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ABSTRACT
In this paper we present the design and implementation of a
dynamic instrumentation infrastructure for PTX programs
that procedurally transforms kernels and manages related
data structures. We show how performing instrumentation
within the GPU Ocelot dynamic compiler infrastructure
provides unique capabilities not available to other profiling
and instrumentation toolchains for GPU computing. We
demonstrate the utility of this instrumentation capability
with three example scenarios - (1) performing workload
characterization accelerated by a GPU, (2) providing load
imbalance information for use by a resource allocator, and
(3) providing compute utilization feedback to be used on-
line by a simulated process scheduler that might be found in
a hypervisor. Additionally, we measure both (1) the com-
pilation overheads of performing dynamic compilation and
(2) the increases in runtimes when executing instrumented
kernels. On average, compilation overheads due to instru-
mentation consisted of 69% of the time needed to parse a
kernel module, in the case of the Parboil benchmark suite.
Slowdowns for instrumenting each basic block ranged from
1.5x to 5.5x, with the largest slowdowns attributed to ker-
nels with large numbers of short, compute-bound blocks.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Heterogeneous (hybrid)
systems; D.3.4 [Programming Languages]: Retargetable
compilers; D.3.4 [Programming Languages]: Run-time
environments; D.4.8 [Operating Systems]: Measurements

General Terms
GPU Computing, Instrumentation, Dynamic Binary Com-
pilation

Keywords
CUDA, OpenCL, Ocelot, GPGPU, PTX, Parboil, Rodinia

1. INTRODUCTION
Dynamic binary instrumentation is a technique in which

application binaries are modified by an instrumentation tool
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to insert additional procedures into the existing execution
path. Such instrumentation provides access to the run-time
state of the application and enables sophisticated actions to
take place. For example, code can be inserted for correct-
ness checks such as memory bounds checking, or to improve
performance such as insertion of pre-fetch instructions. In-
strumentation takes place at the instruction level and of-
fers inspection opportunities not exposed at a higher level
such as source-level assertions. Dynamic compilation frame-
works offer the additional capability of adding and remov-
ing instrumentation at runtime to avoid performance costs
unless instrumentation is needed.

Toolchains such as OpenCL [1] and CUDA [2] have tremen-
dously enhanced the state of the art for developing high-
performance applications targeting GPU architectures. Both
platforms provide a C-like language for expressing data-
parallel kernels and an API for launching them on GPU ac-
celerators as well as managing associated resources such as
textures and device memory. However, GPUs are typically
designed with vendor-specific instruction set architectures,
and the toolchains do not facilitate direct inspection and
modification of native application binaries. Consequently,
developers of GPU compute applications are deprived much
of the flexibility and power that dynamic binary instrumen-
tation has brought to traditional architectures.

In this paper, we discuss techniques for dynamically in-
strumenting CUDA kernels at the PTX level [3] and present
enhancements to a toolchain - GPU Ocelot - for transpar-
ently instrumenting unmodified CUDA applications. Specif-
ically, we discuss the use of GPU Ocelot’s [4] pass manager
for applying PTX-to-PTX transformations to loaded mod-
ules before they are dispatched to the GPU driver or other
backends. We define an instrumentation model and ex-
pose APIs to enable construction of user-defined, custom in-
strumentation tools. Additionally, we present a framework
within Ocelot’s implementation of the CUDA Runtime API
for managing data structures associated with instrumenta-
tion. Our tool inserts instrumentation via a transformation
pipeline which exists upstream of each of Ocelot’s supported
processor backends. Consequently, procedural instrumenta-
tion may be inserted and utilized transparently for each of
the Ocelot backends: NVIDIA GPUs, x86 multicore CPUs,
PTX emulation, and (under development) AMD Radeon
GPUs. The details of translation to multicore x86 are de-
scribed in [5], and translation to AMD GPUs are described
by Dominguez, et al. in [6]. We also anticipate the pos-
sibility of an OpenCL API front-end to Ocelot that would
extend the reach of the toolchain described in this paper to
OpenCL applications.



We demonstrate Ocelot’s instrumentation capability with
several example use cases revealing application behaviors
that would take up to 1000x longer if run on Ocelot’s PTX
emulator. To the best of our knowledge, this is the first
implementation of a dynamic transformation and instru-
mentation tool for PTX.

