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Abstract—As parallel execution platforms continue to prolifer-
ate, there is a growing need for real-time introspection tools to
provide insight into platform behavior for performance debugging,
correctness checks, and to drive effective resource management
schemes. To address this need, we present the Lynx dynamic
instrumentation system. Lynx provides the capability to write
instrumentation routines that are (1) selective, instrumenting
only what is needed, (2) transparent, without changes to the
applications’ source code, (3) customizable, and (4) efficient. Lynx
is embedded into the broader GPU Ocelot system, which provides
run-time code generation of CUDA programs for heterogeneous
architectures. This paper describes (1) the Lynx framework and
implementation, (2) its language constructs geared to the Single
Instruction Multiple Data (SIMD) model of data-parallel pro-
gramming used in current general-purpose GPU (GPGPU) based
systems, and (3) useful performance metrics described via Lynx’s
instrumentation language that provide insights into the design
of effective instrumentation routines for GPGPU systems. The
paper concludes with a comparative analysis of Lynx with existing
GPU profiling tools and a quantitative assessment of Lynx’s
instrumentation performance, providing insights into optimization
opportunities for running instrumented GPU kernels.

I. INTRODUCTION

Instrumentation is a technique of inserting additional proce-
dures into an application to observe and/or improve its behavior.
Dynamic binary instrumentation involves inserting code at the
instruction level of an application while the application is ex-
ecuting. Such instrumentation offers opportunities for detailed
low-level inspection such as register spilling, instruction layout,
and code generated downstream from compiler optimization
passes. It also offers the capability to attach/detach instrumen-
tation at runtime, thus selectively incurring potential overheads
only when and where instrumentation is required.

Although dynamic instrumentation has been proven to be a
useful program analysis technique for traditional architectures
[1], it has not been fully exploited for GPU-based systems. This
is in part due to the vendor-specific instruction set architectures
(ISAs) and limited tool-chain support for direct modification of
native binaries of GPUs.

Lynx is a dynamic binary instrumentation infrastructure for
constructing customizable program analysis tools for GPU-
based, parallel architectures. It provides an extensible set of C-
based language constructs to build program analysis tools that
target the data-parallel programming paradigm used in GPUs.
The highlights of Lynx’s design, therefore, are transparency,
selectivity, customization, and efficiency.

Transparency is achieved by inserting instrumentation at
the Parallel Thread eXecution, or PTX level [2], ensuring that

the original CUDA applications remain unchanged. PTX is the
virtual instruction set targeted by NVIDIA’s CUDA [3] and
OpenCL compilers, which implements the Single-Instruction
Multiple-Thread (SIMT) execution model. Furthermore, the
instrumentation generated with Lynx does not alter the original
behavior of the application.

Selective instrumentation implies specification of the instru-
mentation that is needed and where it should be inserted. With
Lynx, instrumentation can be inserted at the beginning or end of
kernels and basic blocks, and/or at the instruction level. It is also
possible to instrument only particular classes of instructions.

Lynx makes such customization of instrumentation easy to
do because the instrumentation for data-parallel programs is
specified and written with a subset of the C programming
language, termed C-on-Demand (COD). Further, the Lynx
instrumentation APIs capture major constructs of the data-
parallel programming model used by GPUs, such as threads,
thread blocks, and grids. This results in a low learning curve
for developers, particularly those already familiar with CUDA
and/or OpenCL.

Lynx provides efficient instrumentation by using a JIT
compiler to translate, insert and optimize instrumentation code.
Additionally, the Lynx API supports the creation of instrumen-
tation routines specifically optimized for GPUs. An example is
warp-level instrumentation, which captures the behavior of a
group of threads as opposed to individual threads. By taking
advantage of the lock-step execution of threads within a warp,
it becomes possible to reduce the memory bandwidth costs
incurred by instrumentation.

Lynx also provides portability by extending an existing dy-
namic heterogeneous compilation framework, GPU Ocelot [4],
which supports several processor backends, such as NVIDIA
GPUs, x86 multi-core CPUs [5], PTX emulation, and AMD
Radeon GPUs [6]. This paper, however, focuses on instrumen-
tations and optimization opportunities for GPUs.

In summary, the technical contributions of Lynx described in
this paper are as follows:

• A dynamic instrumentation system for GPGPU-based,
parallel execution platforms that supports transparency,
selectivity, customization, and efficiency.

• Implementation and design of a C-based language speci-
fication for defining instrumentation for data-parallel pro-
grams, which supports the construction of custom instru-
mentation routines.

• Demonstration of the versatility and usefulness of the Lynx



instrumentation system with implementations of perfor-
mance metrics applicable to GPGPU-based architectures.

