Satisfying Data-Intensive Queries Using GPU Clusters

Jeffrey Young, Haicheng Wu, Sudhakar Yalamanchili
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, Georgia, USA
{jyoung9, hwu36}@gatech.edu, sudha@ece.gatech.edu

Abstract—Data-intensive queries should be run on GPU
clusters to increase throughput, and Global Address Spaces
(GAS) should be used to support compiler optimizations that
can increase total throughput by fully utilizing memory and
GPUs across nodes in the cluster.

Keywords-GPU clusters; data warehousing; compiler opti-
mizations; global address spaces

I. ANEw GPU CLUSTER PROTOTYPE

We propose that data-intensive queries should be run
on GPU clusters for higher throughput. Large database
applications could benefit from multi-GPU systems, but
there are three major challenges to achieving significant
advances in throughput. The first challenge is the efficient
and effective implementation of database queries on GPUs.
The second challenge is the limitations of traditional mem-
ory hierarchies, specifically the limited DRAM of the host
environment to which the GPUs are connected. This latter
challenge is amplified by the PCle interconnection between
the host and GPUs. Finally, clusters have limited inter-
node bandwidth, which provides further constraints on data
movement to GPUs. We propose to improve the throughput
of GPU queries for large data sets by taking advantage
of compiler optimizations that can improve data reuse on
GPUs and by using GAS to increase the performance of
data movement between different devices on multiple nodes.
We are currently constructing a system that will provide
the capability to run data-intensive GPU queries using a
compiler framework called Red Fox and a GAS API called
Oncilla [1], as shown in Figure 1.

The Red Fox compiler is designed to run complex queries
with large amounts of data for a heterogeneous cluster.
It is comprised of: i) A front-end to parse a descriptive
language such as Datalog and to create an optimized query
plan in the form of a graph of Relational Algebra (RA)
primitives; ii) A compiler to map these RA primitives to
their corresponding GPU kernels [2]; iii) A data movement
module that leverages GAS hardware to automatically apply
Kernel Fusion/Fission (KFF) optimizations that reduce the
amount of data transferred and overlap data movement with
computation [3][4]; iv) A runtime management system to
orchestrate the above three components dynamically and to
schedule the execution of primitives and data transfers on a

Red Fox ﬁ '
Queries | ((Compiler ) kernel (Runtime) &< Data sets
@—) Fusion / Manager/ <& '

Fission

V V Kernels
‘ Oncilla GAS APl @ |

Non-coherent
GAS Network

Software

Hardware

Figure 1. GPU cluster infrastructure
hybrid cluster connected by GAS hardware.

The Oncilla API enables the creation of a combined GAS
for remote and local host memory and GPU memory on top
of a simplified hardware interface for applications. The Red
Fox system can then use this API to implement compiler
optimizations and to schedule kernels across nodes and on
multiple GPUs. Specifically, Oncilla can be used to provide
high-bandwidth data transfer for KFF-based queries and for
data sets between GPUs on different nodes.

Preliminary experiments with Query 1 of the TPC-H
benchmark suite shows that the Red Fox framework gen-
erates a 4x speedup against traditional CPU-based database
systems, even when KFF is not turned on. Moreover, the
KFF techniques have shown more than 2x speedup when
running on some micro-benchmarks picked from the TPC-
H queries. These preliminary results lead us to believe that
this infrastructure can handle data-intensive queries that are
common in the HPC arena.

REFERENCES

[1] S. Yalamanchili et al., “Oncilla - Optimizing accelerator clouds
for data warehousing applications (white paper),” 2012.

[2] G. Diamos et al., “Relational algorithms for multi-bulk-
synchronous processors,” PPoPP, 2013.

[3] H. Wu et al., “Kernel weaver: Automatically fusing database
primitives for efficient GPU computation,” MICRO, 2012.

[4] H. Wu et al., “Optimizing data warehousing applications for
GPUs using kernel fusion/fission,” /IPDPS-PLC, 2012.