This paper provides a background of GPU computing and
of GPU Ocelot in Section 2. In Section 3, we discuss the de-
sign of GPU Ocelot’s PTX-to-PTX pass manager, facilities
for modifying kernels at the PTX level, and the hooks into
Ocelot’s CUDA Runtime API implementation. The PTX-
to-PTX pass manager is not new to GPU Ocelot, but inte-
grating it as part of a transformation pipeline upstream of
each device backend is a new capability. Enhancements to
Ocelot’s API for managing instrumentation procedures and
extracting results is also a novel capability not discussed
in previous works. In Section 4, we describe several met-
rics and gather results from applications from the CUDA
SDK and Parboil Benchmark suite. We show how a process
scheduler might use this information to enforce a fairness
target, and we characterize overheads of dynamic compila-
tion and instrumentation.

2. GPU COMPUTING
NVIDIA’s CUDA [2] toolchain is a programming lan-

guage and API that enables data-parallel kernels to be writ-
ten in a language with C++-like semantics. Computations
are performed by a tiered hierarchy of threads. At the
lowest level, collections of threads are mapped to a sin-
gle stream multiprocessor or SM and executed concurrently.
Each SM includes an L1 data cache, a shared scratch-pad
memory for exchanging data between threads, and a SIMD
array of functional units. This collection of threads is known
as a cooperative thread array (CTA), and kernels are typ-
ically launched with tens or hundreds of CTAs which are
oversubscribed to the set of available SMs. A work sched-
uler on the GPU maps CTAs onto individual SMs for exe-
cution, and the programming model forbids global synchro-
nization between SMs except on kernel boundaries.

2.1 GPU Ocelot
GPU Ocelot [4] is a dynamic compilation and binary

translation infrastructure for CUDA that implements the
CUDA Runtime API and executes PTX kernels on sev-
eral types of backend execution targets. Ocelot includes a
functional simulator for offline workload characterization,
profiling, and correctness checking. A translator from PTX
to LLVM provides efficient execution of PTX kernels on
multicore CPU devices with the addition of a runtime ex-
ecution manager. To support Ocelot’s NVIDIA GPU de-
vice, PTX kernels are emitted and invoked via the CUDA
Driver API. Ocelot has the unique capability of inspecting
the state of the application as it is running, transforming
PTX kernels before they are executed natively on available
GPU devices, and managing additional resources and data
structures needed to support instrumentation.

Figure 1 illustrates Ocelot’s relationship with CUDA ap-
plications. Ocelot replaces the CUDA Runtime API library
that CUDA applications link with. API calls to CUDA
pass through Ocelot providing a layer of compilation sup-
port, resource management, and execution. Ocelot may
modify CUDA kernels as they are registered and launched
as well as insert additional state and functionality into the
host application. Consequently, it is uniquely positioned to
transparently instrument applications and respond to data-

dependent application behaviors which would not be pos-
sible with static transformation techniques. For example,
Ocelot may implement random sampling by inserting in-
strumentation into a kernel as an application is running,
profiling for a brief period, then re-issuing the original ker-
nel without instrumentation. A more sophisticated ap-
proach might use the results of profiling to perform opti-
mizations of the kernel, although the application of profile-
directed optimizations is beyond the scope of this work.

2.2 PTX Instruction Set and Internal Repre-
sentation

Parallel Thread eXecution, or PTX, is the RISC-like vir-
tual instruction set targeted by NVIDIA’s CUDA and OpenCL
compilers and used as an intermediate representation for
GPU kernels. PTX consists of standard arithmetic instruc-
tions for integer and floating-point arithmetic, load and
store instructions to explicitly denoted address spaces, tex-
ture sampling and graphics related instructions, and branch
instructions. Additionally, special instructions for interact-
ing with other threads within the CTA are provided such
as CTA-wide barrier instructions, warp-wide vote instruc-
tions, and reduction operations, to name several. Imple-
menting the so-called Single-Instruction, Multiple-Thread
(SIMT) execution model, PTX specifies the execution of
a scalar thread and the hardware executes many threads
concurrently. PTX is decoupled from actual hardware in-
stantiations and includes an abstract Application Binary
Interface (ABI) for calling functions and managing a local
parameter memory space while leaving the actual calling
convention semantics to the native ISA implementation.