• Evaluation of Lynx’s performance and instrumentation
overheads for a variety of GPU workloads, specifically
highlighting optimization opportunities on GPUs.

The design and implementation of Lynx are reviewed in
Section II, followed by a discussion of its instrumentation
capability in Section III. Section IV discusses GPU-specific in-
strumentation techniques and performance metrics implemented
via the Lynx instrumentation system. A comparison of Lynx
with existing GPGPU profiling tools as well as an assessment
of the performance and overheads of kernels instrumented with
Lynx for several metrics are discussed in Section V. Related
research appears in Section VI, followed by conclusions in
Section VII.

All of the experiments were performed on a system with
an Intel Core i7 running Ubuntu 10.04 x86-64, equipped with
an NVIDIA GeForce GTX 480, except for the experiment
comparing Lynx’s performance with Ocelot’s emulator, which
was performed on an Intel Xeon X5660 CPU machine equipped
with an NVIDIA Tesla C2050. Benchmark applications for
experiments are chosen from the NVIDIA CUDA SDK [3],
the Parboil Benchmark Suite [7], and the Rodinia Benchmark
Suite [8].

II. DESIGN AND IMPLEMENTATION

In this section, we present a system overview of Lynx,
followed with a detailed discussion on Lynx’s execution and/or
run-time flow within GPU Ocelot.

A. System Overview

The Lynx instrumentation system is implemented as a core
abstraction of GPU Ocelot and provides the following new
capabilities:

• A C-based language specification for constructing cus-
tomized instrumentation routines

• A C-based JIT compilation framework, which translates
instrumentation routines to PTX

• A PTX instrumentation pass to modify existing kernels
with PTX-generated instrumentation code

• Run-time management of instrumentation-related data
structures

Figure 1 illustrates Lynx’s software architecture.
The Lynx system is comprised of an Instrumentation API,

an Instrumentor, a C-on-Demand (COD) JIT Compiler, a
C-to-PTX Translator, and a C-to-PTX Instrumentation Pass.
The system’s implementation is embedded into GPU Ocelot,
which provides the additional following components: a re-
implementation of the CUDA Runtime API, a PTX Parser, a
PTX-PTX Transformation Pass Manager, and a PTX Transla-
tor/Code Generator with support for multiple backed targets.
When a CUDA application is linked with GPU Ocelot, API
calls to CUDA pass through Ocelot’s CUDA Runtime, which
provides a layer of compilation support, resource management,
and execution. The CUDA application is parsed into PTX
modules, consisting of one or more PTX kernels.

Fig. 1. Lynx software architecture embedded within GPU Ocelot. The
highlighted Lynx components are the contributions of this paper.

If the application is being instrumented, a C-based instru-
mentation specification is provided to the framework. The
Instrumentor serves as the run-time engine for generating the
instrumented PTX kernel from the C specification and the
original PTX kernel, by enlisting the COD JIT Compiler,
the C-to-PTX Translator, and the PTX-PTX Transformation
Pass Manager. The COD JIT Compiler produces a RISC-
based IR for the C specification and the C-to-PTX Translator
generates equivalent PTX instructions. The specification de-
fines where and what to instrument, using the instrumentation
target specifiers discussed in the next section. The C-to-PTX
Instrumentation Pass, invoked by the Pass Manager, inspects
these specifiers and inserts the translated instrumentation PTX
accordingly into the original PTX kernel(s).

B. Execution Flow

Figure 2 illustrates Lynx’s execution/run-time flow within
GPU Ocelot. CUDA applications compiled by nvcc are
converted into C++ programs, with PTX kernels em-
bedded as string literals. When such a program links
with our framework, the CUDA Runtime API function,
cudaRegisterFatBinary, parses these PTX kernels into
an internal representation. The original PTX kernel is provided
as input to GPU Ocelot’s Pass Manager, together with the
instrumentation PTX generated from the C code specification
via the COD JIT Compiler and the C-to-PTX Translator. The
Pass Manager applies a sequence of PTX kernel transformations
to the original PTX kernel. A detailed discussion of GPU
Ocelot’s Pass Manager and PTX transformation passes can be
found in our earlier work [9].

A specific pass, C-to-PTX Instrumentation Pass, is imple-
mented as part of the Lynx framework to insert the generated
PTX into the original PTX kernel, according to Lynx’s language
specification. The final output, the instrumented kernel, is
prepared for native execution on the selected device by the
PTX Translator/Code Generator.

