development, testing, and docu-

mentation of high-quality mathematical soft-

ware. Contact him at dongarra@eecs.utk.edu.

Karsten Schwan is a regents’ Professor in the

College of Computing at the Georgia Institute

of technology, where he’s also a director of

the Center for Experimental research in Com-

puter Systems. his research interests include

topics in operating systems, middleware, and

parallel and distributed systems, focusing

on information-intensive distributed applica-

tions in the enterprise and high-performance

domains. Schwan has a PhD in computer sci-

ence from Carnegie Mellon university. Con-

tact him at schwan@cc.gatech.edu.

Bruce Loftis manages the Scientifi c Support

Group at the National Institute for Computa-

tional Sciences. his research interests include

environmental modeling, large-scale math-

ematical optimization, and large-scale dis-

tributed applications. loftis has a PhD in civil

engineering from Colorado State university.

Contact him at bruce3@tennessee.edu.

Stephen McNally is a high-performance

system administrator for the National In-

stitute for Computational Sciences at the

university of tennessee/oak ridge National

lab. his research interests include GPu clus-

tering, operating system standardization

using confi guration management tools and

best practices, linux virtualized systems, and

high-performance networking. McNally has

a BS in computer information systems from

Carson-Newman College. Contact him at

smcnally@utke.edu.

Jeremy Meredith is a computer scientist in

the Future technologies Group at oak ridge

National laboratory. his research interests in-

clude emerging computing architectures and

large-scale visualization and analysis. Meredith

has an MS in computer science from Stanford

university. he is a recipient of the 2008 ACM

Gordon Bell Prize and a 2005 r&D100 Award.

Contact him at jsmeredith@ornl.gov.

Philip C. Roth is a member of the research

and development staff at oak ridge National

laboratory, where he is a founding member

of the Computer Science and Mathemat-

ics Division’s Future technologies Group.

his research interests include performance

analysis, prediction, and tools, with special

emphases on scalability, automation, and

emerging architectures. roth has a PhD in

computer science from the university of

Wisconsin–Madison. Contact him at rothpc@

ornl.gov.

Kyle Spafford is a computer scientist in the

Future technologies Group at oak ridge

National laboratory. his research interests

include high-performance computing, with

a focus on emerging architectures. Spafford

has an MS in computer science from the

Georgia Institute of technology. Contact him

at spaffordkl@ornl.gov.

Sudhakar Yalamanchili is the Joseph M.

Pettit Professor of Computer Engineering in

the Georgia Institute of technology’s School

of Electrical and Computer Engineering. his

research interests include the software chal-

lenges of heterogeneous architectures, mod-

eling and simulation, and solutions to power

and thermal issues in many-core architectures

and data centers. Yalamanchili has a PhD in

electrical and computer engineering from

the university of texas at Austin. Contact

him at sudha@ece.gatech.edu.

The #1 AI Magazine
www.computer.org/intelligent IE

E
E

Cutting Edgestay
on

the

IEEE Intelligent Systems provides

peer-reviewed, cutting-edge arti-

cles on the theory and applications

of systems that perceive, reason,

learn, and act intelligently.

of Artificial Intelligence

CISE-13-5-Novel.indd 95 8/3/11 5:39 PM