CUDA sources compiled by nvcc, NVIDIA’s CUDA com-
piler, become C++ programs with calls to register PTX ker-
nels to the active CUDA context via the CUDA Runtime
API. The kernels themselves are stored as string literals
within the program, and kernel names are bound to objects
the host program may then refer to when configuring and
launching kernel grids. Ocelot implements the CUDA Run-
time API’s __cudaRegisterFatBinary() and parses PTX
kernels into an internal representation. Control-flow anal-
ysis partitions instructions into basic blocks connected by
edges indicating control dependencies. An optional data-
flow analysis pass transforms the kernel into static single-
assignment form [7] which enables register re-allocation.
Ocelot’s PTX internal representation (PTX IR) covers the
entire PTX 1.4 ISA 1 specification and provides a con-
venient programming interface for analyzing kernels and
adding new instructions.

3. DESIGN AND IMPLEMENTATION
In this section, we discuss the specific enhancements made

to Ocelot to add externally-defined instrumentation proce-
dures, apply them to PTX modules, and extract profiling
information during application execution.

Ocelot defines an interface for implementing PTX in-
strumentation tools and provides an externally visible API
for attaching instrumentation passes to Ocelot before and
during the execution of GPU compute applications. As
described in previous work [8], Ocelot replaces NVIDIA’s
CUDA Runtime API library (libcudart on Mac and Linux,
cudart.dll on Windows) during the link step when CUDA
applications are compiled. To insert third party instrumen-

1Ocelot 2.0.969 supports PTX 2.1 (Fermi) and has become
the main trunk as of January 31, 2011.



add.s64 %rd2, %rd1, 1
mul.s64 %rd3, %rd2, 4
mov.s64 %rd4, 256
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sin.f64 %fd2, %fd1L_BB_3:

st.f64 %fd2, [%rd0 + 4]

sin.f64 %fd2, %fd1L_BB_3:

st.f64 %fd2, [%rd0 + 4]

sin.f64 %fd2, %fd1L_BB_3:

st.f64 %fd2, [%rd0 + 4]

sin.f64 %fd2, %fd1L_BB_3:

st.f64 %fd2, [%rd0 + 4]

Figure 1: Overview of the GPU Ocelot dynamic compilation infrastructure.

tation procedures, applications can be modified to explicitly
add and remove instrumentors between kernel launches of
the program via Ocelot’s add and remove APIs. Alterna-
tively, instrumentation tools built as an additional library
and linked with the application may add themselves when
the library is initialized. This approach means application
sources do not need to be modified or recompiled.

The instrumentation tools themselves are C++ classes
that consist of two logical components: (1) an instrumentor
class derived from the abstract base class PTXInstrumentor,
and (2) an instrumentation pass class derived from Ocelot’s
Pass abstract class. A class diagram in Figure 2 illustrates
an example instrumentation tool, BasicBlockInstrumen-

tor, and presents the class structure relationship graphi-
cally. The instrumentor is responsible for performing any
static analysis necessary for the instrumentation, construct-
ing instrumentation-related data structures, instantiating a
PTX transformation pass, extracting instrumentation re-
sults, and cleaning up resources. The PTX pass applies
transformations to PTX modules which are presented to it
via Ocelot’s PTX Internal Representation (IR).

3.1 Instrumentation and PTX Passes
The host application calling the CUDA Runtime API is

responsible for registering PTX modules which are then
loaded on the selected CUDA device. Under the Runtime
API layer, within Ocelot, modules are loaded by parsing
and analyzing PTX, applying procedural transformations,
then translating for execution on the target device. Reg-
istered PTXInstrumentor instances are applied during the
procedural transformation step by invoking their instru-

ment() method on each module.
PTX modules contain a set of global variables and func-

tions and must be modified to include a global variable
pointing to additional data structures to receive and out-
put instrumentation results. This module-level change is
performed by a ModulePass specific to each PTXInstrumen-

tor instance. Subsequently, kernels within the module are
instrumented by either a kernel pass or basic block pass.

Between the parse phase and the translation phase, a
pass manager is positioned to apply a sequence of proce-

ModulePass       pass0;

KernelPass         pass1;

KernelPass         pass2;

BasicBlockPass  pass3;

BasicBlockPass  pass4;

ModulePass       pass5;

application.ptx

kernel1() kernel2()

application.ptx

B0

B0

B1

B1 B2

B2 B3

B3 B4

B4 B5

B5 B6

B6

 

Registered PTX Passes Applied to this PTX element

kernel1() kernel2()

Figure 3: PTX Pass manager showing application
of transformations to a PTX module. The circle
indicates BasicBlockPasses pass3 and pass4 are each
applied to basic block B5 before moving on to other
blocks.

dural transformations to the PTX kernels before they are
loaded onto the selected device. This approach is largely
inspired by LLVM’s [9] pass manager framework in which
transformations may be made at the module level, the func-
tion level, and the basic block level depending on the scope
of the transformation. The manager orchestrates pass ap-
plication to ensure both the sequential order of passes is
preserved while taking advantage of locality of reference.
Figure 3 illustrates this method of restricting pass scope
and coalescing passes by type.