Since GPU Ocelot implements the CUDA Runtime API,
it enables the insertion of hooks into the runtime system
for managing resources and data structures needed to support
instrumentation. The Lynx framework utilizes this capability
via the Instrumentor component. Its general approach for man-
aging instrumentation-related data is to allocate memory on



Fig. 2. Overview of Lynx’s run-time/execution flow. The Original PTX Kernel is augmented with the Instrumentation PTX generated by the C-to-PTX
translation layer to produce the Instrumented PTX Kernel, which is finally executed on the selected device.

the device, populate the instrumentation-related data structures
during kernel execution, and then move the data back to the
host, freeing up allocated resources on the device.

Specifically, the Instrumentor invokes Ocelot’s CUDA Run-
time cudaMalloc and cudaMemcpy APIs to allocate and
initialize data structures on the device. After the kernel is ex-
ecuted on the device, the Instrumentor invokes cudaMemcpy
and cudaFree to move the instrumentation data stored on
the device onto the host and free up allocated resources on the
device.

III. INSTRUMENTATION WITH LYNX

The Lynx instrumentation API provides both relevant func-
tions to perform instrumentation in a data-parallel program-
ming paradigm and instrumentation specifiers, which designate
where the instrumentation needs to be inserted. We first present
an overview of the Lynx Instrumentation API, followed by a
description of three example instrumentation specifications. We
end this section with a discussion on the C-to-PTX translator’s
role in generating PTX from the instrumentation specifications.

A. Instrumentation API

Data-parallel kernels are executed by a tiered hierarchy of
threads, where a collection of threads, also known as a thread
block, is executed concurrently on a single stream multipro-
cessor, or SM. Typically, kernels are launched with tens or
hundreds of thread blocks onto a limited set of available SMs.
Threads within a thread block execute in a SIMT manner in
groups called warps. A warp is defined as the maximal subset of

threads within a thread block that execute the same instructions
concurrently. Therefore, the Lynx API at a minimum must cap-
ture the notions of thread, thread blocks, warps, and SMs. Table
1 describes a subset of the Lynx API. The table also includes
functions such as basicBlockExecutedInstructionCount(), which
represent attributes that are obtained via static analysis of data-
parallel kernels.

The instrumentation specifiers are defined as C labels in the
language. They can be categorized into four types: instrumenta-
tion targets, instruction classes, address spaces and data types.
Table 2 captures all of the currently available specifiers in the
Lynx instrumentation language.

Specifier Type Available Specifiers
Instrumentation Target ON KERNEL ENTRY,

ON KERNEL EXIT,
ON BASIC BLOCK ENTRY,
ON BASIC BLOCK EXIT,
ON INSTRUCTION

Instruction Class MEM READ, MEM WRITE, CALL,
BRANCH, BARRIER, ATOMIC,
ARITHMETIC

Address Space GLOBAL, LOCAL, SHARED, CONST,
PARAM, TEXTURE

Data Types INTEGER, FLOATING POINT

TABLE 2
AVAILABLE SPECIFIERS IN THE LYNX API

Instrumentation target specifiers have a dual purpose. First,
they describe where the instrumentation needs to be inserted.
For instance, instrumentation can be inserted at the beginning



Function Name Description
globalThreadId Global thread identifier for the current thread.
blockThreadId Thread identifier for the current thread within its thread block.
blockId Thread block identifier for the current thread block within its grid.
blockDim Number of threads per thread block.
syncThreads Barrier synchronization within a thread block.
leastActiveThreadInWarp Determines the least active thread in the current warp.
uniqueElementCount Total number of unique elements in a given buffer of warp or half-warp size.
basicBlockId Returns the index of the current basic block.
basicBlockExecutedInstructionCount Total number of executed instructions in the current basic block.

TABLE 1
A SUBSET OF THE LYNX API

or end of kernels, beginning or end of basic blocks, and/or
on every instruction. Instrumentation is inserted just before the
last control-flow statement when inserting at the end of basic
blocks or kernels. Second, the instrumentation target specifiers
serve as loop constructs. In other words, the instrumentation
routine following the target specifier is applied to each and
every kernel, basic block, or instruction, depending on the target
specifier. Note that if no instrumentation target is specified, the
instrumentation is inserted at the beginning of the kernel by
default.

A user may only want to instrument certain classes of
instructions, or only instrument memory operations for cer-
tain address spaces. For this reason, the Lynx API includes
instrumentation class and address space specifiers. The multiple
address space notion is part of the memory hierarchy model
of data-parallel architectures. Threads may access data from
various memory spaces, including on-device and off-device
memory units. Finally, data type specifiers are provided to
categorize arithmetic operations by integer and floating-point
functional units.

B. Example Instrumentation Specifications

Figure 3 shows three example instrumentation specifications
defined using Lynx’s instrumentation language: a basic-block
level instrumentation, an instruction level instrumentation and
a kernel level instrumentation. The instrumentation target spec-
ifiers are noted in each of the examples.