Passes themselves are C++ classes that implement inter-
faces derived from Ocelot’s analysis::Pass abstract class.
These include ImmutablePass for performing static analysis
consumed later during the transformation pipeline, Mod-

ulePass for performing module-level modifications, Ker-

nelPass for changing the control structure of the kernel,
and BasicBlockPass for applying transformations within



Figure 2: Class diagram for instrumentation passes.

the scope of one basic block at a time. PTX passes may
access the kernel’s control-flow graph, dominator tree, and
data-flow graph. The data-flow graph is updated when new
instructions are added that create new values, and the dom-
inator trees are recomputed when kernel and module passes
change the control-flow of kernels.

3.2 Instrumentor APIs and CUDA Runtime
Certain instrumentations may require inspection of the

kernel’s CFG to obtain necessary information required by
the CUDA Runtime API to properly allocate resources on
the device. In general, any actions that must be performed
prior to allocating resources on the device, are encapsulated
in the analyze() method. For our basic block execution
count instrumentation, we obtain the CFG of each kernel
to determine the total number of basic blocks.

Before launching a kernel, memory on the device must
be allocted and initialized to store the instrumentation re-
sults. Ocelot calls each registered instrumentation pass’s
initialize() method which may allocate memory and trans-
fer data to and from the selected device. After the kernel
has been launched, each instrumentor’s finalize() method
is invoked to free up allocated resources and extract in-
strumentation results into an instance of KernelProfile.
The KernelProfile class outputs results either to a file or
database, or it may channel instrumentation results to other
components or applications that link with Ocelot. External
applications can access the KernelProfile instance via the
kernelProfile() API within Ocelot.

3.3 Example Instrumentation Tools
The ClockCycleCountInstrumentationPass inserts in-

strumentation to read the clock cycle counter exposed by
PTX’s special register %clock which corresponds to a built-
in hardware clock cycle counter. Instrumentation is inserted
to the beginning of the kernel to record the starting clock
cycle number and at the end, along with a barrier waiting
for all threads to finish, to record the CTA’s ending time.
In addition to storing runtimes, the PTX register %smid is
accessed to determine which streaming multiprocessor each
CTA was mapped to.

The BasicBlockInstrumentationPass constructs a ma-
trix of counters with one row per basic block in the executed
kernel and one column per dynamic PTX thread. By as-
signing one basic block counter per thread, the instrumen-
tation avoids contention to global memory that would be
experienced if each thread performed atomic increments to
the same block counter. Instrumentation code added via a

BasicBlockPass loads a pointer to the counter matrix from
a global variable. The instrumentation pass then adds PTX
instructions to each basic block that compute that thread’s
counter index and increments the associated counter using
non-atomic loads and stores. Counters of the same block
for consecutive threads are arranged in consecutive order in
global memory to ensure accesses are coalesced and guar-
anteed to hit the same L1 cache line. PTX instructions
added to the beginning of each basic block appears in List-
ing 1. This code is annotated with pseudocode illustrating
the purpose of each instruction sequence. At runtime, this
instrumentation pass allocates the counter matrix sized ac-
cording to the kernel’s configured block size.

Listing 1: Instrumentation inserted into each basic
block for BasicBlockInstrumentationPass.

// get pointer to counter matrix
mov.u64 %r28 , __ocelot_basic_block_counter_base;
ld.global.u64 %r13 , [%r28 + 0];
add.u64 %r13 , %r13 , %ctaoffset;

// idx = nthreads * blockId + threadid
mad.lo.u64 %r14 , %nthreads , 5, %threadid;

// ptr = idx * sizeof(Counter) + base
mad.lo.u64 %r15 , %r14 , 8, %r13;

// *ptr ++;
ld.global.u64 %r12 , [%r15 + 0];
add.u64 %r12 , %r12 , 1;
st.global.u64 [%r15 + 0], %r12;

The C++ BasicBlockInstrumentationPass class uses
PTX IR factories to construct instrumentation code in-
serted into the kernel. The BasicBlockInstrumentation-

Pass implements the runOnBlock method to add the rele-
vant PTX at the beginning of every basic block. Listing
2 shows a code snippet of the corresponding C++ code in
the runOnBlock method for creating the PTX to update the
global basic block counter index. This code corresponds to
the last 3 lines of the PTX shown in Listing 1.