Dynamic instruction count is a basic-block level instrumen-
tation that computes the total number of instructions executed,
omitting predicated instructions that do not get executed. The
instrumentation results are stored in the global address space
of the device in a dynamically allocated array, on a per-
basic-block, per-thread-block, per-thread basis. The globalMem
variable is globally available to store instrumentation data.
The actual allocation of this array takes place in the specific
instrumentor class that is defined for this metric.

The memory efficiency metric is an example of an in-
struction level instrumentation. For every global load or store
instruction, each thread within a thread block computes the
base memory address and stores it in shared memory via the
sharedMem global variable. For NVIDIA GPUs, a half-warp of
16 threads can coordinate global memory accesses into a single
transaction. The least active thread in a warp maintains a count

of unique memory addresses for each half-warp, to determine
the total number of memory transactions required to satisfy a
particular global memory request, and increments the dynamic
warp count.

Finally, the kernel runtime specification is a kernel level
instrumentation that uses barrier synchronization for threads,
syncThreads, within a thread block and the clock cycle
counter API, clockCounter, to obtain the kernel run-time
in clock cycles for each thread block. Since each thread block
gets executed on a single SM, the current SM identifier for
each thread block, obtained via smId, is also stored in global
memory.

C. C-to-PTX Translator

The C-to-PTX translator is responsible for parsing the C
code specification and translating the RISC-based C IR to PTX.
Toward this end, the C-to-PTX translator walks through each C
IR instruction and emits equivalent PTX instructions. Special
handling occurs for each of the instrumentation specifiers. Since
the specifiers are C-style labels, each label is converted to a
basic-block label as a place-holder in the generated PTX. All of
the PTX instructions that belong to the specifier become a part
of a new translation basic-block. The C-to-PTX instrumentation
pass then looks for these labels and inserts the corresponding
instructions of that translation basic-block into the designated
location of the application PTX kernel.

Although multiple instrumentation specifiers are allowed,
each resulting in its own translation basic-block, the current
implementation does not prevent conflicts between the instru-
mentation of different translation blocks. A possible solution
is to enforce that each instrumentation is applied individually
to the application’s PTX kernel as a separate instrumentation
pass, effectively resulting in a chain of instrumentation passes
executed independently. We have left this implementation as a
future enhancement to our framework.

IV. GPU-SPECIFIC INSTRUMENTATION

In this section, we discuss GPU-specific instrumentation
and present common metrics for GPGPU-based systems. We
also present multiple methods for implementing the dynamic
instruction count metric.



Fig. 3. Example Instrumentation Specifications

A. Warp-Level Instrumentation

A warp-level instrumentation is one that focuses on the
behavior of a warp, the collection of threads physically issuing
instructions on an SM during the same cycle, rather than the
independent behaviors of each thread. Such instrumentation is
sensitive to the way SIMD processors are utilized as well as
how memory requests are coalesced before issuing to DRAM.
GPUs implement thread divergence through implicit hardware
predication; a bit mask stores the set of active threads within a
particular warp. Warp-level instrumentation typically involves
a reduction query across particular values computed by each
thread in a warp. These could include conditional branch
predicates, memory addresses, or function call targets.

B. Performance Metrics for GPUs

1) Memory Efficiency: Memory efficiency is an example
of a GPU-specific warp-level metric that characterizes the
spatial locality of memory operations to global memory. Global
memory is the largest block of memory in the PTX memory
hierarchy and also has the highest latency. To alleviate this
latency cost, the PTX memory model enables coalescing of
global memory accesses for threads of a half-warp into one or
two transactions, depending on the width of the address bus.
However, scatter operations, in which threads in a half-warp
access memory that is not sequentially aligned, result in a sep-
arate transaction for each element requested, greatly reducing
memory bandwidth utilization. The goal of the memory effi-
ciency metric, therefore, is to characterize memory bandwidth
utilization by determining the ratio of dynamic warps executing
each global memory dynamic instruction to the number of
memory transactions needed to complete these instructions.
Memory efficiency for several applications, obtained via Lynx’s
instrumentation system, are presented in Figure 4.

The Lynx instrumentation system provides useful APIs to
enable the creation of intricate warp-level instrumentations. For
example, for the memory efficiency metric, the base address of
each global memory operation is computed and stored for all

Fig. 4. Memory Efficiency

threads in a thread block. If the base address is the same for
all threads belonging to a half-warp, then the memory accesses
will be coalesced. A single thread within a warp, determined by
the leastActiveThreadInWarp API, performs an online
reduction of the base addresses written to a shared buffer by
all threads in the warp. The uniqueElementCount API,
which is used to keep a count of unique base addresses within a
half-warp, determines the total number of memory transactions
required for a particular memory operation.

2) Branch Divergence: Branch divergence is another exam-
ple of a warp-level metric. It provides insight into a fundamental
aspect of GPU performance, namely its SIMT execution model.
In this model, all threads within a warp execute each instruction
in lock-step fashion until they reach a data-dependent condi-
tional branch. If such a condition causes the threads to diverge,
the warp serially executes each branch path taken, disabling
threads that are not on that path. This imposes a large penalty on



kernels with heavy control-flow. The branch divergence metric
measures the ratio of divergent branches to the total number
of branches present in the kernel for all SMs in the GPU,
characterizing kernels with control-flow.

We have implemented the branch divergence metric, using
the Lynx instrumentation framework, and present our findings
in Figure 5.

Fig. 5. Branch Divergence

Although one might expect to observe an inverse relationship
between branch divergence and memory efficiency, less correla-
tion is apparent in practice. Regions with frequent branches and
short conditional blocks may have a high incidence of branch
divergence but quick re-convergence. Warps executing in these
regions consequently exhibit high SIMD utilization, as is the
case with Dct8x8. Memory instructions located in blocks of
the program in which all threads have re-converged therefore
have high memory efficiency. Thus, SIMD utilization is more
strongly correlated with memory efficiency than the fraction of
branches which diverge.

3) Kernel Runtime: The kernel runtime metric is useful in
precisely measuring the time it takes for a kernel to execute on
a GPU. Although there are other methods for measuring kernel
runtimes, such as via source-level assertions, these require
participation from the host-side, such as synchronization after
the kernel launch, for the measurements to be meaningful [10].
The use of instrumentation enables polling hardware counters
on the device to obtain kernel runtimes, which capture precise
measurements of multiple events within the execution of a
single kernel without including latencies of PCI bus, driver
stack, and system memory.

Our methodology for implementing kernel runtime involves
capturing the runtime, in clock cycles, for each thread block
and its corresponding SM executing the kernel. This enables
us to determine whether the number of thread-blocks and
corresponding workloads result in SM load imbalance due to
unequal distribution of work among all the thread-blocks for a
given kernel. Such fine-grained instrumentation provides useful

insights into the GPU thread scheduler’s performance via the
degree of load balancing it is able to achieve. These insights
in turn can provide useful feedback for performance tuning
by re-structuring applications, such as the number and size of
thread-blocks.

4) Dynamic Instruction Count: The dynamic instruction
count metric captures the total number of instructions executed
on a GPU. We provide two distinct implementations for this
metric. Our first implementation, counter-per-thread instruction
count, maintains a matrix of counters in global memory with
one row per basic block in the executed kernel and one column
per dynamic PTX thread. As each thread reaches the end of a
particular basic block, it increments its counter index by the
number of executed instructions in that basic block. Counters
of the same basic-block for consecutive threads are arranged
in sequential order to ensure that global memory accesses are
coalesced.

Our second implementation is a warp-level instrumentation
for the instruction count metric. Since the counter-per-thread
instruction count maintains a counter in global memory for
every dynamic PTX thread, it contributes a significant overhead
in terms of memory bandwidth. To reduce this overhead,
we implement a counter-per-warp instruction count, where a
counter in global memory is maintained for every warp instead
of every thread. As each warp reaches the end of a basic block,
the least active thread in each warp multiplies the active thread
count for that warp with the number of executed instructions
in that basic block. This product is added to the specific warp’s
counter.

We use our kernel runtime metric to measure runtimes for the
”most representative”, or the longest-running, kernel with and
without our two instruction count instrumentations for selected
applications in the CUDA SDK. Normalized runtimes for these
kernels are presented in Figure 6.

Fig. 6. Normalized runtimes of selected applications due to dynamic
instruction count instrumentation.

As depicted in Figure 6, the counter-per-warp implementa-
tion consistently outperforms the counter-per-thread instruction
count. We attribute this to the lower memory bandwidth over-



FEATURES
Compute
Profiler
/CUPTI

GPU
Ocelot

Emulator
Lynx

Transparency (No Source
Code Modifications) YES YES YES

Support for Selective
Online Profiling NO YES YES

Customization
(User-Defined Profiling) NO YES YES

Ability to Attach/Detach
Profiling at Run-Time NO YES YES

Support for
Comprehensive Online

Profiling
NO YES YES

Support for Simultaneous
Profiling of Multiple

Metrics
NO YES YES

Native Device Execution YES NO YES

TABLE 3
COMPARISON OF LYNX WITH EXISTING GPU PROFILING TOOLS

head resulting from a warp-level instrumentation. However, in
some cases, the difference between the two implementations
is negligible, such as with BoxFilter and AsyncAPI, whereas
in other cases, the difference is significant, such as with
ConvolutionSeparable and RecursiveGaussian.