Listing 2: Corresponding C++ code for insert-
ing instrumentation into each basic block for Ba-

sicBlockInstrumentationPass.

PTXInstruction ld ( PTXInstruction : : Ld ) ;
PTXInstruction add ( PTXInstruction : : Add ) ;
PTXInstruction s t ( PTXInstruction : : St ) ;

ld . addressSpace = PTXInstruction : : Global ;
ld . a . addressMode = PTXOperand : : I nd i r e c t ;
ld . a . reg = reg isterMap [ ” counterPtrReg ”] ;



ld . d . reg = r e g i s t e r I d ;
ld . d . addressMode = PTXOperand : : Reg i s t e r ;

add . addressSpace = PTXInstruction : : Global ;
add . d = ld . d ;
add . a = ld . d ;
add . b . addressMode = PTXOperand : : Immediate ;
add . b . imm int = 1 ;

s t . addressSpace = PTXInstruction : : Global ;
s t . d . addressMode = PTXOperand : : I n d i r e c t ;
s t . d . reg = reg isterMap [ ” counterPtrReg ”] ;
s t . a . addressMode = PTXOperand : : Reg i s t e r ;
s t . a . reg = r e g i s t e r I d ;

// I n s e r t s at the beg inning o f the ba s i c block ,
// as the 5th , 6th , and 7th statements
// ( f i r s t statement indexed at 0 ) .

kerne l−>dfg()−> i n s e r t ( block , ld , 4 ) ;
kerne l−>dfg()−> i n s e r t ( block , add , 5 ) ;
kerne l−>dfg()−> i n s e r t ( block , st , 6 ) ;

4. EVALUATION
The above instrumentation passes were implemented as

a branch of Ocelot version 1.1.560 [4]. To evaluate the use-
fulness and performance impact of these instrumentation
passes, the following experiments were performed on a sys-
tem with an Intel Core i7 running Ubuntu 10.04 x86-64 and
equipped with an NVIDIA GeForce GTX480. Benchmark
applications were chosen from the NVIDIA CUDA Software
Development Kit [2] and the Parboil Benchmark Suite [10].

Experiment 1 - Hot Region Detection. To deter-
mine the most frequently executed basic blocks within the
kernel, we use our BasicBlockInstrumentationPass. Fig-
ure 4 is a heat map visualizing the results from this experi-
ment for the Scan application from the CUDA SDK. Basic
blocks are colored in intensity in proportion to the number
of threads that have entered them. The hottest region con-
sists of blocks BB_001_007, BB_001_008, BB_001_009 cor-
responding to this kernel’s inner loop. This metric cap-
tures architecture-independent behavior specified by the ap-
plication. A similar instruction trace analysis offered by
Ocelot’s PTX emulator provides the same information but
at the cost of emulation. By instrumenting native PTX
and executing the kernels natively on a Fermi-class NVIDIA
GTX480 [11], a speedup of approximately 1000x over the
emulator was achieved. This is an example of workload
characterization accelerated by GPUs.

Experiment 2 - Overhead of Instrumentation. The
basic block execution count instrumentation contributes a
per-block overhead in terms of memory bandwidth and com-
putation. Blocks in the hottest region make numerous ac-
cesses when incrementing their respective per-thread coun-
ters and displace some cache lines from the L1 and L2
caches. Clock cycle count instrumentation inserts instruc-
tions to read clock cycles at the beginning of the kernel and
then to store the difference into a counter in global memory.
All forms of instrumentation can be expected to perturb ex-
ecution times in some way. This experiment measures run-
times of sample applications with and without each instru-
mentation pass. Slowdowns for selected applications from
the CUDA SDK and Parboil appear in Figure 5. These ap-
plications cover a spectrum of structural properties related
to basic block instrumentation. Properties include number
of operations per basic block, number of kernels launched,
and whether they are memory- or compute-bound.