We used NVIDIA’s Compute Profiler [11] to gain more
insight into the L1 cache behavior of these applications. Our
findings indicated that the number of global load/store misses
in L1 cache, when compared to the number of cache misses
with no instrumentation, was between 1.6-1.8x greater for the
counter-per-warp instruction count, and 3-4.5x greater for the
counter-per-thread instruction count, for the AsyncAPI and Box-
Filter kernels. However, in the case of ConvolutionSeparable
and RecursiveGaussian, the number of L1 cache misses for
global operations was around 3x greater for the counter-per-
warp instruction count and almost 9x greater for the counter-
per-thread instruction count. This lends us to believe that
certain kernels are more bandwidth-sensitive than others, and
for such kernels, the performance gain from the counter-per-
warp instrumentation versus the counter-per-thread approach is
likely to be more significant.

V. EVALUATION

We first provide a comparative analysis of Lynx with ex-
isting GPU profiling tools, such as NVIDIA’s Compute Pro-
filer/CUPTI [11], [12], and GPU Ocelot’s emulator. We then
look at both the impact of dynamic compilation and the in-
creases in execution times for instrumented kernels, to evaluate
the performance of Lynx.

A. Comparison of Lynx with Existing GPU Profiling Tools

As noted earlier, the core highlights of Lynx’s design include
transparency, selectivity, and customization. We look at these
as well as other features that distinguish Lynx from NVIDIA’s
profiling tools and GPU Ocelot’s emulator. A comparative
summary is presented in Table 3.

Lynx provides online instrumentation of applications trans-
parently, i.e. without source code modifications. Although

NVIDIA’s Compute Profiler also provides transparency, the
performance counters of interest need to be configured prior
to the application run and cannot be modified during the
execution of the application. Lynx, however, does not require
pre-configuration of metrics. As a result, integrating Lynx
with online optimizers, such as kernel schedulers or resource
managers, is transparently feasible. Additionally, Lynx can
attach/detach instrumentation at run-time, selectively incurring
overheads only when and where instrumentation is required.
This capability is not supported by NVIDIA tools.

Lynx also provides the complementary capabilities of se-
lective and comprehensive online profiling. Users can profile
applications at different granularities, such as on a per-thread,
per-warp, per-thread-block, or per-SM basis, or can profile
all threads for all SMs to capture the complete kernel exe-
cution state. NVIDIA tools, however, only provide data for
a restrictive set of SMs [11], [12]. This limitation results in
possible inaccuracy and inconsistency of extrapolated counts,
since the data depends on the run-time mapping of thread
blocks to SMs, which can differ across multiple runs [11]. It
also restricts what one can do with these tools. For example,
the thread-block runtimes to SM mappings, implemented via
Lynx, informs programmers of potential SM load imbalance.
Such fine-grained analysis of workload characterization cannot
be obtained by existing NVIDIA tools.

Another distinguishing feature of Lynx is the support for cus-
tomized, user-defined instrumentation routines, using a C-based
instrumentation language. NVIDIA’s Compute Profiler/CUPTI
provide a specific pre-defined set of metrics to choose from for
specific generations of GPUs. User defined instrumentation is
not supported. As a result, the memory efficiency metric cannot
be obtained by existing NVIDIA tools for NVIDIA GPUs with
compute capability 2.0 or higher [11], [12]. NVIDIA tools also
do not allow certain counter values to be obtained simulta-
neously in a single run, such as the divergent_branch
and branch counters. This can skew results as multiple runs
with likely different counter values may be required to obtain
a single metric, such as branch divergence. Lynx, on the other
hand, supports simultaneous profiling of multiple metrics in a
single run.

Although the Ocelot emulator has most of the capabilities
Lynx provides, a core limitation of the emulator is native
device execution. Since applications in emulation mode do not
run on the GPU, the emulator is unable to capture hardware-
specific behaviors and results in being orders of magnitude
slower. Figure 7 presents slowdowns of a subset of applications’
execution on an Intel Xeon X5660 CPU with hyper-threading
enabled (via Ocelot’s emulator) versus execution on NVIDIA’s
Tesla C2050 GPU (via Lynx) for the memory efficiency met-
ric. Applications with short-running kernels were purposely
chosen for this experiment since longer-running kernels were
prohibitively slow on the emulator.