All applications perform consistently well with clock cycle
count instrumentation, achieving minimal slowdown (less

Figure 5: Slowdowns of selected applications due to
BasicBlockInstrumentor and ClockCycleCountInstru-

mentor.

than 1.3x). Compute intensive applications with many in-
structions per basic block, such as BicubicTexture, BlackSc-
holes, BoxFilter, and Nbody achieve the least slowdown
from BasicBlockInstrumentor, as the costs of accessing
memory are amortized or hidden entirely. Applications with
a large number of short basic blocks, such as BinomialOp-
tions, tpacf, and rpes, exhibit the largest slowdowns from
BasicBlockInstrumentor. Other applications that exhib-
ited a mixture of large and small basic blocks but still had
either a significantly large number of total basic blocks per
kernel or many kernel invocations, such as Mandelbrot, Un-
structuredMandelbrot, EigenValues, and ThreadFenceRe-
duction, had a slowdown between 2x and 4x.

In order to verify the cause of the largest slowdown in
our experiments, BinomialOptions, we use our basic block
instrumentation data to determine the most frequently ex-
ecuted basic blocks within the BinomialOptions kernel. An
analysis of the associated PTX depicts that this kernel con-
sists of many compute-intensive, short basic blocks with
very few memory accesses (less than 11% of the total in-
structions, without instrumentation, are ld and/or st in-
structions). The basic block instrumentation contributes
a large additional bandwidth demand as well as a signif-
icant fraction of dynamic instructions, resulting in a 5.5x
slowdown for this application. As an optimization, a more
sophisticated instrumentation pass could use registers for
counter variables and ellide registers for blocks that could
be fused.

Experiment 3 - CTA Load Imbalance. CUDA ex-
ecution semantics specify coarse-grain parallelism in which
cooperative thread arrays (CTAs) may execute concurrently
but independently. By excluding synchronization across
CTAs from the execution model, GPUs are free to schedule
the execution of CTAs in any order and with any level of
concurrency. Moreover, the programmer is encouraged to
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__global__ void scan_naive( .. ) 
{

  ...

  int offset = 1;

  for ( ; ; )    
  {
     pout = 1 - pout; pin  = 1 - pout;
     __syncthreads();
     temp[pout*n+thid] = temp[pin*n+thid];

     if (thid >= offset)
       temp[pout*n+thid] += temp[pin*n+thid - offset];
    
     offset *= 2;
     if (offset >= n) break;
  }
   ...
}

Figure 4: Hot region visualization of CUDA SDK Scan application profiled during native GPU execution.
Each block presents a count of the number of times a thread entered the basic block and is color coded
to indicate computational intensity. The magnified portion of the control-flow graph illustrates a loop, the
dominant computation in the kernel.

Figure 6: Normalized runtimes for each Streaming
Multiprocessor for several workloads. Kernel run-
time is the maximum number of cycles over all SMs,
and some SMs are less heavily used than others.

specify the number of CTAs per kernel grid as a function
of problem size without consideration of the target GPU
architecture. This is one approach toward parallelism scal-
ability, as the hardware is free to map CTAs to streaming
multiprocessors (SMs) as they become available. An appli-
cation’s performance may scale as it is run on a low-end
GPU with 2 SMs to a high-end GPU with 30 SMs. Unfor-
tunately, this approach may also result in load imbalance
as more work may be assigned to some CTAs than others.
ClockCycleCountInstrumentor records CTA runtimes and

mapping from CTA to SM and determines whether the
number of CTAs and corresponding workloads leave any
SMs idle for extended periods or whether the workload is

well-balanced. Figure 6 plots runtimes of selected applica-
tions for each SM normalized to total kernel runtime. The
Mandelbrot application exhibits zero clock cycles for SMs 0,
4, and 8, implying they are idle, yet SMS 1, 2, and 3 have
runtimes that are nearly twice as long as the other SMs.
This implies a rather severe load imbalance in which nearly
80% of the GPU is unutilized for half of the kernel’s execu-
tion. This level of feedback may hint to the programmer to
reduce the amount of possible work per CTA to enable the
hardware work scheduler to assign additional, shorter run-
ning CTAs to the unutilized SMs. The other applications
exhibit a balanced workload with all SMs utilized for over
75% of the total kernel runtime.

Experiment 4 - Online Credit-based Process Schedul-
ing. In this experiment, we demonstrate Ocelot’s API for
querying the results of profiling information gathered from
dynamic binary instrumentation by simulating an on-line
process scheduler. This contrasts with the NVIDIA Com-
pute Visual Profiler [12] which only offers offline analysis.
The experimental configuration is derived from work pub-
lished by Gupta, et. al. [13] in which a hypervisor attempts
to balance contention for a physical GPU among a collection
of guest operating systems in a virtualized environment.
By instrumenting kernels at the hypervisor level, schedul-
ing decisions may be informed by data collected without
modifying the actual applications.