B. Performance Analysis of Lynx

1) JIT Compilation Overheads: When using a JIT compila-
tion framework, the compilation time is directly reflected in the



Fig. 7. Slowdowns of selected applications’ execution on Intel Xeon X5660
CPU via Ocelot’s emulator vs execution on NVIDIA Tesla C2050 GPU via
Lynx for the memory efficiency metric

application’s runtime. To characterize overheads in each step
of the compilation pipeline, we divide the total runtime into
the following categories: parse, instrument, emit, moduleLoad,
and execute. Parse is the time taken to parse the PTX module.
Instrument measures all the various tasks necessary to insert
the instrumentation into the application, namely, parsing the
C specification, lowering it to the COD IR, translating the
IR to PTX, and invoking the pass manager to apply the
instrumentation pass over the original kernels. Emit is the
time spent in GPU Ocelot’s PTX emitter, while moduleLoad
measures the time spent loading the PTX modules into the
CUDA driver. Finally, execute refers to the execution time of
the kernels on the GPU.

Figure 8 shows the compilation overheads for several appli-
cations instrumented with the counter-per-thread instruction
count metric (see Section IV-B4). This metric was chosen
because the extent of static code expansion is proportional
to the kernel size. The selected benchmark applications show
a considerable range of static kernel sizes, ranging from ap-
plications with a single, small kernel, such as MatrixMul, to
those with many, small and medium-sized kernels, such as
TransposeNew and pns, to a single, large kernel, such as tpacf.

The results indicate that the instrument overhead is consis-
tently less than the overhead associated with parsing the module
but is generally more than the overheads associated with
emitting and loading the module. Additionally, for applications
that either have many small or medium-sized kernels, such as
RecursiveGaussian and pns, or have a single, large kernel, such
as tpacf, most of the time is spent in executing the kernels on
the GPU. This indicates that for longer-running applications,
Lynx’s JIT compilation overheads are either amortized or
hidden entirely.

2) Instrumentation Dynamic Overhead: As shown in the
previous evaluation, most of the overhead of instrumentation

Fig. 8. Compilation overheads for selected applications from the CUDA SDK
and Parboil benchmark suites, instrumented with dynamic instruction count

for longer-running applications is due to executing the instru-
mented kernels. In this section, we evaluate the overhead of
our instrumentation routines on kernel execution times.

Figure 9 presents slowdowns from three instrumentations:
kernel runtime, dynamic instruction count, and branch diver-
gence. The kernel runtime metric presents an average slowdown
of 1.1x, indicating a minimal impact on performance. This
is expected since only a few instructions are added to the
beginning and end of kernels to perform barrier synchronization
and obtain the clock cycle count for all threads in a thread
block.

The dynamic instruction count instrumentation incurs both
memory bandwidth and computation overheads for every ba-
sic block. Therefore, applications with few compute-intensive
but potentially large basic blocks, such as BicubicTexture,
BlackSholes, and Transpose, experience the least slowdown
since memory access costs are amortized. Applications with
several short basic blocks, such as mri-fhd and mri-q, exhibit
a much larger slowdown (over 4x). Although Mandelbrot and
QuasirandomGenerator have a mixture of large and small basic
blocks, these two applications exhibit the largest slowdown
due to the large number of predicated instructions in their
kernels. The dynamic instruction count only takes into account
instructions that are actually executed. As a result, for every
predicated instruction in the kernel, this instrumentation checks
whether the predicate is set for each thread to determine if
the instruction count needs to be incremented. Consequently,
applications that have a large overhead due to branch divergence
instrumentation also exhibit a significant slowdown from the
dynamic instruction count instrumentation since both of these
instrumentations are impacted by the existence of predicated
instructions.

Slowdown due to branch divergence varies from as low as
1.05x (ConvolutionTexture) for some applications to as high
as 15x (QuasirandomGenerator) for other applications. This



Fig. 9. Slowdowns of selected applications due to kernel runtime, dynamic instruction count, and branch divergence instrumentations.

instrumentation depends on the number of branch instructions
present in the kernel. Hence, applications that exhibit significant
control-flow, such as Mandelbrot and QuasirandomGenerator,
incur the largest performance penalty from this instrumentation
while those with little to no control-flow, such as BicubicTexture
and ConvolutionTexture, incur the least penalty.

Figure 10 shows slowdowns of various applications due to
the memory efficiency instrumentation.

Fig. 10. Slowdowns of selected applications due to memory efficiency
instrumentation.

Once again, we see that certain applications achieve min-
imal slowdown from this instrumentation while others ex-
hibit slowdowns as high as 30-48x. Since this instrumenta-
tion only checks for global memory operations, applications
with few global memory operations, such as BicubicTexture
and ConvolutionTexture, exhibit the least slowdown. However,
applications with many global memory operations, such as
AlignedTypes, QuasirandomGenerator and pns, pay a large
performance penalty. Memory efficiency is the most compute-
intensive instrumentation we have implemented, with a notable
memory bandwidth demand as well. These factors contribute
to its high overhead. However, this overhead is to be weighed
against the value of information provided by metrics enabled by

this type of instrumentation, which is not available via vendor
tools. Further, as shown in Figure 7, evaluating such metrics can
take several orders of magnitude more time using an instruction
set emulator.