A credit-based scheduler illustrated in Figure 7 assigns a
kernel launch rate to each process according to a history of
previous execution times, and rates are adjusted to achieve
utilization targets for each process. For our demonstra-
tion, we wrote two CUDA applications, each performing
matrix multiplication on distinct data sets. Application
A performs matrix multiplication on a randomly-generated
data set that is intentionally smaller than Application B’s
randomly-generated data set, resulting in disparate GPU
utilizations. To properly balance compute resources across
both processes, the hyperviser must transparently deter-
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Figure 7: Credit-based process scheduler utilizing
online profile information to make control decisions.

mine kernel runtimes and assign credits accordingly. We
capture kernel runtimes via the ClockCycleCountInstru-

mentor, and adjust each application’s kernel launch rate to
achieve the desired 50% GPU utilization target. The sched-
uler initially launches each application’s kernel with period
of 10 ms and adjusts the rates every 50 ms.

Figure 8 (a) plots GPU utilizations for the two appli-
cations running without any scheduling policy. As noted
earlier, Application B launches kernels with considerably
larger workloads than Application A. Figure 8 (b) plots
the same applications with kernel launch rates specified by
the process scheduler with a policy that tries to achieve
the 50% utilization target for the two applications. The
scheduler uses online information about kernel runtimes for
gathering profiling results and adjusts kernel launch rates
so that Application B launches kernels less frequently than
A. The startup transient visible during the first few ker-
nel launches results as runtime histories are constructed for
both applications, and then utilization converges toward the
50% target.

Experiment 5 - Characterization of JIT Compi-
lation Overheads. Dynamic binary instrumentation in-
vokes a compilation step as the program is running. Ap-
plication runtime is impacted both by the overheads asso-
ciated with executing instrumentation code when it is en-
countered and also by the process of inserting the instru-
mentation itself. Dynamically instrumented CUDA pro-
grams require an additional just-in-time compilation step to
translate from PTX to the native GPU instruction set, but
applications are typically written with long-running kernels
in mind. In this experiment, we attempt to characterize
overheads in each step of Ocelot’s compilation pipeline from
parsing large PTX modules, performing static analysis, ex-
ecuting PTX-to-PTX transformations, JIT compiling via
the CUDA Driver API, and executing on the GPU.

Figure 9 presents the dynamic compilation overheads in
compiling and executing the Parboil application mri-fhd
and instrumenting it with the basic block counters described
in Section 3.3. This application consists of a single PTX
module of moderate size (2,916 lines of PTX). The figure
shows the relative time spent performing the instrumenta-
tion passes 14.6% is less than both the times to parse the

(a) A set of applications with imbalanced workloads and no
rate limiting scheduler.

(b) Process scheduler targeting 50% utilization for both pro-
cesses by adjusting the kernel launch rate.

Figure 8: Instrumentation used for process schedul-
ing to achieve load balance in a simulated virtual-
ized environment.

PTX module and to re-emit it for loading by the CUDA
Driver API, steps that would be needed without adding in-
strumentation. Online use of instrumentation would not
need to perform the parse step more than once. Results
indicate there would be less than a 2x slowdown if kernels
were instrumented and re-emitted with each invocation, a
slowdown which would decrease for longer running kernels.

5. FUTURE WORK
With our current work, we have demonstrated the capa-

bility and usefulness of online profiling for GPU compute
applications. However, we have only touched the surface
with what we can achieve with this capability. For future
work, we would like to develop a much more comprehen-
sive suite of metrics. We would also like to investigate cus-
tomized instrumentations for capturing application-specific
behavior. One of the major benefits of our approach is
the ability to do selective instrumentation for specific cases.
From a design perspective, our instrumentation framework
provides APIs that ease the design and implementation
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Figure 9: Overheads in compiling and executing an
application from the Parboil benchmark suite. In-
strumentation occupies 14.6% of total kernel run-
time including compilation.

of custom, user-defined instrumentations. However, these
APIs still require instrumentation to be specified at the
PTX level. We are currently investigating higher-level, C-
like constructs to specify instrumentation instead of requir-
ing users of our tool to generate PTX instructions via the
Ocelot IR interface. Finally, we demonstrated the ability for
online scheduling as an example of how our framework can
be used to enforce system policies. This capability opens
new avenues for automatic run-time resource allocation and
decision-making, potentially leading to higher system effi-
ciency. There are several real-world use cases that can bene-
fit from this capability. GPU-accelerated Virtual Machines
that provide system management capabilities for heteroge-
neous manycore systems with specialized accelerators [13] is
one such example. Another interesting use-case for online
instrumentation is optimizing GPUs for power consump-
tion. The GPU Power and Performance Model work by
Hong and Kim predicts the optimal number of active pro-
cessors for a given application [14]. We would like to explore
opportunities to integrate with such analytical models.