C. Optimizing Instrumentation Performance
Certain optimizations can lower the overhead costs of in-

strumentation. For example, we could use registers for counter
variables to reduce the memory bandwidth cost of our instru-
mentations. Additionally, currently we have manually applied
basic optimizations, such as constant propagation, dead-code
elimination and removal of duplicate instructions, directly to the
instrumentation code. Applying these and other optimizations
automatically via subsequent optimization passes on to instru-
mented kernels can reduce the overhead costs further. First,
since Ocelot’s Pass Manager coalesces passes by type, extract-
ing the optimizations as separate passes would allow them to
be applied in parallel on multiple kernels. This would improve
the performance of the instrument phase in the JIT compilation.
Second, the optimizations would be applied holistically on to
the instrumented kernel, enabling re-use of PTX instructions
in the original kernel for instrumentation. For example, the
original kernel may be using special PTX registers that are
also needed, and therefore generated, by the instrumentation
code. Such duplicate PTX instructions would be removed by the
optimization passes, thus improving overall kernel execution
time.

VI. RELATED WORK

Pin [13] is a dynamic instrumentation system for CPU appli-
cation binaries that supports multiple CPU architectures, such
as x86, Itanium, and ARM. Just like Pin, Lynx also supports
the creation of portable, customized program analysis tools.
However, unlike Pin, Lynx targets data-parallel applications
and enables the execution of such programs on heterogeneous
backend targets, such as GPUs and multi-core CPUs.

NVIDIA’s Compute Visual Profiler [11] and CUDA Profiling
Tools Interface, CUPTI [12], were released to address the
profiling needs of developers of GPU compute applications.
Each provides a selection of metrics to choose from by reading
performance counters available in NVIDIA GPUs after ap-
plications have run. CUPTI enables the creation of profiling



tools for CUDA applications via APIs that perform source
code interjection. However, as discussed earlier, these utilities
do not offer the opportunity to insert customized, user-defined
instrumentation procedures, and provide data for only a limited
number of SMs.

The TAU Performance System [10] provides profiling and
trace analysis for high-performance parallel applications. TAU,
however, relies on source instrumentation and library wrapping
of the CUDA Runtime/Driver APIs to obtain measurement
before and after CUDA API calls via callbacks and/or events.
TAU also does not offer the flexibility to end-users to define
their own customized instrumentation routines and relies heav-
ily on the device manufacturer to provide support for events
and callbacks. Furthermore, unlike TAU, by obtaining kernel
execution measurements via Lynx’s dynamic instrumentation
system, there is no participation needed from the host to
perform the GPU-related measurement.

GPU simulators and emulators [14], [15], [16], visualization
tools built on top of such simulators [17], and performance
modeling tools [18], [19] are generally intended for offline
program analyses to identify bottlenecks and predict perfor-
mance of GPU applications. Many metrics of interest typically
obtained through simulation may also be obtained through
instrumentation, particularly those metrics reflecting application
behavior. Thus, Lynx is one viable tool to drive research efforts
such as the aforementioned. Hardware interactions may also
be observed through instrumentation, provided care is taken to
avoid perturbing the very effect being measured. With Lynx’s
selective and efficient profiling tools, the same levels of detail
can be captured while natively running applications on the
GPU, achieving notable speedups over CPU execution.

VII. CONCLUSION

This paper presents the design and implementation of Lynx,
a dynamic instrumentation tool-chain that provides selective,
transparent, customizable and efficient instrumentation for GPU
computing platforms. Lynx’s goal is to facilitate the creation
of binary instrumentation tools for data-parallel execution en-
vironments, a novel capability that no existing tool available to
the research community provides. Auto-tuning and optimization
tools can be built on top of Lynx’s dynamic instrumentation
engine to improve program performance at runtime. The online
feedback capability provided by Lynx also makes it a viable
candidate to drive run-time resource management schemes
for high-performance GPGPU-based clusters. Monitoring and
execution analysis tools can be integrated with Lynx to run
natively rather than on a simulator, achieving several orders of
magnitude speedup. Furthermore, Lynx enables the creation of
correctness checking tools that provide insights into both func-
tional and performance bugs to improve programmer productiv-
ity. Our future work looks at several of the above-mentioned use
cases. We are currently building a GPU-top, resource monitor-
ing utility on top of Lynx, and investigating the design of effec-
tive optimization passes for instrumented kernels. Lynx is freely
available at http://code.google.com/p/gpuocelot,
under the lynx branch.
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