6. RELATED WORK
Pin [15] is a mature dynamic instrumentation tool for in-

serting probes into CPU application binaries. It strives to
be architecture independent, supporting CPU architectures
such as x86, Itanium, ARM, and others. Our approach to
instrumenting CUDA kernels was largely inspired by Pin’s
instrumentation model by facilitating the creation of user-
supplied instrumentation tools and inserting them into ex-
isting applications. Pin does not target data-parallel ar-
chitectures or execution models such as GPUs and PTX
nor does it identify embedded PTX kernels as executable
code. Moreover, Ocelot manages resources such as device
memory allocations and textures and presents these to the
instrumentation tools when they are inserted.

NVIDIA’s Compute Visual Profiler [12] was released to
address the profiling needs of developers of GPU compute
applications and provides a selection of metrics to choose
from. This utility is implemented by reading hardware per-
formance counters available in NVIDIA GPUs after appli-
cations have run. However, it does not offer the opportu-
nity to insert user-supplied instrumentation procedures and
the results are not conveniently available for making online
scheduling decisions.

Boyer, et. al. [16] propose statically analyzing CUDA

programs and inserting instrumentation at the source level.
This approach was used to detect race conditions among
threads within a CTA and bank conflicts during accesses to
shared memory. In their tool, a front end parser was written
to construct an intermediate representation of the high-level
program, to annotate it with instrumentation procedures,
and ultimately to re-emit CUDA for compilation using the
existing toolchain. This is a heavy-weight approach that
must be performed before the program is run and does
not enable removing instrumentation once a program has
reached a steady phase of operation. Moreover, this ap-
proach misses the opportunity to observe behaviors only
visible after CUDA has been compiled to PTX. These phe-
nomena include PTX-level register spills if the program has
been compiled with register count constraints or requires
features available on narrow classes of hardware. Finally,
instrumentation procedures added at the source level exist
upstream of lower-level optimization transformations and
may not reflect the true behavior of the program. For ex-
ample, a loop unrolling transformation may duplicate a ba-
sic block counter in the loop body even though the resulting
binary has fused several loop iterations into a single block.
Ocelot enables instrumentation to be added at arbitrary
points as PTX-level optimizations are applied.

Many metrics of interest may be available through simu-
lation using tools such as GPGPU-Sim [17], Barra [18], or
Ocelot’s own PTX emulator [8]. Additionally, these may
drive timing models such as those proposed by Zhang [19]
and by Hong [20]. While these provide a high level of de-
tail, compute-intensive GPU applications are intended to
achieve notable speedups over CPUs when run natively on
GPU hardware. CPUs executing an emulator executing a
GPU compute application exhibit slowdowns on the order
of 100x to 1000x which can be prohibitively slow when char-
acterizing long-running benchmark applications. Such sim-
ulators implement GPU architectural features with varying
levels of fidelity and range from cycle-accurate simulation
of a hypothetical GPU architecture in the case of GPGPU-
Sim to complete decoupling of the abstract PTX execution
model in the case of Ocelot. Consequently, they do not nec-
essarily capture the non-deterministic but significant inter-
actions encountered by executing the GPU kernels on actual
hardware. Instrumenting PTX kernels and executing them
natively renders large GPU compute applications tractable
and captures hardware-specific behaviors.

7. CONCLUSION
GPU compute toolchains have greatly facilitated the ex-

plosion of research into GPUs as accelerators in heteroge-
neous compute systems. However, toolchains have lacked
the ability to perform dynamic binary instrumentation, and
if such were to be added, instrumentation would have to be
written for each processor architecture. By inserting in-
strumentation at the PTX level via a dynamic compilation
framework, we are able to bridge the gap in transparent dy-
namic binary instrumentation capability for CUDA appli-
cations targeting both NVIDIA GPUs and x86 CPUs. This
platform provides an open-ended and flexible environment
for adding instrumentation probes not present in closed
tools such as the Compute Visual Profiler. We envision
our tool improving the state of workload characterization
by profiling native executions rather than simulations, fa-
cilitating profile-directed optimization of data-parallel ker-
nels, and enabling application-level scheduling and resource
management decisions to be made online.
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